Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Potential Role of Immunotherapy in Wilms’ Tumor: Opportunities and Challenges

Author(s): Seyed Amir Sanatkar, Arash Heidari, Shahrzad Arya, Mina Ghasemi and Nima Rezaei*

Volume 29, Issue 20, 2023

Published on: 31 July, 2023

Page: [1617 - 1627] Pages: 11

DOI: 10.2174/1381612829666230721122011

Price: $65

Abstract

Wilms' tumor (WT) is the most common renal malignancy in children, accounting for more than 90% of all pediatric renal cancers. Although this tumor is generally responsive to treatment, relapses and deaths still occur in a significant proportion of patients. The genetic alterations commonly found in WT and also its unique histological features and the tumor microenvironment suggest that the immune system may play a crucial role in the disease's development and progression. The limitations of conventional therapies, including surgery, chemotherapy, and radiotherapy, in preventing recurrence in WT patients and their potential for exerting long-term side effects, necessitate the application of novel therapeutic strategies, like immunotherapy, in this disease. Immunotherapy is an emerging cancer treatment approach based on the concept of harnessing the patient's immune system to fight tumor cells. This approach has demonstrated promising results in various types of cancers due to its relatively high specificity, efficacy, and tolerability. However, the precise effects of immunotherapy in WT remain to be explored. For this purpose, this review highlights the potential implication of different immunotherapy approaches, like monoclonal antibodies, adoptive cell therapy, and immune checkpoint inhibitors, in patients with WT, with a particular emphasis on the tumor's genetic and histological features. Although much remains to be learned about the optimal use of immunotherapy for this disease, the available evidence suggests that immunotherapy has the potential to significantly improve outcomes for patients with WT. However, there is still a substantial need for conducting further studies, especially randomized controlled trials, to determine the most effective immunotherapy strategy for this tumor. Moreover, the potential beneficiary roles of the combination of immunotherapy and conventional treatments should be investigated in future research.

Keywords: Wilms’ tumor, immunotherapy, monoclonal antibodies, adoptive cell therapy, immune checkpoint inhibitors, genetic alterations.

« Previous
[1]
Davidoff AM. Wilms tumor. Adv Pediatr 2012; 59(1): 247-67.
[http://dx.doi.org/10.1016/j.yapd.2012.04.001] [PMID: 22789581]
[2]
Beckwith JB. Children at increased risk for Wilms tumor: Monitoring issues. Elsevier 1998; pp. 377-9.
[3]
Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of wilms tumor. Med Pediatr Oncol 1993; 21(3): 172-81.
[http://dx.doi.org/10.1002/mpo.2950210305] [PMID: 7680412]
[4]
Spreafico F, Fernandez CV, Brok J, et al. Wilms tumour. Nat Rev Dis Primers 2021; 7(1): 75.
[http://dx.doi.org/10.1038/s41572-021-00308-8] [PMID: 34650095]
[5]
Irtan S, Ehrlich PF, Pritchard-Jones K. Wilms tumor: “State-of-the-art” update, 2016. Semin Pediatr Surg 2016; 25(5): 250-6.
[http://dx.doi.org/10.1053/j.sempedsurg.2016.09.003] [PMID: 27955727]
[6]
Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 1990; 10(1-2): 1-36.
[http://dx.doi.org/10.3109/15513819009067094] [PMID: 2156243]
[7]
Hong B, Dong R. Research advances in the targeted therapy and immunotherapy of Wilms tumor: A narrative review. Transl Cancer Res 2021; 10(3): 1559-67.
[http://dx.doi.org/10.21037/tcr-20-3302] [PMID: 35116480]
[8]
Aldrink JH, Heaton TE, Dasgupta R, et al. Update on Wilms tumor. J Pediatr Surg 2019; 54(3): 390-7.
[http://dx.doi.org/10.1016/j.jpedsurg.2018.09.005] [PMID: 30270120]
[9]
Maschietto M, Piccoli FS, Costa CML, et al. Gene expression analysis of blastemal component reveals genes associated with relapse mechanism in Wilms tumour. Eur J Cancer 2011; 47(18): 2715-22.
[http://dx.doi.org/10.1016/j.ejca.2011.05.024] [PMID: 21703850]
[10]
Pearce OMT, Läubli H. Cancer immunotherapy. Glycobiology 2018; 28(9): 638-9.
[http://dx.doi.org/10.1093/glycob/cwy069] [PMID: 30084981]
[11]
Rezaei N, Sanatkar SA, Heidari A. Cancer immunotherapy: Diverse approaches and obstacles. Curr Pharm Des 2022; 28(29): 2387-403.
[http://dx.doi.org/10.2174/1381612828666220728160519] [PMID: 35909273]
[12]
Carter H, Marty R, Hofree M, et al. Interaction landscape of inherited polymorphisms with somatic events in cancer. Cancer Discov 2017; 7(4): 410-23.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1045] [PMID: 28188128]
[13]
Huff V. Wilms’ tumours: About tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 2011; 11(2): 111-21.
[http://dx.doi.org/10.1038/nrc3002] [PMID: 21248786]
[14]
McDonald JM, Douglass EC, Fisher R, et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 1998; 58(7): 1387-90.
[PMID: 9537236]
[15]
Rahman N, Arbour L, Tonin P, et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 1996; 13(4): 461-3.
[http://dx.doi.org/10.1038/ng0896-461] [PMID: 8696342]
[16]
Rahman N, Abidi F, Ford D, et al. Confirmation of FWT1 as a Wilms’ tumour susceptibility gene and phenotypic characteristics of Wilms’ tumour attributable to FWT1. Hum Genet 1998; 103(5): 547-56.
[http://dx.doi.org/10.1007/PL00008708] [PMID: 9860296]
[17]
Schwartz CE, Haber DA, Stanton VP, Strong LC, Skolnick MH, Housman DE. Familial predisposition to wilms tumor does not segregate with the WT1 gene. Genomics 1991; 10(4): 927-30.
[http://dx.doi.org/10.1016/0888-7543(91)90181-D] [PMID: 1655633]
[18]
Huff V, Compton DA, Chao LY, Strong LC, Geiser CF, Saunders GF. Lack of linkage of familial Wilms’ tumour to chromosomal band 11 p13. Nature 1988; 336(6197): 377-8.
[http://dx.doi.org/10.1038/336377a0] [PMID: 2848200]
[19]
Walz AL, Ooms A, Gadd S, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 2015; 27(2): 286-97.
[http://dx.doi.org/10.1016/j.ccell.2015.01.003] [PMID: 25670082]
[20]
Gadd S, Huff V, Walz AL, et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet 2017; 49(10): 1487-94.
[http://dx.doi.org/10.1038/ng.3940] [PMID: 28825729]
[21]
Koesters R, Ridder R, Kopp-Schneider A, et al. Mutational activation of the β-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res 1999; 59(16): 3880-2.
[PMID: 10463574]
[22]
Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W. Exon 3 mutations of CTNNB1 drive tumorigenesis: A review. Oncotarget 2018; 9(4): 5492-508.
[http://dx.doi.org/10.18632/oncotarget.23695] [PMID: 29435196]
[23]
Fukuzawa R, Anaka MR, Weeks RJ, Morison IM, Reeve AE. Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene 2009; 28(8): 1063-75.
[http://dx.doi.org/10.1038/onc.2008.455] [PMID: 19137020]
[24]
Wegert J, Wittmann S, Leuschner I, Geissinger E, Graf N, Gessler M. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 2009; 48(12): 1102-11.
[http://dx.doi.org/10.1002/gcc.20712] [PMID: 19760609]
[25]
Charlton J, Irtan S, Bergeron C, Pritchard-Jones K. Bilateral Wilms tumour: A review of clinical and molecular features. Expert Rev Mol Med 2017; 19: e8.
[http://dx.doi.org/10.1017/erm.2017.8] [PMID: 28716159]
[26]
Scott RH, Murray A, Baskcomb L, et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 2012; 3(3): 327-35.
[http://dx.doi.org/10.18632/oncotarget.468] [PMID: 22470196]
[27]
Coorens THH, Treger TD, Al-Saadi R, et al. Embryonal precursors of Wilms tumor. Science 2019; 366(6470): 1247-51.
[http://dx.doi.org/10.1126/science.aax1323] [PMID: 31806814]
[28]
Wegert J, Ishaque N, Vardapour R, et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 2015; 27(2): 298-311.
[http://dx.doi.org/10.1016/j.ccell.2015.01.002] [PMID: 25670083]
[29]
Lahman MC, Schmitt TM, Paulson KG, et al. Targeting an alternate Wilms’ tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med 2022; 14(631): eabg8070.
[http://dx.doi.org/10.1126/scitranslmed.abg8070] [PMID: 35138909]
[30]
Pidsley R, Fernandes C, Viana J, et al. DNA methylation at the Igf2/H19 imprinting control region is associated with cerebellum mass in outbred mice. Mol Brain 2012; 5(1): 42.
[http://dx.doi.org/10.1186/1756-6606-5-42] [PMID: 23216893]
[31]
Rakheja D, Chen KS, Liu Y, et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2014; 5(1): 4802.
[http://dx.doi.org/10.1038/ncomms5802] [PMID: 25190313]
[32]
Glaich O, Parikh S, Bell RE, et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun 2019; 10(1): 5657.
[http://dx.doi.org/10.1038/s41467-019-13527-1] [PMID: 31827083]
[33]
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci 2020; 21(5): 1723.
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[34]
Chen KS, Stroup EK, Budhipramono A, et al. Mutations in microRNA processing genes in Wilms tumors derepress the IGF2 regulator PLAG1. Genes Dev 2018; 32(15-16): 996-1007.
[http://dx.doi.org/10.1101/gad.313783.118] [PMID: 30026293]
[35]
Call KM, Glaser T, Ito CY, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60(3): 509-20.
[http://dx.doi.org/10.1016/0092-8674(90)90601-A] [PMID: 2154335]
[36]
Jiménez Martín O, Schlosser A, Furtwängler R, Wegert J, Gessler M. MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates. Cancer Cell Int 2021; 21(1): 555.
[http://dx.doi.org/10.1186/s12935-021-02259-2] [PMID: 34689785]
[37]
Lourenco C, Resetca D, Redel C, et al. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21(9): 579-91.
[http://dx.doi.org/10.1038/s41568-021-00367-9] [PMID: 34188192]
[38]
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular mechanisms of MYCN dysregulation in cancers. Front Oncol 2021; 10: 625332.
[http://dx.doi.org/10.3389/fonc.2020.625332] [PMID: 33614505]
[39]
Hanks S, Perdeaux ER, Seal S, et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat Commun 2014; 5(1): 4398.
[http://dx.doi.org/10.1038/ncomms5398] [PMID: 25099282]
[40]
Armstrong AE, Gadd S, Huff V, Gerhard DS, Dome JS, Perlman EJ. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children’s Oncology Group study. PLoS One 2018; 13(12): e0208936.
[http://dx.doi.org/10.1371/journal.pone.0208936] [PMID: 30543698]
[41]
Diets IJ, Hoyer J, Ekici AB, et al. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int J Cancer 2019; 145(4): 941-51.
[http://dx.doi.org/10.1002/ijc.32167] [PMID: 30694527]
[42]
Hol JA, Diets IJ, Krijger RR, Heuvel-Eibrink MM, Jongmans MCJ, Kuiper RP. TRIM28 variants and WILMS’ tumour predisposition. J Pathol 2021; 254(4): 494-504.
[http://dx.doi.org/10.1002/path.5639] [PMID: 33565090]
[43]
Maschietto M, Williams RD, Chagtai T, et al. TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia. PLoS One 2014; 9(10): e109924.
[http://dx.doi.org/10.1371/journal.pone.0109924] [PMID: 25313908]
[44]
Wegert J, Vokuhl C, Ziegler B, et al. TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia. J Pathol Clin Res 2017; 3(4): 234-48.
[http://dx.doi.org/10.1002/cjp2.77] [PMID: 29085664]
[45]
Cresswell GD, Apps JR, Chagtai T, et al. Intra-tumor genetic heterogeneity in Wilms tumor: Clonal evolution and clinical implications. EBioMedicine 2016; 9: 120-9.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.029] [PMID: 27333041]
[46]
Popov SD, Sebire NJ, Vujanic GM. Chapter 1 Wilms’ Tumour - Histology and Differential Diagnosis. Wilms Tumor. Brisbane (AU): Codon Publications 2016.
[47]
Szychot E, Apps J, Pritchard-Jones K. Wilms’ tumor: Biology, diagnosis and treatment. Transl Pediatr 2014; 3(1): 12-24.
[PMID: 26835318]
[48]
Szychot E, Brodkiewicz A, Pritchard-Jones K. Review of current approaches to the management of Wilms' Tumor. Int J Clin Rev 2012; 18(3): 65-75.
[49]
Palmisani F, Kovar H, Kager L, Amann G, Metzelder M, Bergmann M. Systematic review of the immunological landscape of Wilms tumors. Mol Ther Oncolytics 2021; 22: 454-67.
[http://dx.doi.org/10.1016/j.omto.2021.06.016] [PMID: 34553032]
[50]
Hont AB, Cruz CR, Ulrey R, et al. Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes: A phase I study. J Clin Oncol 2019; 37(26): 2349-59.
[http://dx.doi.org/10.1200/JCO.19.00177] [PMID: 31356143]
[51]
Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001; 264(1): 74-99.
[http://dx.doi.org/10.1006/excr.2000.5131] [PMID: 11237525]
[52]
Toledo SRC, Oliveira ID, Gamba FT, et al. Insights on PRAME and osteosarcoma by means of gene expression profiling. J Orthop Sci 2011; 16(4): 458-66.
[http://dx.doi.org/10.1007/s00776-011-0106-7] [PMID: 21691740]
[53]
Hutzen B, Ghonime M, Lee J, et al. Immunotherapeutic challenges for pediatric cancers. Mol Ther Oncolytics 2019; 15: 38-48.
[http://dx.doi.org/10.1016/j.omto.2019.08.005] [PMID: 31650024]
[54]
Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017; 14(12): 717-34.
[http://dx.doi.org/10.1038/nrclinonc.2017.101] [PMID: 28741618]
[55]
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 2016; 37(3): 208-20.
[http://dx.doi.org/10.1016/j.it.2016.01.004] [PMID: 26858199]
[56]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[57]
Amarante MK, de Oliveira CEC, Ariza CB, Sakaguchi AY, Ishibashi CM, Watanabe MAE. The predictive value of transforming growth factor-β in Wilms tumor immunopathogenesis. Int Rev Immunol 2017; 36(4): 233-9.
[http://dx.doi.org/10.1080/08830185.2017.1291639] [PMID: 28481647]
[58]
Maeurer MJ, Martin DM, Castelli C, et al. Host immune response in renal cell cancer: Interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes. Cancer Immunol Immunother 1995; 41(2): 111-21.
[http://dx.doi.org/10.1007/BF01527407] [PMID: 7656270]
[59]
Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 2013; 5(200): 200ra116.
[http://dx.doi.org/10.1126/scitranslmed.3006504] [PMID: 23986400]
[60]
Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends Immunol 2017; 38(8): 542-57.
[http://dx.doi.org/10.1016/j.it.2017.05.005] [PMID: 28579323]
[61]
Wei F, Zhong S, Ma Z, et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 2013; 110(27): E2480-9.
[http://dx.doi.org/10.1073/pnas.1305394110] [PMID: 23610399]
[62]
Maturu P, Overwijk WW, Hicks J, Ekmekcioglu S, Grimm EA, Huff V. Characterization of the inflammatory microenvironment and identification of potential therapeutic targets in wilms tumors. Transl Oncol 2014; 7(4): 484-92.
[http://dx.doi.org/10.1016/j.tranon.2014.05.008] [PMID: 24969538]
[63]
Ghahremanifard P, Chanda A, Bonni S, Bose P. TGF-β mediated immune evasion in cancer-spotlight on cancer-associated fibroblasts. Cancers 2020; 12(12): 3650.
[http://dx.doi.org/10.3390/cancers12123650] [PMID: 33291370]
[64]
Maturu P, Jones D, Ruteshouser EC, et al. Role of cyclooxygenase-2 pathway in creating an immunosuppressive microenvironment and in initiation and progression of Wilms’ tumor. Neoplasia 2017; 19(3): 237-49.
[http://dx.doi.org/10.1016/j.neo.2016.07.009] [PMID: 28254151]
[65]
Chen J, Lin T. Expression of regulatory T cells and natural killer T cells in peripheral blood of children with Wilms tumor. Zhongguo Dang Dai Er Ke Za Zhi 2016; 18(12): 1222-6.
[http://dx.doi.org/10.7499/j.issn.1008-8830.2016.12.005.] [PMID: 27974111]
[66]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[67]
Choi JY. Immunotherapy in pediatric solid tumors. Clin Pediatr Hematol Oncol 2020; 27(1): 22-31.
[http://dx.doi.org/10.15264/cpho.2020.27.1.22]
[68]
Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res 2017; 23(14): 3711-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3215] [PMID: 28167507]
[69]
Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124(1): 1-6.
[http://dx.doi.org/10.1083/jcb.124.1.1] [PMID: 8294493]
[70]
Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995; 374(6525): 811-3.
[http://dx.doi.org/10.1038/374811a0] [PMID: 7723826]
[71]
Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26(9): 1324-37.
[http://dx.doi.org/10.1038/sj.onc.1210220] [PMID: 17322918]
[72]
Coultas L, Strasser A. The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 2003; 13(2): 115-23.
[http://dx.doi.org/10.1016/s1044-579x(02)00129-3.] [PMID: 12654255]
[73]
Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol 1995; 268(1 Pt 2): F73-81.
[PMID: 7840250]
[74]
Lichnovský V, Erdösová B, Punkt K, Zapletal M. Expression of BCL-2 in the developing kidney of human embryos and fetuses qualitative and quantitative study. Acta Univ Palacki Olomuc Fac Med 1999; 142: 61-4.
[PMID: 10743726]
[75]
Re GG, Hazen-Martin DJ, Bahtimi RE, Brownlee NA, Willingham MC, Garvin AJ. Prognostic significance of Bcl-2 in Wilms’ tumor and oncogenic potential of Bcl-XL in rare tumor cases. Int J Cancer 1999; 84(2): 192-200.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990420)84:2<192::AID-IJC17>3.0.CO;2-1] [PMID: 10096254]
[76]
Dome JS, Fernandez CV, Mullen EA, et al. Children’s Oncology Group’s 2013 blueprint for research: Renal tumors. Pediatr Blood Cancer 2013; 60(6): 994-1000.
[http://dx.doi.org/10.1002/pbc.24419] [PMID: 23255438]
[77]
Kieran K, Ehrlich PF. Current surgical standards of care in Wilms tumor. Urol Oncol 2016; 34(1): 13-23.
[http://dx.doi.org/10.1016/j.urolonc.2015.05.029] [PMID: 26122713]
[78]
Termuhlen AM, Tersak JM, Liu Q, et al. Twenty-five year follow-up of childhood Wilms tumor: A rport from the childhood cancer survivor steudy. Pediatr Blood Cancer 2011; 57(7): 1210-6.
[http://dx.doi.org/10.1002/pbc.23090] [PMID: 21384541]
[79]
Suh E, Stratton KL, Leisenring WM, et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: A retrospective cohort analysis from the childhood cancer survivor study. Lancet Oncol 2020; 21(3): 421-35.
[http://dx.doi.org/10.1016/S1470-2045(19)30800-9] [PMID: 32066543]
[80]
Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355(15): 1572-82.
[http://dx.doi.org/10.1056/NEJMsa060185] [PMID: 17035650]
[81]
Lee JS, Padilla B, DuBois SG, Oates A, Boscardin J, Goldsby RE. Second malignant neoplasms among children, adolescents and young adults with Wilms tumor. Pediatr Blood Cancer 2015; 62(7): 1259-64.
[http://dx.doi.org/10.1002/pbc.25484] [PMID: 25809878]
[82]
Davidoff AM. Wilmsʼ tumor. Curr Opin Pediatr 2009; 21(3): 357-64.
[http://dx.doi.org/10.1097/MOP.0b013e32832b323a] [PMID: 19417665]
[83]
Green DM, Grigoriev YA, Nan B, et al. Congestive heart failure after treatment for Wilms’ tumor: A report from the National Wilms’ Tumor Study group. J Clin Oncol 2001; 19(7): 1926-34.
[http://dx.doi.org/10.1200/JCO.2001.19.7.1926] [PMID: 11283124]
[84]
Xu W, Han M, Diao Y, et al. Doxorubicin encapsulated in micelles enhances radiosensitivity in doxorubicin-resistant tumor cells. Discov Med 2014; 18(99): 169-77.
[PMID: 25336030]
[85]
Liu H, Xie Y, Zhang Y, et al. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials 2017; 121: 130-43.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.001] [PMID: 28088075]
[86]
Wright KD, Green DM, Daw NC. Late effects of treatment for wilms tumor. Pediatr Hematol Oncol 2009; 26(6): 407-13.
[http://dx.doi.org/10.3109/08880010903019344] [PMID: 19657990]
[87]
Mertens AC, Yasui Y, Neglia JP, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: The childhood cancer survivor study. J Clin Oncol 2001; 19(13): 3163-72.
[http://dx.doi.org/10.1200/JCO.2001.19.13.3163] [PMID: 11432882]
[88]
Jouglar E, Wagner A, Delpon G, et al. Can we spare the pancreas and other abdominal organs at risk? A comparison of conformal radiotherapy, helical tomotherapy and proton beam therapy in pediatric irradiation. PLoS One 2016; 11(10): e0164643.
[http://dx.doi.org/10.1371/journal.pone.0164643] [PMID: 27764132]
[89]
Wilson NS, Yang B, Yang A, et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 2011; 19(1): 101-13.
[http://dx.doi.org/10.1016/j.ccr.2010.11.012] [PMID: 21251615]
[90]
Hingorani P, Zhang W, Kurmasheva R, et al. Abstract LB-217: Preclinical evaluation of trastuzumab deruxtecan (T-DXd; DS-8201a), a HER2 antibody-drug conjugate, in pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC). Cancer Res 2020; 80(16_Supplement): LB-217.
[91]
Jain J, Sutton KS, Hong AL. Progress update in pediatric renal tumors. Curr Oncol Rep 2021; 23(3): 33.
[http://dx.doi.org/10.1007/s11912-021-01016-y] [PMID: 33591402]
[92]
Bielen A, Box G, Perryman L, et al. Dependence of Wilms tumour cells on signalling through IGF1R in an orthotopic xenograft model targetable by specific receptor inhibition. Proc Natl Acad Sci 2012; 109(20): E1267-76.
[http://dx.doi.org/10.1073/pnas.1105034109]
[93]
Liu Y, Nelson MV, Bailey C, et al. Targeting the HIF-1α-IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis of relapsed anaplastic Wilms tumor. Oncogene 2021; 40(29): 4809-19.
[http://dx.doi.org/10.1038/s41388-021-01907-1] [PMID: 34155347]
[94]
Bharathavikru R, Slight J, Aitken S, et al. Tumour suppressor WT1 regulates the let-7-Igf1r axis in kidney mesenchyme. bioRxiv 2019; 2019: 822973.
[http://dx.doi.org/10.1101/822973]
[95]
Kendsersky NM, Lindsay J, Kolb EA, et al. The B7-H3-targeting antibody-drug conjugate m276-SL-PBD Is potently effective against pediatric cancer preclinical solid tumor models. Clin Cancer Res 2021; 27(10): 2938-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4221] [PMID: 33619171]
[96]
Li N, Spetz MR, Li D, Ho M. Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223: 107892.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107892] [PMID: 33992682]
[97]
Wickramasinghe D. Tumor and T cell engagement by BiTE. Discov Med 2013; 16(88): 149-52.
[PMID: 24099669]
[98]
Guo ZS, Lotze MT, Zhu Z, Storkus WJ, Song XT. Bi- and Tri-Specific T cell engager-armed oncolytic viruses: Next-generation cancer immunotherapy. Biomedicines 2020; 8(7): 204.
[http://dx.doi.org/10.3390/biomedicines8070204] [PMID: 32664210]
[99]
Pankov D, Dao T, Wang Y, et al. A Bi-Specific T cell engaging monoclonal antibody (mAb) Derived From a TCR-Like Mab Specific For WT1/HLA-A0201 (ESK-BiTE) Shows a Potent Activity Against Human AML and Ph+ ALL. Blood. Washington, DC: American Society of Hematology. 2013; 122: p. (21)2521.
[http://dx.doi.org/10.1182/blood.V122.21.2521.2521]
[100]
Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res 2016; 22(14): 3440-50.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2710] [PMID: 26847056]
[101]
Bowyer S, Lorigan P. The place of PD-1 inhibitors in melanoma management. Lancet Oncol 2015; 16(8): 873-4.
[http://dx.doi.org/10.1016/S1470-2045(15)00094-7] [PMID: 26115798]
[102]
Jain P, Jain C, Velcheti V. Role of immune-checkpoint inhibitors in lung cancer. Ther Adv Respir Dis 2018; 12: 1753465817750075.
[http://dx.doi.org/10.1177/1753465817750075] [PMID: 29385894]
[103]
Ross K, Jones RJ. Immune checkpoint inhibitors in renal cell carcinoma. Clin Sci 2017; 131(21): 2627-42.
[http://dx.doi.org/10.1042/CS20160894] [PMID: 29079639]
[104]
Wagner L, Adams V. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors. OncoTargets Ther 2017; 10: 2097-106.
[http://dx.doi.org/10.2147/OTT.S124008] [PMID: 28442918]
[105]
Geoerger B, Zwaan CM, Marshall LV, et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): A multicentre phase 1-2 study. Lancet Oncol 2020; 21(1): 134-44.
[http://dx.doi.org/10.1016/S1470-2045(19)30693-X] [PMID: 31780255]
[106]
Geoerger B, Kang HJ, Yalon-Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol 2020; 21(1): 121-33.
[http://dx.doi.org/10.1016/S1470-2045(19)30671-0] [PMID: 31812554]
[107]
Valind A, Gisselsson D. Immune checkpoint inhibitors in Wilms’ tumor and neuroblastoma: What now? Cancer Rep 2021; 4(6): e1397.
[http://dx.doi.org/10.1002/cnr2.1397] [PMID: 33932141]
[108]
Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 2021; 124(2): 359-67.
[http://dx.doi.org/10.1038/s41416-020-01048-4] [PMID: 32929195]
[109]
Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther 2021; 28(1-2): 5-17.
[http://dx.doi.org/10.1038/s41417-020-0183-x] [PMID: 32457487]
[110]
Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 2015; 6(1): e0004.
[http://dx.doi.org/10.5041/RMMJ.10179] [PMID: 25717386]
[111]
Mardanpour K, Rahbar M, Mardanpour S, Mardanpour N, Rezaei M. CD8+ T-cell lymphocytes infiltration predict clinical outcomes in Wilms’ tumor. Tumour Biol 2020; 42(12): 1010428320975976.
[http://dx.doi.org/10.1177/1010428320975976] [PMID: 33283684]
[112]
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-5.
[http://dx.doi.org/10.1126/science.aar6711] [PMID: 29567707]
[113]
Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017; 68(1): 139-52.
[http://dx.doi.org/10.1146/annurev-med-062315-120245] [PMID: 27860544]
[114]
Li N, Gao W, Zhang YF, Ho M. Glypicans as cancer therapeutic targets. Trends Cancer 2018; 4(11): 741-54.
[http://dx.doi.org/10.1016/j.trecan.2018.09.004] [PMID: 30352677]
[115]
Schultz LM, Majzner R, Davis KL, Mackall C. New developments in immunotherapy for pediatric solid tumors. Curr Opin Pediatr 2018; 30(1): 30-9.
[http://dx.doi.org/10.1097/MOP.0000000000000564] [PMID: 29189429]
[116]
Orentas RJ, Lee DW, Mackall C. Immunotherapy targets in pediatric cancer. Front Oncol 2012; 2: 3.
[PMID: 22645714]
[117]
Scursoni AM, Galluzzo L, Camarero S, et al. Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry. Pediatr Dev Pathol 2010; 13(1): 18-23.
[http://dx.doi.org/10.2350/08-10-0544.1] [PMID: 19435393]
[118]
Du H, Hirabayashi K, Ahn S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell 2019; 35(2): 221-237.e8.
[http://dx.doi.org/10.1016/j.ccell.2019.01.002] [PMID: 30753824]
[119]
Majzner RG, Theruvath JL, Nellan A, et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 2019; 25(8): 2560-74.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0432] [PMID: 30655315]
[120]
Kontos F, Michelakos T, Kurokawa T, et al. B7-H3: An attractive target for antibody-based immunotherapy. Clin Cancer Res 2021; 27(5): 1227-35.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2584] [PMID: 33051306]
[121]
Moretta L, Montaldo E, Vacca P, et al. Human natural killer cells: Origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 2014; 164(4): 253-64.
[http://dx.doi.org/10.1159/000365632] [PMID: 25323661]
[122]
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol 2020; 10: 3038.
[http://dx.doi.org/10.3389/fimmu.2019.03038] [PMID: 32038612]
[123]
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19(3): 200-18.
[http://dx.doi.org/10.1038/s41573-019-0052-1] [PMID: 31907401]
[124]
Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2016; 17(9): 1025-36.
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[125]
Liu S, Galat V, Galat Y IV, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: From basic biology to clinical development. J Hematol Oncol 2021; 14(1): 7.
[http://dx.doi.org/10.1186/s13045-020-01014-w] [PMID: 33407739]
[126]
Pelosi A, Fiore PF, Di Matteo S, et al. Pediatric tumors-mediated inhibitory effect on NK cells: The Case of Neuroblastoma and Wilms’ Tumors. Cancers 2021; 13(10): 2374.
[http://dx.doi.org/10.3390/cancers13102374] [PMID: 34069127]
[127]
Cantoni C, Serra M, Parisi E, et al. Stromal-like Wilms tumor cells induce human natural killer cell degranulation and display immunomodulatory properties towards NK cells. OncoImmunology 2021; 10(1): 1879530.
[http://dx.doi.org/10.1080/2162402X.2021.1879530] [PMID: 33758675]
[128]
Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines: A review of recent developments and their potential pediatric application. Hum Vaccin Immunother 2016; 12(9): 2232-9.
[http://dx.doi.org/10.1080/21645515.2016.1179844] [PMID: 27245943]
[129]
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2020; 20(1): 7-24.
[http://dx.doi.org/10.1038/s41577-019-0210-z] [PMID: 31467405]
[130]
Zhang W, Lu X, Cui P, et al. Phase I/II clinical trial of a Wilms’ tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol Immunother 2019; 68(1): 121-30.
[http://dx.doi.org/10.1007/s00262-018-2257-2] [PMID: 30306202]
[131]
Yao Y, Luo F, Tang C, et al. Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: An exploratory randomized phase II clinical trial. Cancer Immunol Immunother 2018; 67(11): 1777-88.
[http://dx.doi.org/10.1007/s00262-018-2232-y] [PMID: 30159779]
[132]
Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 2017; 130(15): 1713-21.
[http://dx.doi.org/10.1182/blood-2017-04-780155] [PMID: 28830889]
[133]
Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res 2017; 27(1): 74-95.
[http://dx.doi.org/10.1038/cr.2016.157] [PMID: 28025976]
[134]
Shimodaira S, Hirabayashi K, Yanagisawa R, Higuchi Y, Sano K, Koizumi T. Chapter 8 Dendritic Cell-Based Cancer Immunotherapy Targeting Wilms’ Tumor 1 for Pediatric Cancer. Wilms Tumor. Brisbane (AU): Codon Publications 2016; pp. 113-30.
[http://dx.doi.org/10.15586/codon.wt.2016.ch8]
[135]
Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol 2018; 19(5): 672-81.
[http://dx.doi.org/10.1016/S1470-2045(18)30139-6] [PMID: 29602646]
[136]
Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med 2020; 382(9): 810-21.
[http://dx.doi.org/10.1056/NEJMoa1910549] [PMID: 32101663]
[137]
Spigel DR, Chaft JE, Gettinger S, et al. FIR: Efficacy, safety, and biomarker analysis of a phase II open-label study of Atezolizumab in PD-L1-selected patients with NSCLC. J Thorac Oncol 2018; 13(11): 1733-42.
[http://dx.doi.org/10.1016/j.jtho.2018.05.004] [PMID: 29775807]
[138]
Caponnetto S, Draghi A, Borch TH, et al. Cancer immunotherapy in patients with brain metastases. Cancer Immunol Immunother 2018; 67(5): 703-11.
[http://dx.doi.org/10.1007/s00262-018-2146-8] [PMID: 29520474]
[139]
Page DB, Beal K, Linch SN, et al. Brain radiotherapy, tremelimumab-mediated CTLA-4-directed blockade +/− trastuzumab in patients with breast cancer brain metastases. NPJ Breast Cancer 2022; 8(1): 50.
[http://dx.doi.org/10.1038/s41523-022-00404-2] [PMID: 35440655]
[140]
Yap LW, Brok J, Pritchard-Jones K. Role of CD56 in normal kidney development and wilms tumorigenesis. Fetal Pediatr Pathol 2017; 36(1): 62-75.
[http://dx.doi.org/10.1080/15513815.2016.1256358] [PMID: 27935326]
[141]
Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376(9): 836-47.
[http://dx.doi.org/10.1056/NEJMoa1609783] [PMID: 28249141]
[142]
Knödler M, Körfer J, Kunzmann V, et al. Randomised phase II trial to investigate catumaxomab (anti-EpCAM × anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer 2018; 119(3): 296-302.
[http://dx.doi.org/10.1038/s41416-018-0150-6] [PMID: 29988111]
[143]
Richards RM, Sotillo E, Majzner RG. CAR T cell therapy for neuroblastoma. Front Immunol 2018; 9: 2380.
[http://dx.doi.org/10.3389/fimmu.2018.02380] [PMID: 30459759]
[144]
Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors. JAMA Oncol 2018; 4(12): 1721-8.
[http://dx.doi.org/10.1001/jamaoncol.2018.3923] [PMID: 30242316]
[145]
Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664-79.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0040] [PMID: 27076371]
[146]
Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019; 25(4): 625-38.
[http://dx.doi.org/10.1016/j.bbmt.2018.12.758] [PMID: 30592986]
[147]
Yakoub-Agha I, Moreau AS, Ahmad I, et al. [Management of cytokine release syndrome in adult and pediatric patients undergoing CAR-T cell therapy for hematological malignancies: Recommendation of the French Society of Bone Marrow and cellular Therapy (SFGM-TC)]. Bull Cancer 2019; 106(1S): S102-9.
[http://dx.doi.org/10.1016/j.bulcan.2018.12.001] [PMID: 30661749]
[148]
Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 2017; 7(12): 1404-19.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0698] [PMID: 29025771]
[149]
Pillai RN, Behera M, Owonikoko TK, et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature. Cancer 2018; 124(2): 271-7.
[http://dx.doi.org/10.1002/cncr.31043] [PMID: 28960263]
[150]
Brok J, Mavinkurve-Groothuis AMC, Drost J, et al. Unmet needs for relapsed or refractory Wilms tumour: Mapping the molecular features, exploring organoids and designing early phase trials - A collaborative SIOP-RTSG, COG and ITCC session at the first SIOPE meeting. Eur J Cancer 2021; 144: 113-22.
[http://dx.doi.org/10.1016/j.ejca.2020.11.012] [PMID: 33341445]
[151]
Ooms AHAG, Gadd S, Gerhard DS, et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: A report from the Children’s oncology group. Clin Cancer Res 2016; 22(22): 5582-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0985] [PMID: 27702824]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy