Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Appraisal of Cardiovascular Risk Factors, Biomarkers, and Ocular Imaging in Cardiovascular Risk Prediction

Author(s): Julie S. Moore*, M. Andrew Nesbit and Tara Moore

Volume 19, Issue 6, 2023

Published on: 29 August, 2023

Article ID: e270723219181 Pages: 10

DOI: 10.2174/1573403X19666230727101926

Price: $65

Abstract

Cardiovascular disease remains a leading cause of death worldwide despite the use of available cardiovascular disease risk prediction tools. Identification of high-risk individuals via risk stratification and screening at sub-clinical stages, which may be offered by ocular screening, is important to prevent major adverse cardiac events. Retinal microvasculature has been widely researched for potential application in both diabetes and cardiovascular disease risk prediction. However, the conjunctival microvasculature as a tool for cardiovascular disease risk prediction remains largely unexplored. The purpose of this review is to evaluate the current cardiovascular risk assessment methods, identifying gaps in the literature that imaging of the ocular microcirculation may have the potential to fill. This review also explores the themes of machine learning, risk scores, biomarkers, medical imaging, and clinical risk factors. Cardiovascular risk classification varies based on the population assessed, the risk factors included, and the assessment methods. A more tailored, standardised and feasible approach to cardiovascular risk prediction that utilises technological and medical imaging advances, which may be offered by ocular imaging, is required to support cardiovascular disease prevention strategies and clinical guidelines.

Keywords: Cardiovascular disease, risk factors, eye, microcirculation, biomarkers, medical imaging.

Graphical Abstract
[1]
Northern Ireland Chest Heart and Stroke (NICHS) Statistics 2019. [https://nichs.org.uk/research-policy/statistics
[3]
Brennan PF, McNeil AJ, Jing M, et al. Quantitative assessment of the conjunctival microcirculation using a smartphone and slit-lamp biomicroscope. Microvasc Res 2019; 126: 103907.
[http://dx.doi.org/10.1016/j.mvr.2019.103907] [PMID: 31330150]
[4]
Gao Y, Isakadze N, Duffy E, et al. Secular trends in risk profiles among adults with cardiovascular disease in the United States. J Am Coll Cardiol 2022; 80(2): 126-37.
[http://dx.doi.org/10.1016/j.jacc.2022.04.047] [PMID: 35798447]
[5]
Lagerweij GR, de Wit GA, Moons KGM, Verschuren WMM, Boer JMA, Koffijberg H. Predicted burden could replace predicted risk in preventive strategies for cardiovascular disease. J Clin Epidemiol 2018; 93: 103-11.
[http://dx.doi.org/10.1016/j.jclinepi.2017.09.014] [PMID: 28943378]
[6]
Brennan PF, McNeil AJ, Jing M, et al. Assessment of the conjunctival microcirculation for patients presenting with acute myocardial infarction compared to healthy controls. Sci Rep 2021; 11(1): 7660.
[http://dx.doi.org/10.1038/s41598-021-87315-7] [PMID: 33828174]
[7]
Brennan PF, Jing M, McNeil AJ, et al. Assessment of the conjunctival microcirculation in adult patients with cyanotic congenital heart disease compared to healthy controls. Microvasc Res 2021; 136: 104167.
[http://dx.doi.org/10.1016/j.mvr.2021.104167] [PMID: 33838207]
[8]
Suri JS, Bhagawati M, Paul S, et al. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput Biol Med 2022; 142: 105204.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105204] [PMID: 35033879]
[9]
Cho SY, Kim SH, Kang SH, et al. Pre-existing and machine learning-based models for cardiovascular risk prediction. Sci Rep 2021; 11(1): 8886.
[http://dx.doi.org/10.1038/s41598-021-88257-w] [PMID: 33903629]
[10]
Patel B, Sengupta P. Machine learning for predicting cardiac events: What does the future hold? Expert Rev Cardiovasc Ther 2020; 18(2): 77-84.
[http://dx.doi.org/10.1080/14779072.2020.1732208] [PMID: 32066289]
[11]
Unterhuber M, Kresoja KP, Rommel KP, et al. Proteomics-enabled deep learning machine algorithms can enhance prediction of mortality. J Am Coll Cardiol 2021; 78(16): 1621-31.
[http://dx.doi.org/10.1016/j.jacc.2021.08.018] [PMID: 34649700]
[12]
Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine learning outperforms ACC/AHA CVD risk calculator in MESA. J Am Heart Assoc 2018; 7(22): e009476.
[http://dx.doi.org/10.1161/JAHA.118.009476] [PMID: 30571498]
[13]
Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der Schaar M. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS One 2019; 14(5): e0213653.
[http://dx.doi.org/10.1371/journal.pone.0213653] [PMID: 31091238]
[14]
Dimopoulos AC, Nikolaidou M, Caballero FF, et al. Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk. BMC Med Res Methodol 2018; 18(1): 179.
[http://dx.doi.org/10.1186/s12874-018-0644-1] [PMID: 30594138]
[15]
Hathaway QA, Yanamala N, Budoff MJ, Sengupta PP, Zeb I. Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA). Comput Biol Med 2021; 139: 104983.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104983] [PMID: 34749095]
[16]
Mannan HR, McNeil JJ. Computer programs to estimate overoptimism in measures of discrimination for predicting the risk of cardiovascular diseases. J Eval Clin Pract 2013; 19(2): 358-62.
[http://dx.doi.org/10.1111/j.1365-2753.2012.01834.x] [PMID: 22409210]
[17]
Sajid MR, Almehmadi BA, Sami W, et al. Development of nonlaboratory-based risk prediction models for cardiovascular diseases using conventional and machine learning approaches. Int J Environ Res Public Health 2021; 18(23): 12586.
[http://dx.doi.org/10.3390/ijerph182312586] [PMID: 34886312]
[18]
Unnikrishnan P, Kumar DK, Poosapadi Arjunan S, Kumar H, Mitchell P, Kawasaki R. Development of health parameter model for risk prediction of CVD using SVM. Comput Math Methods Med 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/3016245] [PMID: 27594895]
[19]
Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017; 12(4): e0174944.
[http://dx.doi.org/10.1371/journal.pone.0174944] [PMID: 28376093]
[20]
Awuah A, Moore JS, Nesbit MA, et al. A novel algorithm for cardiovascular screening using conjunctival microcirculatory parameters and blood biomarkers. Sci Rep 2022; 12(1): 6545.
[http://dx.doi.org/10.1038/s41598-022-10491-7] [PMID: 35449196]
[21]
NICE Cardiovascular disease: risk assessment and reduction, including lipid modification. 2016. Available from : [https://www.nice.org.uk/guidance/cg181 (Accessed 21 July 2022.)
[22]
Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42(34): 3227-337.
[http://dx.doi.org/10.1093/eurheartj/ehab484] [PMID: 34458905]
[23]
Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol 2019; 16(11): 687-98.
[http://dx.doi.org/10.1038/s41569-019-0202-5] [PMID: 31065045]
[24]
Ko DT, Sivaswamy A, Sud M, et al. Calibration and discrimination of the Framingham Risk Score and the pooled cohort equations. CMAJ 2020; 192(17): E442-9.
[http://dx.doi.org/10.1503/cmaj.190848] [PMID: 32392491]
[25]
Rospleszcz S, Thorand B, de las Heras Gala T, et al. Temporal trends in cardiovascular risk factors and performance of the Framingham Risk Score and the Pooled Cohort Equations. J Epidemiol Community Health 2019; 73(1): 19-25.
[http://dx.doi.org/10.1136/jech-2018-211102] [PMID: 30262553]
[26]
van Kempen BJ, Ferket BS, Kavousi M, et al. Performance of Framingham cardiovascular disease (CVD) predictions in the Rotterdam Study taking into account competing risks and disentangling CVD into coronary heart disease (CHD) and stroke. Int J Cardiol 2014; 171(3): 413-8.
[http://dx.doi.org/10.1016/j.ijcard.2013.12.036] [PMID: 24438922]
[27]
Zhang WB, Pincus Z. Predicting all-cause mortality from basic physiology in the Framingham Heart Study. Aging Cell 2016; 15(1): 39-48.
[http://dx.doi.org/10.1111/acel.12408] [PMID: 26446764]
[28]
Esteghamati A, Mousavizadeh M, Noshad S, Shoar S, Khalilzadeh O, Nakhjavani M. Accuracy of anthropometric parameters in identification of high-risk patients predicted with cardiovascular risk models. Am J Med Sci 2013; 346(1): 26-31.
[http://dx.doi.org/10.1097/MAJ.0b013e31826485de] [PMID: 22986615]
[29]
Maas R, Xanthakis V, Göen T, et al. Plasma nitrate and incidence of cardiovascular disease and all-cause mortality in the community: The Framingham Offspring Study. J Am Heart Assoc 2017; 6(11): e006224.
[http://dx.doi.org/10.1161/JAHA.117.006224] [PMID: 29151027]
[30]
Puurunen MK, Hwang SJ, Larson MG, et al. ADP platelet hyperreactivity predicts cardiovascular disease in the FHS (Framingham Heart Study). J Am Heart Assoc 2018; 7(5): e008522.
[http://dx.doi.org/10.1161/JAHA.118.008522] [PMID: 29502103]
[31]
Lyngbæk S, Marott JL, Sehestedt T, et al. Cardiovascular risk prediction in the general population with use of suPAR, CRP, and Framingham Risk Score. Int J Cardiol 2013; 167(6): 2904-11.
[http://dx.doi.org/10.1016/j.ijcard.2012.07.018] [PMID: 22909410]
[32]
Graversen P, Abildstrøm SZ, Jespersen L, Borglykke A, Prescott E. Cardiovascular risk prediction: Can systematic coronary risk evaluation (SCORE) be improved by adding simple risk markers? Results from the copenhagen city heart study. Eur J Prev Cardiol 2016; 23(14): 1546-56.
[http://dx.doi.org/10.1177/2047487316638201] [PMID: 26976846]
[33]
Ferrario MM, Veronesi G, Chambless LE, et al. The contribution of educational class in improving accuracy of cardiovascular risk prediction across European regions: The MORGAM Project Cohort Component. Heart 2014; 100(15): 1179-87.
[http://dx.doi.org/10.1136/heartjnl-2013-304664] [PMID: 24794139]
[34]
Woźnicka-Leśkiewicz L, Posadzy-Małaczyńska A, Juszkat R. The impact of ankle brachial index and pulse wave velocity on cardiovascular risk according to SCORE and Framingham scales and sex differences. J Hum Hypertens 2015; 29(8): 502-10.
[http://dx.doi.org/10.1038/jhh.2014.80] [PMID: 25252689]
[35]
Hageman S, Pennells L, Ojeda F, et al. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 2021; 42(25): 2439-54.
[http://dx.doi.org/10.1093/eurheartj/ehab309] [PMID: 34120177]
[36]
Argyridou S, Zaccardi F, Davies MJ, Khunti K, Yates T. Walking pace improves all-cause and cardiovascular mortality risk prediction: A UK Biobank prognostic study. Eur J Prev Cardiol 2020; 27(10): 1036-44.
[http://dx.doi.org/10.1177/2047487319887281] [PMID: 31698963]
[37]
Salokari E, Laukkanen JA, Lehtimaki T, et al. The Duke treadmill score with bicycle ergometer: Exercise capacity is the most important predictor of cardiovascular mortality. Eur J Prev Cardiol 2019; 26(2): 199-207.
[http://dx.doi.org/10.1177/2047487318804618] [PMID: 30354741]
[38]
Franklin BA, Brinks J, Berra K, Lavie CJ, Gordon NF, Sperling LS. Using metabolic equivalents in clinical practice. Am J Cardiol 2018; 121(3): 382-7.
[http://dx.doi.org/10.1016/j.amjcard.2017.10.033] [PMID: 29229271]
[39]
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017; 23: 357.
[40]
Livingstone SJ, Guthrie B, Donnan PT, Thompson A, Morales DR. Predictive performance of a competing risk cardiovascular prediction tool CRISK compared to QRISK3 in older people and those with comorbidity: Population cohort study. BMC Med 2022; 20(1): 152.
[http://dx.doi.org/10.1186/s12916-022-02349-6] [PMID: 35505353]
[41]
Wickramasinghe CD, Ayers CR, Das S, de Lemos JA, Willis BL, Berry JD. Prediction of 30-year risk for cardiovascular mortality by fitness and risk factor levels: The Cooper Center Longitudinal Study. Circ Cardiovasc Qual Outcomes 2014; 7(4): 597-602.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.113.000531] [PMID: 24987054]
[42]
Chiuve SE, Cook NR, Shay CM, et al. Lifestyle-based prediction model for the prevention of CVD: The Healthy Heart Score. J Am Heart Assoc 2014; 3(6): e000954.
[http://dx.doi.org/10.1161/JAHA.114.000954] [PMID: 25398889]
[43]
Baik I, Cho NH, Kim SH, Shin C. Dietary information improves cardiovascular disease risk prediction models. Eur J Clin Nutr 2013; 67(1): 25-30.
[http://dx.doi.org/10.1038/ejcn.2012.175] [PMID: 23149979]
[44]
Georgousopoulou EN, Panagiotakos DB, Pitsavos C, Stefanadis C. Assessment of diet quality improves the classification ability of cardiovascular risk score in predicting future events: The 10-year follow-up of the ATTICA study (2002–2012). Eur J Prev Cardiol 2015; 22(11): 1488-98.
[http://dx.doi.org/10.1177/2047487314555095] [PMID: 25316412]
[45]
Corbacho-Alonso N, Baldán-Martín M, López JA, et al. Novel molecular plasma signatures on cardiovascular disease can stratify patients throughout life. J Proteomics 2020; 222: 103816.
[http://dx.doi.org/10.1016/j.jprot.2020.103816] [PMID: 32389841]
[46]
Racis M, Sobiczewski W, Stanisławska-Sachadyn A. NADPH oxidase gene polymorphism is associated with mortality and cardiovascular events in 7-year follow-up. J Clin Med 2020; 9(5): 1475.
[http://dx.doi.org/10.3390/jcm9051475] [PMID: 32423015]
[47]
Xuan Y, Gào X, Holleczek B, Brenner H, Schöttker B. Prediction of myocardial infarction, stroke and cardiovascular mortality with urinary biomarkers of oxidative stress: Results from a large cohort study. Int J Cardiol 2018; 273: 223-9.
[http://dx.doi.org/10.1016/j.ijcard.2018.08.002] [PMID: 30100224]
[48]
Kunutsor SK, Flores-Guerrero JL, Kieneker LM, et al. Plasma calprotectin and risk of cardiovascular disease: Findings from the PREVEND prospective cohort study. Atherosclerosis 2018; 275: 205-13.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.817] [PMID: 29957458]
[49]
Muhlestein JB, May HT, Galenko O, et al. GlycA and hsCRP are independent and additive predictors of future cardiovascular events among patients undergoing angiography: The intermountain heart collaborative study. Am Heart J 2018; 202: 27-32.
[http://dx.doi.org/10.1016/j.ahj.2018.04.003] [PMID: 29803983]
[50]
AbouEzzeddine OF, McKie PM, Scott CG, et al. Biomarker-based risk prediction in the community. Eur J Heart Fail 2016; 18(11): 1342-50.
[http://dx.doi.org/10.1002/ejhf.663] [PMID: 27813304]
[51]
Jansen H, Jaensch A, Schöttker B, et al. Repeat measurements of high sensitivity troponins for the prediction of recurrent cardiovascular events in patients with established coronary heart disease: An analysis from the KAROLA study. J Am Heart Assoc 2019; 8(12): e011882.
[http://dx.doi.org/10.1161/JAHA.118.011882] [PMID: 31189389]
[52]
Ohm J, Hjemdahl P, Skoglund PH, et al. Lipid levels achieved after a first myocardial infarction and the prediction of recurrent atherosclerotic cardiovascular disease. Int J Cardiol 2019; 296: 1-7.
[http://dx.doi.org/10.1016/j.ijcard.2019.07.001] [PMID: 31303394]
[53]
Willeit P, Kiechl S, Kronenberg F, et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): Prospective 15-year outcomes in the Bruneck Study. J Am Coll Cardiol 2014; 64(9): 851-60.
[http://dx.doi.org/10.1016/j.jacc.2014.03.061] [PMID: 25169167]
[54]
Kouvari M, Panagiotakos DB, Chrysohoou C, et al. Lipoprotein (a) and 10-year cardiovascular disease incidence in apparently healthy individuals: A sex-based sensitivity analysis from ATTICA cohort study. Angiology 2019; 70(9): 819-29.
[http://dx.doi.org/10.1177/0003319719854872] [PMID: 31185726]
[55]
Ofori S, Dodiyi-Manuel S, Akpa MR. Comparison of 3 risk estimators to guide initiation of statin therapy for primary prevention of cardiovascular disease. J Clin Lipidol 2017; 11(6): 1441-7.
[http://dx.doi.org/10.1016/j.jacl.2017.09.004] [PMID: 29050979]
[56]
Rezaei F, Seif M, Gandomkar A, et al. Comparison of laboratory-based and non-laboratory-based WHO cardiovascular disease risk charts: A population-based study. J Transl Med 2022; 20(1): 133.
[http://dx.doi.org/10.1186/s12967-022-03336-4] [PMID: 35296342]
[57]
Hoogeveen RM, Pereira JPB, Nurmohamed NS, et al. Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. Eur Heart J 2020; 41(41): 3998-4007.
[http://dx.doi.org/10.1093/eurheartj/ehaa648] [PMID: 32808014]
[58]
Nurmohamed NS, Belo Pereira JP, Hoogeveen RM, et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur Heart J 2022; 43(16): 1569-77.
[http://dx.doi.org/10.1093/eurheartj/ehac055] [PMID: 35139537]
[59]
Würtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015; 131(9): 774-85.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013116] [PMID: 25573147]
[60]
Westerman K, Fernández-Sanlés A, Patil P, et al. Epigenomic assessment of cardiovascular disease risk and interactions with traditional risk metrics. J Am Heart Assoc 2020; 9(8): e015299.
[http://dx.doi.org/10.1161/JAHA.119.015299] [PMID: 32308120]
[61]
Verbeek R, Oldoni F, Surendran RP, et al. A 3-SNP gene risk score and a metabolic risk score both predict hypertriglyceridemia and cardiovascular disease risk. J Clin Lipidol 2019; 13(3): 492-501.
[http://dx.doi.org/10.1016/j.jacl.2019.02.005] [PMID: 30910668]
[62]
Niu J, Deng C, Zheng R, et al. The association and predictive ability of ECG abnormalities with cardiovascular diseases: A prospective analysis. Glob Heart 2020; 15(1): 59.
[http://dx.doi.org/10.5334/gh.790] [PMID: 32923352]
[63]
Goldman A, Hod H, Chetrit A, Dankner R. Incidental abnormal ECG findings and long-term cardiovascular morbidity and all-cause mortality: A population based prospective study. Int J Cardiol 2019; 295: 36-41.
[http://dx.doi.org/10.1016/j.ijcard.2019.08.015] [PMID: 31412991]
[64]
Badheka AO, Patel N, Tuliani TA, et al. Electrocardiographic abnormalities and reclassification of cardiovascular risk: Insights from NHANES-III. Am J Med 2013; 126(4): 319-326.e2.
[http://dx.doi.org/10.1016/j.amjmed.2012.10.020] [PMID: 23415052]
[65]
Peng Y, Wang Z. Do the 2017 blood pressure cut-offs improve 10-year cardiovascular disease mortality risk prediction? Nutr Metab Cardiovasc Dis 2020; 30(11): 2008-16.
[http://dx.doi.org/10.1016/j.numecd.2020.06.017] [PMID: 32723581]
[66]
Li Y, Thijs L, Boggia J, et al. Blood pressure load does not add to ambulatory blood pressure level for cardiovascular risk stratification. Hypertension 2014; 63(5): 925-33.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02780] [PMID: 24535008]
[67]
Bell K, Hayen A, McGeechan K, Neal B, Irwig L. Effects of additional blood pressure and lipid measurements on the prediction of cardiovascular risk. Eur J Prev Cardiol 2012; 19(6): 1474-85.
[http://dx.doi.org/10.1177/1741826711424494] [PMID: 21947629]
[68]
Stevens SL, McManus RJ, Stevens RJ. The utility of long-term blood pressure variability for cardiovascular risk prediction in primary care. J Hypertens 2019; 37(3): 522-9.
[http://dx.doi.org/10.1097/HJH.0000000000001923] [PMID: 30234785]
[69]
Ayala Solares JR, Canoy D, Raimondi FED, et al. Long-term exposure to elevated systolic blood pressure in predicting incident cardiovascular disease: Evidence from large-scale routine electronic health records. J Am Heart Assoc 2019; 8(12): e012129.
[http://dx.doi.org/10.1161/JAHA.119.012129] [PMID: 31164039]
[70]
Pool LR, Ning H, Wilkins J, Lloyd-Jones DM, Allen NB. Use of long-term cumulative blood pressure in cardiovascular risk prediction models. JAMA Cardiol 2018; 3(11): 1096-100.
[http://dx.doi.org/10.1001/jamacardio.2018.2763] [PMID: 30193291]
[71]
Darabont R, Tautu OF, Pop D, et al. Visit-to-visit blood pressure variability and arterial stiffness independently predict cardiovascular risk category in a general population: Results from the SEPHAR II study. Hellenic J Cardiol 2015; 56(3): 208-16.
[PMID: 26021242]
[72]
Said MA, Eppinga RN, Lipsic E, Verweij N, van der Harst P. Relationship of arterial stiffness index and pulse pressure with cardiovascular disease and mortality. J Am Heart Assoc 2018; 7(2): e007621.
[http://dx.doi.org/10.1161/JAHA.117.007621] [PMID: 29358193]
[73]
Arnold N, Gori T, Schnabel RB, et al. Relation between arterial stiffness and markers of inflammation and hemostasis–data from the population-based Gutenberg Health Study. Sci Rep 2017; 7(1): 6346.
[http://dx.doi.org/10.1038/s41598-017-06175-2] [PMID: 28740206]
[74]
Forés R, Alzamora MT, Pera G, Baena-Díez JM, Mundet-Tuduri X, Torán P. Contribution of the ankle-brachial index to improve the prediction of coronary risk: The ARTPER cohort. PLoS One 2018; 13(1): e0191283.
[http://dx.doi.org/10.1371/journal.pone.0191283] [PMID: 29338049]
[75]
Irace C, Padilla J, Carallo C, Scavelli F, Gnasso A. Delayed vasodilation is associated with cardiovascular risk. Eur J Clin Invest 2014; 44(6): 549-56.
[http://dx.doi.org/10.1111/eci.12268] [PMID: 24738967]
[76]
Kraushaar LE, Dressel A, Massmann A. A novel principled method for the measurement of vascular robustness uncovers hidden risk for premature CVD death. J Appl Physiol 2018; 125(6): 1931-43.
[http://dx.doi.org/10.1152/japplphysiol.00016.2018] [PMID: 29565768]
[77]
Cheng HM, Chuang SY, Wang JJ, et al. Prognostic significance of mechanical biomarkers derived from pulse wave analysis for predicting long-term cardiovascular mortality in two population-based cohorts. Int J Cardiol 2016; 215: 388-95.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.070] [PMID: 27128568]
[78]
Greve SV, Blicher MK, Sehestedt T, et al. Effective risk stratification in patients with moderate cardiovascular risk using albuminuria and atherosclerotic plaques in the carotid arteries. J Hypertens 2015; 33(8): 1563-70.
[http://dx.doi.org/10.1097/HJH.0000000000000584] [PMID: 26103123]
[79]
Bérard E, Bongard V, Ruidavets J-B, Amar J, Ferrières J. Pulse wave velocity, pulse pressure and number of carotid or femoral plaques improve prediction of cardiovascular death in a population at low risk. J Hum Hypertens 2013; 27(9): 529-34.
[http://dx.doi.org/10.1038/jhh.2013.8] [PMID: 23426066]
[80]
van der Aalst CM, Denissen SJAM, Vonder M, et al. Screening for cardiovascular disease risk using traditional risk factor assessment or coronary artery calcium scoring: The ROBINSCA trial. Eur Heart J Cardiovasc Imaging 2020; 21(11): 1216-24.
[http://dx.doi.org/10.1093/ehjci/jeaa168] [PMID: 32584979]
[81]
Rana JS, Gransar H, Wong ND, et al. Comparative value of coronary artery calcium and multiple blood biomarkers for prognostication of cardiovascular events. Am J Cardiol 2012; 109(10): 1449-53.
[http://dx.doi.org/10.1016/j.amjcard.2012.01.358] [PMID: 22425333]
[82]
Craiem D, Casciaro M, Pascaner A, et al. Association of calcium density in the thoracic aorta with risk factors and clinical events. Eur Radiol 2020; 30(7): 3960-7.
[http://dx.doi.org/10.1007/s00330-020-06708-w] [PMID: 32100088]
[83]
Yano Y, O’Donnell CJ, Kuller L, et al. Association of coronary artery calcium score vs age with cardiovascular risk in older adults: An analysis of pooled population-based studies. JAMA Cardiol 2017; 2(9): 986-94.
[http://dx.doi.org/10.1001/jamacardio.2017.2498] [PMID: 28746709]
[84]
Stigall-Weikle N, Evans KD, Bloom IW, Bowman ER, Funderburg NT. A pilot study comparing aortic sonography, flow cytometry, and coronary CT. Radiol Technol 2022; 93(5): 454-61.
[PMID: 35508410]
[85]
Jing M, Moore J, Mailey J, et al. Enhancement for automated estimation of blood flow axial velocity from conjunctival videos by deep learning. The 44th International Engineering in Medicine andiology Conference (EMBC).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy