Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Preparation and Characterisation and Performance of Copper (II) Surfactant as Cu(II) Complex

Author(s): Vandana Sukhadia*, Rashmi Sharma and Asha Meena

Volume 13, Issue 3, 2023

Published on: 04 August, 2023

Page: [246 - 258] Pages: 13

DOI: 10.2174/1877946813666230720111013

Price: $65

Abstract

Background: Organic synthesis, under environment-friendly circumstances, has a great impact on sustainable development. In this perspective, visible light photocatalysis has emerged as a green model, as this offers an energy-efficient pathway towards organic conversion. Light has been used as an energy source in this study, which is also a green approach to a sustainable environment.

Methods: An investigation of the effects of various physical parameters, like the amount of complex, catalyst dose, and varying polarity of solvent methanol-benzene, on the photocatalytic degradation of surfactant as copper (II) mustard 2-amino 6-methyl benzothiazole complex has been carried out under the UV-visible light source. Biocidal activities of Staphylococcus aureus have also been studied in this work.

Results: The rate of percent degradation has been found to increase with an increase in the range of parameters.

Conclusion: This study provides a deeper experimental knowledge of the photocatalysis processes as well as microbial activities of the copper (II) mustard 2-amino 6-methyl benzothiazole complex. This article deals with advances in photocatalytic methods under non-aqueous media over the past few years.

Keywords: Copper (II) mustard complex, photodegradation, optical density, ZnO, semiconductor, Staphylococcus aureus, percent degradation.

Graphical Abstract
[1]
Yuan, C.L.; Xu, Z.Z.; Fan, M.X.; Liu, H.Y.; Xie, H.; Zhu, T. Study on characteristics and harm of surfactants. JOCPR, 2014, 6, 2233-2237.
[2]
Dąbrowska, D.; Kot-Wasik, A. Namieśnik. J. The Importance of Degradation in the Fate of Selected Organic Compounds in the Environment. Part II. Photodegradation and Biodegradation. Pol. J. Environ. Stud., 2012, 13, 617-626.
[3]
Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; Entezari, M.H.; Dionysiou, D.D. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B, 2012, 125, 331-349.
[http://dx.doi.org/10.1016/j.apcatb.2012.05.036]
[4]
Mohapatra, L.; Parida, K. A review of solar and visible light active oxo-bridged materials for energy and environment. Catal. Sci. Technol., 2017, 7(11), 2153-2164.
[http://dx.doi.org/10.1039/C7CY00116A]
[5]
Watanabe, T.; Koller, K.; Messner, K. Copper-dependent depolymerization of lignin in the presence of fungal metabolite, pyridine. J. Biotechnol., 1998, 62(3), 221-230.
[http://dx.doi.org/10.1016/S0168-1656(98)00063-7] [PMID: 9729805]
[6]
Gabriel, J.; Shah, V. Nesměk, K.; Baldrian, P.; Nerud, F. Degradation of polycyclic aromatic hydrocarbons by the copper(II)-hydrogen peroxide system. Folia Microbiol., 2000, 45(6), 573-575.
[http://dx.doi.org/10.1007/BF02818729] [PMID: 11501426]
[7]
Verma, P.; Baldrian, P.; Nerud, F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere, 2003, 50(8), 975-979.
[http://dx.doi.org/10.1016/S0045-6535(02)00705-1] [PMID: 12531702]
[8]
Salem, I.A. Kinetics of the oxidative color removal and degradation of bromophenol blue with hydrogen peroxide catalyzed by copper(II)-supported alumina and zirconia. Appl. Catal. B, 2000, 28(3-4), 153-162.
[http://dx.doi.org/10.1016/S0926-3373(00)00173-9]
[9]
Mathur, N.; Jain, N.; Sharma, A.K. Biocidal activities of substituted benzothiazole of copper surfactants over candida albicans & trichoderma harziamunon on muller hinton agar. Open Pharm. Sci. J., 2018, 5(1), 24-35.
[http://dx.doi.org/10.2174/1874844901805010024]
[10]
Jacob, C.; Baguia, H.; Dubart, A.; Oger, S.; Thilmany, P.; Beaudelot, J.; Deldaele, C.; Peruško, S.; Landrain, Y.; Michelet, B.; Neale, S.; Romero, E.; Moucheron, C.; Van Speybroeck, V.; Theunissen, C.; Evano, G. A general synthesis of azetidines by copper-catalysed photoinduced anti-Baldwin radical cyclization of ynamides. Nat. Commun., 2022, 13(1), 560.
[http://dx.doi.org/10.1038/s41467-022-28098-x] [PMID: 35091551]
[11]
Wu, C.; Lin, L.; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F.; Xu, W.; Luo, J.; Zhao, Y.; Yan, B.; Wen, X.D.; Rodriguez, J.A.; Ma, D. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun., 2020, 11(1), 5767.
[http://dx.doi.org/10.1038/s41467-020-19634-8] [PMID: 33188189]
[12]
He, X.; Kai, T.; Ding, P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environ. Chem. Lett., 2021, 19(6), 4563-4601.
[http://dx.doi.org/10.1007/s10311-021-01295-8] [PMID: 34483792]
[13]
Huszla, K.; Wysokowski, M. Zgoła-Grześkowiak, A.; Staszak, M.; Janczarek, M.; Jesionowski, T.; Wyrwas, B. UV-light photocatalytic degradation of non-ionic surfactants using ZnO nanoparticles. Int. J. Environ. Sci. Technol., 2022, 19(1), 173-188.
[http://dx.doi.org/10.1007/s13762-021-03160-1]
[14]
Yang, J.; Kim, S.; Lee, K.C.; Lee, Y.J.; Kim, J.Y.; Park, J.A. Development of Brain-Tumor-Targeted Benzothiazole-Based Boron Complex for Boron Neutron Capture Therapy. ACS Med. Chem. Lett., 2022, 13(10), 1615-1620.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00284] [PMID: 36262402]
[15]
Sharma, S.; Sharma, R.; Heda, L.C. Degradation kinetics of Copper (II) soap derived from pongamiapinnata in presence of irradiating semiconductor ZnO. Chem Sci Rev Lett, 2015, 4, 7-16.
[16]
Reza, K.M.; Kurny, A.S.W.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci., 2017, 7(4), 1569-1578.
[http://dx.doi.org/10.1007/s13201-015-0367-y]
[17]
Gupta, R.R.; Thomas, A.; Gautam, R.K.; Gupta, V. One-pot synthesis of new fluorinated 4H-1,4-benzothiazines as possible anticancer agents. J. Fluor. Chem., 1989, 44(1), 1-14.
[http://dx.doi.org/10.1016/S0022-1139(00)84367-5]
[18]
Gunstone, F.D. An Introduction to the Chemistry of Fats and fatty acids; Chapmann and Hall Ltd.: London, 1958.
[19]
Akhtar, Y. Volumetric and viscometric behaviour of amino acids in aqueous metal electrolytes solutions at 308K. Fluid Phase Equilib., 2007, 258(2), 125-130.
[http://dx.doi.org/10.1016/j.fluid.2007.01.043]
[20]
Mehta, V.P.; Hasan, M.; Heda, L.C. Solid-state kinetics and infrared spectra of cadmium soaps. J. Macromol. Sci. Chem., 1982, 17(3), 513-521.
[http://dx.doi.org/10.1080/00222338208056488]
[21]
Choudhary, A.; Sharma, R.; Nagar, M. Synthesis, characterization and antimicrobial activity of mixedligand complexes of Co (II) and Cu (II) with N, O/S donor ligands and amino acids. Int. Res. J. Pharm Pharmacol, 2011, 1, 172-187.
[22]
Mathur, N.; Bagrotya, S.; Mathur, R. Viscometric behaviour and miceller studies of some biodegradable organometallic complexes in binary solvent system. Res. J. Pharm. Biol. Chem. Sci., 2014, 5, 989-997.
[23]
Reddick, J.R.; Bunger, W.B. Organic Solvents: Physical Properties and Methods of Purification; Wiley Interscience: New York, 1970.
[24]
Chaudhary, M.; Pareek, D. Synthesis and Antibacterial Activity of 1-(2-Diazo6-ethoxybenzothiazolyl) Substituted Benzene Derivatives. Int. J. Curr. Chem., 2010, 1, 175-179.
[25]
Sukhadia, V.; Sharma, R.; Meena, A. Study of photocatalytic degradation, kinetics and microbial activities of copper (II) soya urea complex in non-aqueous media. Lett. Org. Chem., 2021, 18(11), 912-923.
[http://dx.doi.org/10.2174/1570178617999200711175559]
[26]
Mishra, A.P.; Jain, R.K. Conventional and microwave synthesis, spectral, thermal and antimicrobial studies of some transition metal complexes containing 2-amino-5-methylthiazole moiety. J. Saudi Chem. Soc., 2014, 18(6), 814-824.
[http://dx.doi.org/10.1016/j.jscs.2011.09.013]
[27]
Onwudiwe, D.C.; Ekennia, A.C. Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates. Res. Chem. Intermed., 2017, 43(3), 1465-1485.
[http://dx.doi.org/10.1007/s11164-016-2709-2]
[28]
Islamova, N.I.; Chen, X.; DiGirolamo, J.A.; Silva, Y.; Lees, W.J. Thermal stability and photochromic properties of a fluorinated indolylfulgimide in a protic and aprotic solvent. J. Photochem. Photobiol. Chem., 2008, 199(1), 85-91.
[http://dx.doi.org/10.1016/j.jphotochem.2008.05.007] [PMID: 19727432]
[29]
Sharma, A.; Ameta, S.C.; Sharma, B.; Mathur, R.P. Use of ZnO particulate system as a photocatalyst: photobleaching of brilliant green. Pollut. Res., 2001, 20, 419-423.
[30]
Melník, M.; Auderová, M.; Hol’ko, M. Copper(II) carboxylates and their antimicrobial effect. Inorg. Chim. Acta, 1982, 67, 117-120.
[http://dx.doi.org/10.1016/S0020-1693(00)85052-5]
[31]
Sachdeva, D.; Parashar, B.; Bhardwaj, S.; Punjabi, P.B.; Sharma, V.K. Use of Pure and N, S-Codoped Bimetallic cerium cadmium oxide nanoparticles as photocatalyst for the photodegradation of fast green. Int. J. Chem. Sci., 2010, 8, 1321-1328.
[32]
Ameta, R.; Vardia, J.; Punjabi, P.B.; Ameta, S.C. Use of semiconducting iron(III) oxide in photocatalytic bleaching of some dyes. Indian J. Chem. Technol., 2006, 13, 114-116.
[33]
Baxi, V.; Kataria, P.; Ameta, R.; Punjabi, P.B. Use of iron (III) oxide as a photocatalyst for oxidation of adipic acid. Int. J. Chem. Sci., 2004, 2, 537-542.
[34]
Chauhan, N.P.S.; Ameta, R.; Ameta, S.C. Synthesis, characterization and thermal degradation of substituted acetophenone based terpolymers having biological activities. J. Macromol. Sci. Part A Pure Appl. Chem., 2011, 48(6), 482-492.
[http://dx.doi.org/10.1080/10601325.2011.573367]
[35]
Sharma, A.; Rao, P.; Mathur, R.P.; Ameta, S.C. Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder. J. Photochem. Photobiol. Chem., 1995, 86(1-3), 197-200.
[http://dx.doi.org/10.1016/1010-6030(94)03933-L]
[36]
Saadeh, S.M. Synthesis, characterization and biological properties of Co(II), Ni(II), Cu(II) and Zn(II) complexes with an SNO functionalized ligand. Arab. J. Chem., 2013, 6(2), 191-196.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.002]
[37]
Chohan, Z.H.; Pervez, H.; Rauf, A.; Scozzafava, A.; Supuran, C.T. Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) complexes of thiadiazole derived furanyl, thiophenyl and pyrrolyl Schiff bases. J. Enzyme Inhib. Med. Chem., 2002, 17(2), 117-122.
[http://dx.doi.org/10.1080/14756360290024218] [PMID: 12420758]
[38]
Sau, D.K.; Butcher, R.J.; Chaudhuri, S.; Saha, N. Synthesis and spectroscopic characterization of new cobalt(III) complexes with 5-Methyl-3formylpyrazole 3-hexaMethyleneiminyl thiosemicarbazone (HMPz3Hex): X-ray crystallographic identification of HMPz3Hex about the azomethine double bond of the ligand on complexation with cobalt(III). Polyhedron, 2004, 23, 5-14.
[http://dx.doi.org/10.1016/j.poly.2003.09.007]
[39]
Chandra, S.; Jain, D.; Sharma, A.K.; Sharma, P. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules, 2009, 14(1), 174-190.
[http://dx.doi.org/10.3390/molecules14010174] [PMID: 19127246]
[40]
Joseph, J.; Boomadevi, J.G. Synthesis, structural characterization and biological studies of Copper complexes with 2-amino benzothiazole derivatives. J. Mater. Environ. Sci., 2014, 5(3), 693-704.
[41]
Santulli, L.; Coppola, A.; Balestrini, S.; Striano, S. The challenges of treating epilepsy with 25 antiepileptic drugs. Pharmacol. Res., 2016, 107, 211-219.
[http://dx.doi.org/10.1016/j.phrs.2016.03.016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy