Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Inhibition of Interleukin-6 Dependent Metalloproteinases-9/2 Expression in Cancer Cells by Diet Polyphenols

Author(s): Rosaria Arcone*, Rosarita Nasso, Valentina Pagliara, Antonio D'Errico, Maria Letizia Motti, Stefania D'Angelo, Gabriele Carbonara and Mariorosario Masullo*

Volume 22, Issue 1, 2023

Published on: 09 August, 2023

Page: [30 - 41] Pages: 12

DOI: 10.2174/1871523022666230718113806

Price: $65

Abstract

Among inflammatory cytokines, Interleukin-6 (IL-6) is one of the major activators of acute phase response and is also involved in immune response and cancer progression. IL-6 is involved in the up-regulation of enzymes and growth factors acting on the extracellular matrix (ECM) remodelling components in physio-pathological processes. IL-6 enhances the expression of metalloproteases (MMP-)2/9, enzymes that play a key role in ECM degradation and therefore contribute to the process of tumor metastasis. To counteract and/or prevent cancer diseases, many efforts have been devoted to the identification of factors able to inhibit the IL-6-dependent MMP-9/2 expression. Recently, diet polyphenols have been identified as molecules manifesting anti-inflammatory and anti-cancer properties beyond their well-known capacity to promote health on the basis of their antioxidant effects. This review summarizes the recent advances in this field, focusing on the protective effects exerted by diet polyphenols on the proliferation and invasiveness of tumor cells, with specific emphasis on the ability of these molecules to inhibit the IL-6-dependent upregulation of MMP-2/9.

Keywords: Interleukin-6 (IL-6), matrix metalloproteases (MMP-)2/9, tumor cell microenvironment, diet polyphenols, anticancer prevention molecules, immune response.

Graphical Abstract
[1]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[2]
Murata, M. Inflammation and cancer. Environ. Health Prev. Med., 2018, 23(1), 50.
[http://dx.doi.org/10.1186/s12199-018-0740-1] [PMID: 30340457]
[3]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[4]
Kossakowska, A.E.; Edwards, D.R.; Prusinkiewicz, C.; Zhang, M.C.; Guo, D.; Urbanski, S.J.; Grogan, T.; Marquez, L.A.; Janowska-Wieczorek, A. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood, 1999, 94(6), 2080-2089.
[http://dx.doi.org/10.1182/blood.V94.6.2080] [PMID: 10477738]
[5]
Zergoun, A.A.; Zebboudj, A.; Sellam, S.L.; Kariche, N.; Djennaoui, D.; Ouraghi, S.; Kerboua, E.; Amir-Tidadini, Z.C.; Chilla, D.; Asselah, F.; Touil-Boukoffa, C.; Merghoub, T.; Bourouba, M. IL-6/NOS2 inflammatory signals regulate MMP-9 and MMP-2 activity and disease outcome in nasopharyngeal carcinoma patients. Tumour Biol., 2016, 37(3), 3505-3514.
[http://dx.doi.org/10.1007/s13277-015-4186-4] [PMID: 26453114]
[6]
Isaacson, K.J.; Martin Jensen, M.; Subrahmanyam, N.B.; Ghandehari, H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J. Control. Release, 2017, 259, 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.034] [PMID: 28153760]
[7]
Rose-John, S. Interleukin-6 signalling in health and disease. F1000Res, 2020, 9, F1000 Faculty Rev-1013..
[http://dx.doi.org/10.12688/f1000research.26058.1]
[8]
Moga, M.; Dimienescu, O.; Arvatescu, C.; Mironescu, A.; Dracea, L.; Ples, L. The role of natural polyphenols in the prevention and treatment of cervical cancer—An overview. Molecules, 2016, 21(8), 1055.
[http://dx.doi.org/10.3390/molecules21081055] [PMID: 27548122]
[9]
Somers, W.; Stahl, M.; Seehra, J.S. 1.9 Acrystal structure of interleukin 6: Implications for a novel mode of receptor dimerization and signaling. EMBO J., 1997, 16(5), 989-997.
[http://dx.doi.org/10.1093/emboj/16.5.989] [PMID: 9118960]
[10]
Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol., 2018, 18(12), 773-789.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[11]
Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med., 2020, 217(5), e20190347.
[http://dx.doi.org/10.1084/jem.20190347] [PMID: 32267936]
[12]
Boulanger, M.J.; Chow, D.; Brevnova, E.E.; Garcia, K.C. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science, 2003, 300(5628), 2101-2104.
[http://dx.doi.org/10.1126/science.1083901] [PMID: 12829785]
[13]
Xu, G.Y.; Yu, H.A.; Hong, J.; Stahl, M.; McDonagh, T.; Kay, L.E.; Cumming, D.A. Solution structure of recombinant human interleukin-6. J. Mol. Biol., 1997, 268(2), 468-481.
[http://dx.doi.org/10.1006/jmbi.1997.0933] [PMID: 9159484]
[14]
Jenkins, R.H.; Hughes, S.T.O.; Figueras, A.C.; Jones, S.A. Unravelling the broader complexity of IL-6 involvement in health and disease. Cytokine, 2021, 148, 155684.
[http://dx.doi.org/10.1016/j.cyto.2021.155684] [PMID: 34411990]
[15]
Baran, P.; Hansen, S.; Waetzig, G.H.; Akbarzadeh, M.; Lamertz, L.; Huber, H.J.; Ahmadian, M.R.; Moll, J.M.; Scheller, J. The balance of interleukin (IL)-6, IL-6•soluble IL-6 receptor (sIL-6R), and IL-6•sIL-6R•sgp130 complexes allows simultaneous classic and trans-signaling. J. Biol. Chem., 2018, 293(18), 6762-6775.
[http://dx.doi.org/10.1074/jbc.RA117.001163] [PMID: 29559558]
[16]
Rose-John, S.; Scheller, J.; Elson, G.; Jones, S.A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: Role in inflammation and cancer. J. Leukoc. Biol., 2006, 80(2), 227-236.
[http://dx.doi.org/10.1189/jlb.1105674] [PMID: 16707558]
[17]
Hirano, T. Interleukin 6 and its receptor: Ten years later. Int. Rev. Immunol., 1998, 16(3-4), 249-284.
[http://dx.doi.org/10.3109/08830189809042997] [PMID: 9505191]
[18]
Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol., 2021, 33(3), 127-148.
[http://dx.doi.org/10.1093/intimm/dxaa078] [PMID: 33337480]
[19]
Wolfsberg, T.G.; White, J.M. ADAMs in fertilization and development. Dev. Biol., 1996, 180(2), 389-401.
[http://dx.doi.org/10.1006/dbio.1996.0313] [PMID: 8954712]
[20]
Horiuchi, S.; Koyanagiu, Y.; Zhouu, Y.; Miyamotou, H.; Tanakau, Y.; Waki, M.; Matsumoto, A.; Yamamotou, M.; Yamamotof, N. Soluble interleukin-6 receptors released from T cell or granulocyte/macrophage cell lines and human peripheral blood mononuclear cells are generated through an alternative splicing mechanism. Eur. J. Immunol., 1994, 24(8), 1945-1948.
[http://dx.doi.org/10.1002/eji.1830240837] [PMID: 8056053]
[21]
Mülberg, J.; Schooltink, H.; Stoyan, T.; Günther, M.; Graeve, L.; Buse, G.; Mackiewicz, A.; Heinrich, P.C.; Rose-John, S. The soluble interleukin-6 receptor is generated by shedding. Eur. J. Immunol., 1993, 23(2), 473-480.
[http://dx.doi.org/10.1002/eji.1830230226] [PMID: 8436181]
[22]
Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci., 2012, 8(9), 1237-1247.
[http://dx.doi.org/10.7150/ijbs.4989] [PMID: 23136552]
[23]
Grant, S.L.; Hammacher, A.; Douglas, A.M.; Goss, G.A.; Mansfield, R.K.; Heath, J.K.; Begley, C.G. An unexpected biochemical and functional interaction between gp130 and the EGF receptor family in breast cancer cells. Oncogene, 2002, 21(3), 460-474.
[http://dx.doi.org/10.1038/sj.onc.1205100] [PMID: 11821958]
[24]
Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(5), 878-888.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.034] [PMID: 21296109]
[25]
Schmidt-Arras, D.; Rose-John, S. Endosomes as Signaling Platforms for IL-6 Family Cytokine Receptors. Front. Cell Dev. Biol., 2021, 9, 688314.
[http://dx.doi.org/10.3389/fcell.2021.688314] [PMID: 34141712]
[26]
Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Müller-Newen, G.; Schaper, F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J., 2003, 374(1), 1-20.
[http://dx.doi.org/10.1042/bj20030407] [PMID: 12773095]
[27]
Leslie, K.; Gao, S.P.; Berishaj, M.; Podsypanina, K.; Ho, H.; Ivashkiv, L.; Bromberg, J. Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res., 2010, 12(5), R80.
[http://dx.doi.org/10.1186/bcr2725] [PMID: 20929542]
[28]
Cimica, V.; Chen, H.C.; Iyer, J.K.; Reich, N.C. Dynamics of the STAT3 transcription factor: Nuclear import dependent on Ran and importin-β1. PLoS One, 2011, 6(5), e20188.
[http://dx.doi.org/10.1371/journal.pone.0020188] [PMID: 21625522]
[29]
Reich, N.C. STATs get their move on. JAK-STAT, 2013, 2(4), e27080.
[http://dx.doi.org/10.4161/jkst.27080] [PMID: 24470978]
[30]
Taniguchi, K.; Wu, L.W.; Grivennikov, S.I.; de Jong, P.R.; Lian, I.; Yu, F.X.; Wang, K.; Ho, S.B.; Boland, B.S.; Chang, J.T.; Sandborn, W.J.; Hardiman, G.; Raz, E.; Maehara, Y.; Yoshimura, A.; Zucman-Rossi, J.; Guan, K.L.; Karin, M. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature, 2015, 519(7541), 57-62.
[http://dx.doi.org/10.1038/nature14228] [PMID: 25731159]
[31]
Cressman, D.E.; Greenbaum, L.E.; DeAngelis, R.A.; Ciliberto, G.; Furth, E.E.; Poli, V.; Taub, R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science, 1996, 274(5291), 1379-1383.
[http://dx.doi.org/10.1126/science.274.5291.1379] [PMID: 8910279]
[32]
Brábek, J.; Jakubek, M.; Vellieux, F.; Novotný, J.; Kolář, M.; Lacina, L.; Szabo, P.; Strnadová, K.; Rösel, D.; Dvořánková, B.; Smetana, K., Jr Interleukin-6: Molecule in the intersection of cancer, ageing and COVID-19. Int. J. Mol. Sci., 2020, 21(21), 7937.
[http://dx.doi.org/10.3390/ijms21217937] [PMID: 33114676]
[33]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[34]
Kumari, N.; Agrawal, U.; Mishra, A.K.; Kumar, A.; Vasudeva, P.; Mohanty, N.K.; Saxena, S. Predictive role of serum and urinary cytokines in invasion and recurrence of bladder cancer. Tumour Biol., 2017, 39(4)
[http://dx.doi.org/10.1177/1010428317697552] [PMID: 28378639]
[35]
Novick, D.; Engelmann, H.; Wallach, D.; Rubinstein, M. Soluble cytokine receptors are present in normal human urine. J. Exp. Med., 1989, 170(4), 1409-1414.
[http://dx.doi.org/10.1084/jem.170.4.1409] [PMID: 2529343]
[36]
Manore, S.G.; Doheny, D.L.; Wong, G.L.; Lo, H.W. IL-6/JAK/STAT3 signaling in breast cancer metastasis: biology and treatment. Front. Oncol., 2022, 12, 866014.
[http://dx.doi.org/10.3389/fonc.2022.866014] [PMID: 35371975]
[37]
Chalaris, A.; Garbers, C.; Rabe, B.; Rose-John, S.; Scheller, J. The soluble Interleukin 6 receptor: Generation and role in inflammation and cancer. Eur. J. Cell Biol., 2011, 90(6-7), 484-494.
[http://dx.doi.org/10.1016/j.ejcb.2010.10.007] [PMID: 21145125]
[38]
Heink, S.; Yogev, N.; Garbers, C.; Herwerth, M.; Aly, L.; Gasperi, C.; Husterer, V.; Croxford, A.L.; Möller-Hackbarth, K.; Bartsch, H.S.; Sotlar, K.; Krebs, S.; Regen, T.; Blum, H.; Hemmer, B.; Misgeld, T.; Wunderlich, T.F.; Hidalgo, J.; Oukka, M.; Rose-John, S.; Schmidt-Supprian, M.; Waisman, A.; Korn, T. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol., 2017, 18(1), 74-85.
[http://dx.doi.org/10.1038/ni.3632] [PMID: 27893700]
[39]
Garbers, C.; Hermanns, H.M.; Schaper, F.; Müller-Newen, G.; Grötzinger, J.; Rose-John, S.; Scheller, J. Plasticity and cross-talk of Interleukin 6-type cytokines. Cytokine Growth Factor Rev., 2012, 23(3), 85-97.
[http://dx.doi.org/10.1016/j.cytogfr.2012.04.001] [PMID: 22595692]
[40]
Reeh, H.; Rudolph, N.; Billing, U.; Christen, H.; Streif, S.; Bullinger, E.; Schliemann-Bullinger, M.; Findeisen, R.; Schaper, F.; Huber, H.J.; Dittrich, A. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: Fusing experimental insights and dynamic modelling. Cell Commun. Signal., 2019, 17(1), 46.
[http://dx.doi.org/10.1186/s12964-019-0356-0] [PMID: 31101051]
[41]
Bromberg, J.F. Activation of STAT proteins and growth control. BioEssays, 2001, 23(2), 161-169.
[http://dx.doi.org/10.1002/1521-1878(200102)23:2<161::AID-BIES1023>3.0.CO;2-0] [PMID: 11169589]
[42]
Bournazou, E.; Bromberg, J. Targeting the tumor microenvironment. JAK-STAT, 2013, 2(2), e23828.
[http://dx.doi.org/10.4161/jkst.23828] [PMID: 24058812]
[43]
Frank, D.A. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett., 2007, 251(2), 199-210.
[http://dx.doi.org/10.1016/j.canlet.2006.10.017] [PMID: 17129668]
[44]
Zhang, D.; Sun, M.; Samols, D.; Kushner, I. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J. Biol. Chem., 1996, 271(16), 9503-9509.
[http://dx.doi.org/10.1074/jbc.271.16.9503] [PMID: 8621622]
[45]
Lederle, W.; Depner, S.; Schnur, S.; Obermueller, E.; Catone, N.; Just, A.; Fusenig, N.E.; Mueller, M.M. IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int. J. Cancer, 2011, 128(12), 2803-2814.
[http://dx.doi.org/10.1002/ijc.25621] [PMID: 20726000]
[46]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[47]
Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[48]
Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer, 2021, 21(8), 481-499.
[http://dx.doi.org/10.1038/s41568-021-00363-z] [PMID: 34083781]
[49]
Colyn, L.; Alvarez-Sola, G.; Latasa, M.U.; Uriarte, I.; Herranz, J.M.; Arechederra, M.; Vlachogiannis, G.; Rae, C.; Pineda-Lucena, A.; Casadei-Gardini, A.; Pedica, F.; Aldrighetti, L.; López-López, A.; López-Gonzálvez, A.; Barbas, C.; Ciordia, S.; Van Liempd, S.M.; Falcón-Pérez, J.M.; Urman, J.; Sangro, B.; Vicent, S.; Iraburu, M.J.; Prosper, F.; Nelson, L.J.; Banales, J.M.; Martinez-Chantar, M.L.; Marin, J.J.G.; Braconi, C.; Trautwein, C.; Corrales, F.J.; Cubero, F.J.; Berasain, C.; Fernandez-Barrena, M.G.; Avila, M.A. New molecular mechanisms in cholangiocarcinoma: Signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J. Exp. Clin. Cancer Res., 2022, 41(1), 183.
[http://dx.doi.org/10.1186/s13046-022-02386-2] [PMID: 35619118]
[50]
Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6 - A key regulator of colorectal cancer development. Int. J. Biol. Sci., 2012, 8(9), 1248-1253.
[http://dx.doi.org/10.7150/ijbs.4614] [PMID: 23136553]
[51]
Nagasaki, T.; Hara, M.; Nakanishi, H.; Takahashi, H.; Sato, M.; Takeyama, H. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: Anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Br. J. Cancer, 2014, 110(2), 469-478.
[http://dx.doi.org/10.1038/bjc.2013.748] [PMID: 24346288]
[52]
Miura, T.; Mitsunaga, S.; Ikeda, M.; Shimizu, S.; Ohno, I.; Takahashi, H.; Furuse, J.; Inagaki, M.; Higashi, S.; Kato, H.; Terao, K.; Ochiai, A. Characterization of patients with advanced pancreatic cancer and high serum interleukin-6 levels. Pancreas, 2015, 44(5), 756-763.
[http://dx.doi.org/10.1097/MPA.0000000000000335] [PMID: 25931255]
[53]
Culig, Z.; Puhr, M. Interleukin-6: A multifunctional targetable cytokine in human prostate cancer. Mol. Cell. Endocrinol., 2012, 360(1-2), 52-58.
[http://dx.doi.org/10.1016/j.mce.2011.05.033] [PMID: 21664423]
[54]
Ruocco, M.R.; Avagliano, A.; Granato, G.; Imparato, V.; Masone, S.; Masullo, M.; Nasso, R.; Montagnani, S.; Arcucci, A. Involvement of breast cancer-associated fibroblasts in tumor development, therapy resistance and evaluation of potential therapeutic strategies. Curr. Med. Chem., 2018, 25(29), 3414-3434.
[http://dx.doi.org/10.2174/0929867325666180309120746] [PMID: 29521203]
[55]
Meirson, T.; Gil-Henn, H.; Samson, A.O. Invasion and metastasis: The elusive hallmark of cancer. Oncogene, 2020, 39(9), 2024-2026.
[http://dx.doi.org/10.1038/s41388-019-1110-1] [PMID: 31745295]
[56]
Cox, T.R. The matrix in cancer. Nat. Rev. Cancer, 2021, 21(4), 217-238.
[http://dx.doi.org/10.1038/s41568-020-00329-7] [PMID: 33589810]
[57]
Walker, C.; Mojares, E.; del Río Hernández, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci., 2018, 19(10), 3028.
[http://dx.doi.org/10.3390/ijms19103028] [PMID: 30287763]
[58]
Avagliano, A.; Ruocco, M.R.; Nasso, R.; Aliotta, F.; Sanità, G.; Iaccarino, A.; Bellevicine, C.; Calì, G.; Fiume, G.; Masone, S.; Masullo, M.; Montagnani, S.; Arcucci, A. Development of a stromal microenvironment experimental model containing proto-myofibroblast like cells and analysis of its crosstalk with melanoma cells: A new tool to potentiate and stabilize tumor suppressor phenotype of dermal myofibroblasts. Cells, 2019, 8(11), 1435.
[http://dx.doi.org/10.3390/cells8111435] [PMID: 31739477]
[59]
Avagliano, A.; Fiume, G.; Ruocco, M.R.; Martucci, N.; Vecchio, E.; Insabato, L.; Russo, D.; Accurso, A.; Masone, S.; Montagnani, S.; Arcucci, A. Influence of fibroblasts on mammary gland development, breast cancer microenvironment remodeling, and cancer cell dissemination. Cancers, 2020, 12(6), 1697.
[http://dx.doi.org/10.3390/cancers12061697] [PMID: 32604738]
[60]
Karamanos, N.K.; Piperigkou, Z.; Passi, A.; Götte, M.; Rousselle, P.; Vlodavsky, I. Extracellular matrix-based cancer targeting. Trends Mol. Med., 2021, 27(10), 1000-1013.
[http://dx.doi.org/10.1016/j.molmed.2021.07.009]
[61]
Skhinas, J.N.; Cox, T.R. The interplay between extracellular matrix remodelling and kinase signalling in cancer progression and metastasis. Cell Adhes. Migr., 2018, 12(6), 529-537.
[http://dx.doi.org/10.1080/19336918.2017.1405208] [PMID: 29168660]
[62]
Pagliara, V.; Nasso, R.; Di Donato, P.; Finore, I.; Poli, A.; Masullo, M.; Arcone, R. Lemon peel polyphenol extract reduces interleukin-6-induced cell migration, invasiveness, and matrix metalloproteinase-9/2 expression in human gastric adenocarcinoma MKN-28 and AGS cell lines. Biomolecules, 2019, 9(12), 833.
[http://dx.doi.org/10.3390/biom9120833] [PMID: 31817563]
[63]
Pagliara, V.; De Rosa, M.; Di Donato, P.; Nasso, R.; D’Errico, A.; Cammarota, F.; Poli, A.; Masullo, M.; Arcone, R. Inhibition of interleukin-6-induced matrix metalloproteinase-2 expression and invasive ability of lemon peel polyphenol extract in human primary colon cancer cells. Molecules, 2021, 26(23), 7076.
[http://dx.doi.org/10.3390/molecules26237076] [PMID: 34885656]
[64]
Arcone, R.; Palma, M.; Pagliara, V.; Graziani, G.; Masullo, M.; Nardone, G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-α induced Matrix Metalloproteinase-9/2. Biochim. Open, 2016, 3, 56-63.
[http://dx.doi.org/10.1016/j.biopen.2016.10.002] [PMID: 29450132]
[65]
Niland, S.; Riscanevo, A.X.; Eble, J.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int. J. Mol. Sci., 2021, 23(1), 146.
[http://dx.doi.org/10.3390/ijms23010146] [PMID: 35008569]
[66]
Pagliara, V.; Adornetto, A.; Mammì, M.; Masullo, M.; Sarnataro, D.; Pietropaolo, C.; Arcone, R. Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase plasminogen activator and matrix metalloproteinase-9/2. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(11), 2631-2644.
[http://dx.doi.org/10.1016/j.bbamcr.2014.07.008] [PMID: 25072751]
[67]
Li, R.; Li, G.; Deng, L.; Liu, Q.; Dai, J.; Shen, J.; Zhang, J. IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol. Rep., 2010, 23(6), 1553-1559.
[http://dx.doi.org/10.3892/or_00000795] [PMID: 20428809]
[68]
Kesanakurti, D.; Chetty, C.; Dinh, D.H.; Gujrati, M.; Rao, J.S. Role of MMP-2 in the regulation of IL-6/Stat3 survival signaling via interaction with α5β1 integrin in glioma. Oncogene, 2013, 32(3), 327-340.
[http://dx.doi.org/10.1038/onc.2012.52] [PMID: 22349830]
[69]
Sun, W.; Liu, D.B.; Li, W.W.; Zhang, L.L.; Long, G.X.; Wang, J.F.; Mei, Q.; Hu, G.Q. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int. J. Oncol., 2014, 44(5), 1551-1560.
[http://dx.doi.org/10.3892/ijo.2014.2323] [PMID: 24603891]
[70]
Lin, C.M.; Chen, Y.H.; Ma, H.P.; Wang, B.W.; Chiu, J.H.; Chua, S.K.; Ong, J.R.; Shyu, K.G. Silibinin inhibits the invasion of IL-6-stimulated colon cancer cells via selective JNK/AP-1/MMP-2 modulation in vitro. J. Agric. Food Chem., 2012, 60(51), 12451-12457.
[http://dx.doi.org/10.1021/jf300964f] [PMID: 23210512]
[71]
Jia, Z.H.; Jia, Y.; Guo, F.J.; Chen, J.; Zhang, X.W.; Cui, M.H. Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer. PLoS One, 2017, 12(8), e0183622.
[http://dx.doi.org/10.1371/journal.pone.0183622] [PMID: 28859117]
[72]
Zou, M.; Zhang, X.; Xu, C. IL6-induced metastasis modulators p-STAT3, MMP-2 and MMP-9 are targets of 3,3′-diindolylmethane in ovarian cancer cells. Cell Oncol., 2016, 39(1), 47-57.
[http://dx.doi.org/10.1007/s13402-015-0251-7] [PMID: 26510945]
[73]
Kossakowska, A.E.; Urbanski, S.J.; Janowska-Wieczorek, A. Matrix metalloproteinases and their tissue inhibitors - expression, role and regulation in human malignant non-Hodgkin’s lymphomas. Leuk. Lymphoma, 2000, 39(5-6), 485-493.
[http://dx.doi.org/10.3109/10428190009113379] [PMID: 11342332]
[74]
Pahne-Zeppenfeld, J.; Schröer, N.; Walch-Rückheim, B.; Oldak, M.; Gorter, A.; Hegde, S.; Smola, S. Cervical cancer cell-derived interleukin-6 impairs CCR7-dependent migration of MMP-9-expressing dendritic cells. Int. J. Cancer, 2014, 134(9), 2061-2073.
[http://dx.doi.org/10.1002/ijc.28549] [PMID: 24136650]
[75]
Yang, T.; Zhang, J.; Zhou, J.; Zhu, M.; Wang, L.; Yan, L. Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. Biomed. Pharmacother., 2018, 99, 766-773.
[http://dx.doi.org/10.1016/j.biopha.2018.01.153] [PMID: 29710474]
[76]
Binker, M.G.; Binker-Cosen, A.A.; Gaisano, H.Y.; de Cosen, R.H.; Cosen-Binker, L.I. TGF-β1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-κB/IL-6/MMP-2. Biochem. Biophys. Res. Commun., 2011, 405(1), 140-145.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.023] [PMID: 21219858]
[77]
Pagliara, V.; Parafati, M.; Adornetto, A.; White, M.C.; Masullo, M.; Grimaldi, M.; Arcone, R. Dibutyryl cAMP- or Interleukin-6-induced astrocytic differentiation enhances mannose binding lectin (MBL)-associated serine protease (MASP)-1/3 expression in C6 glioma cells. Arch. Biochem. Biophys., 2018, 653, 39-49.
[http://dx.doi.org/10.1016/j.abb.2018.06.016] [PMID: 29963999]
[78]
Mace, T.A.; Shakya, R.; Pitarresi, J.R.; Swanson, B.; McQuinn, C.W.; Loftus, S.; Nordquist, E.; Cruz-Monserrate, Z.; Yu, L.; Young, G.; Zhong, X.; Zimmers, T.A.; Ostrowski, M.C.; Ludwig, T.; Bloomston, M.; Bekaii-Saab, T.; Lesinski, G.B. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut, 2018, 67(2), 320-332.
[http://dx.doi.org/10.1136/gutjnl-2016-311585] [PMID: 27797936]
[79]
Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/9081686] [PMID: 32455130]
[80]
Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci., 2020, 21(16), 5642.
[http://dx.doi.org/10.3390/ijms21165642] [PMID: 32781724]
[81]
D’Angelo, S.; Rosa, R. The impact of supplementation with Pomegranate fruit (Punica Granatum L.) on sport performance. Sport Sci., 2020, 13(Suppl. 1), 29-37.
[82]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[83]
Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life - an overview. Antioxidants, 2021, 10(4), 507.
[http://dx.doi.org/10.3390/antiox10040507] [PMID: 33805092]
[84]
D’Angelo, S. Current evidence on the effect of dietary polyphenols intake on brain health. Curr. Nutr. Food Sci., 2020, 16(8), 1170-1182.
[http://dx.doi.org/10.2174/1573401316999200714160126]
[85]
Tresserra-Rimbau, A.; Lamuela-Raventos, R.M.; Moreno, J.J. Polyphenols, food and pharma current knowledge and directions for future research. Biochem. Pharmacol., 2018, 156, 186-195.
[http://dx.doi.org/10.1016/j.bcp.2018.07.050] [PMID: 30086286]
[86]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[87]
Vuoso, D.C.; D’Angelo, S.; Ferraro, R.; Caserta, S.; Guido, S.; Cammarota, M.; Porcelli, M.; Cacciapuoti, G. Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Sci. Rep., 2020, 10(1), 15921.
[http://dx.doi.org/10.1038/s41598-020-73092-2] [PMID: 32985606]
[88]
Shakoor, H.; Feehan, J.; Apostolopoulos, V.; Platat, C.; Al Dhaheri, A.S.; Ali, H.I.; Ismail, L.C.; Bosevski, M.; Stojanovska, L. Immunomodulatory effects of dietary polyphenols. Nutrients, 2021, 13(3), 728.
[http://dx.doi.org/10.3390/nu13030728] [PMID: 33668814]
[89]
Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci., 2016, 7, 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[90]
Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134.
[http://dx.doi.org/10.1016/j.canlet.2017.11.002] [PMID: 29113871]
[91]
Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res., 2018, 32(16), 1926-1950.
[http://dx.doi.org/10.1080/14786419.2017.1356838] [PMID: 28748726]
[92]
Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[93]
Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther., 2021, 15, 4503-4525.
[http://dx.doi.org/10.2147/DDDT.S327378] [PMID: 34754179]
[94]
Imran, M.; Ullah, A.; Saeed, F.; Nadeem, M.; Arshad, M.U.; Suleria, H.A.R. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1271-1293.
[http://dx.doi.org/10.1080/10408398.2016.1252711] [PMID: 27874279]
[95]
Shanker, M.; Jin, J.; Branch, C.D.; Miyamoto, S.; Grimm, E.A.; Roth, J.A.; Ramesh, R. Tumor suppressor gene-based nanotherapy: From test tube to the clinic. J. Drug Deliv., 2011, 2011, 1-10.
[http://dx.doi.org/10.1155/2011/465845] [PMID: 21490751]
[96]
Farooqi, A.A.; Qureshi, M.Z.; Khalid, S.; Attar, R.; Martinelli, C.; Sabitaliyevich, U.Y.; Nurmurzayevich, S.B.; Taverna, S.; Poltronieri, P.; Xu, B. Regulation of cell signaling pathways by berberine in different cancers: Searching for missing pieces of an incomplete jig-saw puzzle for an effective cancer therapy. Cancers (Basel), 2019, 11(4), 478.
[http://dx.doi.org/10.3390/cancers11040478] [PMID: 30987378]
[97]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[98]
Winer, A.; Adams, S.; Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol. Cancer Ther., 2018, 17(6), 1147-1155.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0646] [PMID: 29735645]
[99]
Mannello, F. Natural bio-drugs as matrix metalloproteinase inhibitors: New perspectives on the horizon? Recent Patents Anticancer Drug Discov., 2006, 1(1), 91-103.
[http://dx.doi.org/10.2174/157489206775246421] [PMID: 18221029]
[100]
Lamy, S.; Akla, N.; Ouanouki, A.; Lord-Dufour, S.; Béliveau, R. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway. Exp. Cell Res., 2012, 318(13), 1586-1596.
[http://dx.doi.org/10.1016/j.yexcr.2012.04.004] [PMID: 22522122]
[101]
Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg. Med. Chem., 2020, 28(5), 115327.
[http://dx.doi.org/10.1016/j.bmc.2020.115327] [PMID: 31992476]
[102]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[103]
Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 2022, 383, 132531.
[http://dx.doi.org/10.1016/j.foodchem.2022.132531] [PMID: 35413752]
[104]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[105]
Niu, W.; Wu, F.; Cao, W.; Wu, Z.; Chao, Y.C.; Peng, F.; Liang, C. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Biosci. Rep., 2021, 41(1), BSR20202583.
[http://dx.doi.org/10.1042/BSR20202583] [PMID: 33146673]
[106]
Hasan, M.; Bae, H. An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 2017, 22(2), 294.
[http://dx.doi.org/10.3390/molecules22020294] [PMID: 28216605]
[107]
Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res., 2008, 52(5), 507-526.
[http://dx.doi.org/10.1002/mnfr.200700326] [PMID: 18435439]
[108]
Kwon, G.T.; Jung, J.I.; Song, H.R.; Woo, E.Y.; Jun, J.G.; Kim, J.K.; Her, S.; Park, J.H.Y. Piceatannol inhibits migration and invasion of prostate cancer cells: Possible mediation by decreased interleukin-6 signaling. J. Nutr. Biochem., 2012, 23(3), 228-238.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.019] [PMID: 21497499]
[109]
D’Angelo, S.; Ferrara, L.; Joksimovic, M. Effects of Punica granatum Fruit (a Super Food) Juice on Human Health. Curr. Nutr. Food Sci., 2022, 18(7), 618-628.
[http://dx.doi.org/10.2174/1573401318666220407101325]
[110]
Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W.; Yang, M.; Hou, C. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation. Food Nutr. Res., 2019, 63(0), 3392.
[http://dx.doi.org/10.29219/fnr.v63.3392] [PMID: 31073284]
[111]
Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valoriz., 2018, 9(9), 1567-1578.
[http://dx.doi.org/10.1007/s12649-017-9939-4]
[112]
Costanzo, P.; Oliverio, M.; Maiuolo, J.; Bonacci, S.; De Luca, G.; Masullo, M.; Arcone, R.; Procopio, A. Novel hydroxytyrosol-donepezil hybrids as potential antioxidant and neuroprotective agents. Front Chem., 2021, 9, 741444.
[http://dx.doi.org/10.3389/fchem.2021.741444] [PMID: 34738004]
[113]
Alcaro, S.; Arcone, R.; Costa, G.; De Vita, D.; Iannone, M.; Ortuso, F.; Procopio, A.; Pasceri, R.; Rotiroti, D.; Scipione, L. Simple choline esters as potential anti-Alzheimer agents. Curr. Pharm. Des., 2010, 16(6), 692-697.
[http://dx.doi.org/10.2174/138161210790883796] [PMID: 20388079]
[114]
Arcone, R.; Chinali, A.; Pozzi, N.; Parafati, M.; Maset, F.; Pietropaolo, C.; De Filippis, V. Conformational and biochemical characterization of a biologically active rat recombinant Protease Nexin-1 expressed in E. coli. Biochim. Biophys. Acta. Proteins Proteomics, 2009, 1794(4), 602-614.
[http://dx.doi.org/10.1016/j.bbapap.2008.12.006] [PMID: 19167525]
[115]
Vitale, R.M.; Rispoli, V.; Desiderio, D.; Sgammato, R.; Thellung, S.; Canale, C.; Vassalli, M.; Carbone, M.; Ciavatta, M.L.; Mollo, E.; Felicità, V.; Arcone, R.; Gavagnin Capoggiani, M.; Masullo, M.; Florio, T.; Amodeo, P. In silico identification and experimental validation of novel anti-alzheimer’s multitargeted ligands from a marine source featuring a “2-aminoimidazole plus aromatic group” scaffold. ACS Chem. Neurosci., 2018, 9(6), 1290-1303.
[http://dx.doi.org/10.1021/acschemneuro.7b00416] [PMID: 29473731]
[116]
Sen, S.; Chakraborty, R.; Rekha, B.; Revathi, D.; Ayyanna, S.C.; Hemalatha, G.; Kumar Reddy, G.A.; Hyndavi, S.; Ikhyatha Babu, P.J.; Prakash, P.R.; Sridhar, C. Anti-inflammatory, analgesic, and antioxidant activities of Pisonia aculeata: Folk medicinal use to scientific approach. Pharm. Biol., 2013, 51(4), 426-432.
[http://dx.doi.org/10.3109/13880209.2012.738331] [PMID: 23336600]
[117]
Sahin, E.; Baycu, C.; Koparal, A.T.; Burukoglu Donmez, D.; Bektur, E. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells. Tumour Biol., 2016, 37(6), 7573-7582.
[http://dx.doi.org/10.1007/s13277-015-4643-0] [PMID: 26687643]
[118]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[119]
Mondal, P.; Natesh, J.; Penta, D.; Meeran, S.M. Extract of Murraya koenigii selectively causes genomic instability by altering redox-status via targeting PI3K/AKT/Nrf2/caspase-3 signaling pathway in human non-small cell lung cancer. Phytomedicine, 2022, 104, 154272.
[http://dx.doi.org/10.1016/j.phymed.2022.154272] [PMID: 35728387]
[120]
Dayi, T.; Oniz, A. Effects of the Mediterranean diet polyphenols on cancer development. J. Prev. Med. Hyg., 2022, 63(2)(Suppl. 3), E74-E80.
[http://dx.doi.org/10.15167/2421-4248/jpmh2022.63.2S3] [PMID: 36479482]
[121]
Liu, X.; Cui, S.; Dan, C.; Li, W.; Xie, H.; Li, C.; Shi, L. Phellinus baumii polyphenol: A potential therapeutic candidate against lung cancer cells. Int. J. Mol. Sci., 2022, 23(24), 16141.
[http://dx.doi.org/10.3390/ijms232416141] [PMID: 36555782]
[122]
Sabry, O.M.; Sabry, M.O.; El-Sonbaty, S.M.; Meselhy, K.M. In vivo and in silico studies of Eucalyptus kino polyphenolics: Outstanding activity in quenching solid liver tumors through inhibition of MMP-9 and TGF-β gene expression. Nat. Prod. Res., 2023, 37(2), 343-347.
[http://dx.doi.org/10.1080/14786419.2021.1961254] [PMID: 34494929]
[123]
Ofosu, F.K.; Daliri, E.B-M.; Elahi, F.; Chelliah, R.; Lee, B-H.; Oh, D-H. New insights on the use of polyphenols as natural preservatives and their emerging safety concerns. Front. Sustain. Food Syst., 2020, 4, 525810.
[http://dx.doi.org/10.3389/fsufs.2020.525810]
[124]
Hollman, P.C.H. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol., 2004, 42(sup1), 74-83.
[http://dx.doi.org/10.3109/13880200490893492]
[125]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727]
[126]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy