Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Trojan Microparticles : A Composite Nanoparticle Delivery System

Author(s): Shalu Shukla* and Vinay Pandit

Volume 19, Issue 4, 2024

Published on: 07 August, 2023

Page: [413 - 425] Pages: 13

DOI: 10.2174/1574885518666230726142855

Price: $65

Abstract

In recent years, microparticulate systems have drawn growing attention as a viable strategy for delivering cells, proteins, and medications to target areas. The Nanoparticles-in-Microparticles System (NiMS) is a drug delivery method that combines nano- and microparticles to deliver medications or genes to particular bodily regions with precision. A promising method for achieving dual or multiple functions inside a formulation is the development of nanoparticle-in-microparticle systems (NiMS). NiMS comprises a microparticle (M.P.) matrix and one or more nanoparticles (N.P.s). The N.P.s can be designed to provide specific functionality, such as targeted drug delivery or imaging, while the M.P. matrix can be tailored to provide sustained release or protect the N.P.s from degradation. NiMS offer several advantages over traditional formulations, including the ability to control release profiles and achieve site-specific delivery. By combining different types of N.P.s and M.P.s, it is possible to create formulations that release drugs at different rates or with different kinetics, allowing for tailored treatment regimens. Additionally, by lowering off-target effects and boosting efficacy, the site-specific targeting offered by NiMS can enhance the therapeutic index of medications. Microparticles are small, micron-sized particles that can be loaded with therapeutic agents and designed to deliver them to specific tissues in the body. The pharmaceutical sector is developing microparticulate delivery systems for oral, pulmonary, and cutaneous administration. For instance, a promising strategy for treating respiratory conditions, including asthma and chronic obstructive pulmonary disease, is the development of inhalable microparticles (COPD). Moreover, the use of microparticles for topical drug delivery is being studied, where they can be formulated into creams, gels, or patches for treating skin disorders. The composition of microparticles is crucial for successful tissue regeneration because the particles must be biocompatible and able to interact with the cells in the targeted tissue. In addition, the size and shape of the particles can affect their behavior and how they interact with cells. Chemical and biological sensors and devices, optical detectors, electronic components, and nanoscale production depend on nanostructures because they offer unique properties, such as increased surface area and enhanced reactivity, which can be exploited to create more efficient and effective devices.

Keywords: Trojan microparticles, nanoparticles, nanocarriers, pharmaceutical applications, microparticulates system, sustained release, target drug delivery system.

Graphical Abstract
[1]
Freitas RA Jr. Nanotechnology, nanomedicine and nanosurgery. Int J Surg 2005; 3(4): 243-6.
[http://dx.doi.org/10.1016/j.ijsu.2005.10.007] [PMID: 17462292]
[2]
Li FQ, Yan C, Bi J, et al. A novel spray-dried nanoparticles-in-microparticles system for formulating scopolamine hydrobromide into orally disintegrating tablets. Int J Nanomedicine 2011; 6: 897-904.
[http://dx.doi.org/10.2147/IJN.S17900] [PMID: 21720502]
[3]
Watts PJ, Davies MC, Melia CD. Microencapsulation using emulsification/solvent evaporation: An overview of techniques and applications. Crit Rev Ther Drug Carrier Syst 1990; 7(3): 235-59.
[PMID: 2073688]
[4]
Tewa-Tagne P, Briançon S, Fessi H. Spray-dried microparticles containing polymeric nanocapsules: Formulation aspects, liquid phase interactions and particles characteristics. Int J Pharm 2006; 325(1-2): 63-74.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.025] [PMID: 16872767]
[5]
Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci 2002; 99(19): 12001-5.
[http://dx.doi.org/10.1073/pnas.182233999] [PMID: 12200546]
[6]
Vila A, Sánchez A, Tobío M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release 2002; 78(1-3): 15-24.
[http://dx.doi.org/10.1016/S0168-3659(01)00486-2] [PMID: 11772445]
[7]
Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 2005; 22(1): 1-10.
[http://dx.doi.org/10.1007/s11095-004-9003-5] [PMID: 15771224]
[8]
Ogura Y, Kimura H. Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium. Surv Ophthalmol 1995; 39 (Suppl. 1): S17-24.
[http://dx.doi.org/10.1016/S0039-6257(05)80069-4] [PMID: 7660308]
[9]
Lee YS, Johnson PJ, Robbins PT, Bridson RH. Production of nanoparticles-in-microparticles by a double emulsion method: A comprehensive study. Eur J Pharm Biopharm 2013; 83(2): 168-73.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.016] [PMID: 23153669]
[10]
Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res Lett 2014; 9(1): 229.
[http://dx.doi.org/10.1186/1556-276X-9-229] [PMID: 24910577]
[11]
Li FQ, Fei YB, Chen X, et al. Anchoring of ulex europaeus agglutinin to chitosan nanoparticles-in-microparticles and their in vitro binding activity to bovine submaxillary gland mucin. Chem Pharm Bull 2009; 57(10): 1045-9.
[http://dx.doi.org/10.1248/cpb.57.1045] [PMID: 19801856]
[12]
Pouponneau P, Leroux JC, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 2009; 30(31): 6327-32.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.005] [PMID: 19695700]
[13]
Martena V, Censi R, Hoti E, Malaj L, Di Martino P. A new nanospray drying method for the preparation of nicergoline pure nanoparticles. J Nanopart Res 2012; 14(6): 934-44.
[http://dx.doi.org/10.1007/s11051-012-0934-1]
[14]
Calvo P. Novel hydrophilic chitosan - polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63: 125-32.
[http://dx.doi.org/10.1002/(SICI)1097-]
[15]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[16]
Patil AV, Sali DH, Reddi SS, Wargade NS, Mohaptra SK, Paygude BV. Recent trends and formulation technology of orodispersible tablets. J Pharm Res 2011; 4(3): 924-8.
[17]
Banerjee S, Chauraasia G, Pal D, Ghosh AK, Ghosh A, Kaity S. Investigation on cross linking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 2010; 69: 777-84.
[18]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[19]
Mohanraj VJ, Chen Y. Nanoparticles – A Review. Trop J Pharm Res 2002; 5(1): 561-73.
[20]
Reis PC, Ronald JN, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods for preparation of drugloaded polymeric nanoparticles. Nanomedicine 2006; 2: 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[21]
Aggarwal S, Goel A, Singla S. Drug delivery: Special emphasis given on biodegradable polymers. Adv Poly Sci Tech 2011; 2(1): 1-15.
[22]
Ravi Kumar MN. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 2000; 3(2): 234-58.
[PMID: 10994037]
[23]
Li P, Dai YN, Zhang JP, Wang AQ, Wei Q. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 2008; 4(3): 221-8.
[PMID: 23675094]
[24]
Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 2005; 24(1): 67-75.
[http://dx.doi.org/10.1016/j.ejps.2004.09.011] [PMID: 15626579]
[25]
Pérez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 2010; 54(3): 301-13.
[http://dx.doi.org/10.1211/0022357021778448] [PMID: 11902796]
[26]
Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999; 25(4): 471-6.
[http://dx.doi.org/10.1081/DDC-100102197] [PMID: 10194602]
[27]
Moorthi C, Kathiresan K. Nanotoxicology: Toxicity of engineered nanoparticles and approaches to produce safer nanotherapeutic. Int J Pharma Sci 2012; 2(4): 117-24.
[28]
Giunchedi P, Conte U. Spray drying as a preparation method of microparticulate drug delivery systems: An overview. Pharm Sci 1995; 5: 276-90.
[29]
Yeo Y, Baek N, Park K. Microencapsulation methods for delivery of protein drugs. Biotechnol Bioprocess Eng 2001; 6(4): 213-30.
[http://dx.doi.org/10.1007/BF02931982]
[30]
Pavanetto F, Conti B, Genta I, Giunchedi P. Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. Int J Pharm 1992; 84(2): 151-9.
[http://dx.doi.org/10.1016/0378-5173(92)90055-7]
[31]
Vandervoort J, Ludwig A. Biocompatible stabilizers in the preparation of PLGA nanoparticles: A factorial design study. Int J Pharm 2002; 238(1-2): 77-92.
[http://dx.doi.org/10.1016/S0378-5173(02)00058-3] [PMID: 11996812]
[32]
Huang Z, Sun GB, Chiew YC, Kawi S. Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technol 2005; 160(2): 127-34.
[http://dx.doi.org/10.1016/j.powtec.2005.08.024]
[33]
Sreeramoju P, Libutti SK. Strategies for targeting tumors and tumor vasculature for cancer therapy. Adv Genet 2010; 69: 135-52.
[http://dx.doi.org/10.1016/S0065-2660(10)69015-3] [PMID: 20807606]
[34]
Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chem Soc Rev 2010; 39(8): 3240-55.
[http://dx.doi.org/10.1039/b917112f] [PMID: 20589267]
[35]
Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res 2013; 30(2): 512-22.
[http://dx.doi.org/10.1007/s11095-012-0897-z] [PMID: 23135815]
[36]
Jia L, Zheng JJ, Jiang SM, Huang KH. Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles. World J Gastroenterol 2010; 16(8): 1008-13.
[http://dx.doi.org/10.3748/wjg.v16.i8.1008] [PMID: 20180242]
[37]
Wanakule P, Liu GW, Fleury AT, Roy K. Nano-inside-micro: Disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J Control Release 2012; 162(2): 429-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.026] [PMID: 22841795]
[38]
Chen Z, Liu D, Wang J, et al. Development of nanoparticles-in-microparticles system for improved local retention after intra-articular injection. Drug Deliv 2014; 21(5): 342-50.
[http://dx.doi.org/10.3109/10717544.2013.848495] [PMID: 24215110]
[39]
Chen AZ, Li Y, Chau FT, et al. Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO2 process. Acta Biomater 2009; 5(8): 2913-9.
[http://dx.doi.org/10.1016/j.actbio.2009.04.032] [PMID: 19463980]
[40]
Hasan AS, Socha M, Lamprecht A, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm 2007; 344(1-2): 53-61.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.066] [PMID: 17643878]
[41]
Thote AJ, Gupta RB. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 2005; 1(1): 85-90.
[http://dx.doi.org/10.1016/j.nano.2004.12.001] [PMID: 17292062]
[42]
Gómez-Gaete C, Fattal E, Silva L, Besnard M, Tsapis N. Dexamethasone acetate encapsulation into Trojan particles. J Control Release 2008; 128(1): 41-9.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.008] [PMID: 18374442]
[43]
Hadinoto K, Zhu K, Tan RBH. Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int J Pharm 2007; 341(1-2): 195-206.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.035] [PMID: 17467934]
[44]
Muttil P, Pulliam B, Garcia-Contreras L, et al. Pulmonary immunization of guinea pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J 2010; 12(4): 699-707.
[http://dx.doi.org/10.1208/s12248-010-9229-6] [PMID: 20878294]
[45]
Al-Qadi S, Grenha A, Remuñán-López C. Microspheres loaded with polysaccharide nanoparticles for pulmonary delivery: Preparation, structure and surface analysis. Carbohydr Polym 2011; 86(1): 25-34.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.022]
[46]
Grenha A, Seijo B, Serra C, Remuñán-López C. Chitosan nanoparticle-loaded mannitol microspheres: Structure and surface characterization. Biomacromolecules 2007; 8(7): 2072-9.
[http://dx.doi.org/10.1021/bm061131g] [PMID: 17585804]
[47]
El-Sherbiny IM, Abdel-Mogib M, Dawidar A-AM, Elsayed A, Smyth HDC. Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr Polym 2011; 83(3): 1345-54.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.055]
[48]
Bhavsar MD, Amiji MM. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech 2008; 9(1): 288-94.
[http://dx.doi.org/10.1208/s12249-007-9021-9] [PMID: 18446494]
[49]
Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005; 21(21): 9651-9.
[http://dx.doi.org/10.1021/la0513306] [PMID: 16207049]
[50]
Callmann CE, LeGuyader CLM, Burton ST, et al. Antitumor activity of 1,18-octadecanedioic acid-paclitaxel complexed with human serum albumin. J Am Chem Soc 2019; 141(30): 11765-9.
[http://dx.doi.org/10.1021/jacs.9b04272] [PMID: 31317744]
[51]
Singh R, Brumlik C, Vaidya M, Choudhury A. A patent review on nanotechnology-based nose-to-brain drug delivery. Recent Pat Nanotechnol 2020; 14(3): 174-92.
[http://dx.doi.org/10.2174/1872210514666200508121050] [PMID: 32384043]
[52]
Pardridge W. Molecular Trojan horses for blood–brain barrier drug delivery. Curr Opin Pharmacol 2006; 6(5): 494-500.
[http://dx.doi.org/10.1016/j.coph.2006.06.001] [PMID: 16839816]
[53]
Huang Y, Jiang Y, Wang H, et al. Curb challenges of the “Trojan Horse” approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 2013; 65(10): 1299-315.
[http://dx.doi.org/10.1016/j.addr.2012.11.007] [PMID: 23369828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy