Generic placeholder image

Current Organic Chemistry


ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Mechanistic Views on the Manganese Catalyzed Homogeneous Coupling Reactions

Author(s): Parvathi Santhoshkumar, C. Rajalakshmi, Rehin Sulay and Vibin Ipe Thomas*

Volume 27, Issue 10, 2023

Published on: 31 August, 2023

Page: [807 - 813] Pages: 7

DOI: 10.2174/1385272827666230803092641

Price: $65


The transition metal-catalyzed C-C and C-X (X=heteroatom) homo and crosscoupling reactions were pioneered as a momentous strategy for the total synthesis of natural products, agrochemicals, pharmaceuticals, etc. Among the various transition metal-catalyzed reactions, manganese catalysis held a distinctive identity owing to its earth-abundance and eco-friendliness apart from its unique characteristics. Despite having many synthetic advancements, exploiting manganese as a catalyst for coupling reactions has recently gained pivotal gravity. An in-depth comprehension of the molecular mechanism of the chemical reaction will provide further insight to optimize the reaction conditions. The mechanisms adopted by Mn-catalyzed couplings are found to differ from other first-row transition metal counterparts. Hence in this article, we provide the state-of-the-art on the detailed theoretical aspects of manganese-catalyzed carbon-carbon (C-C) and carbon-heteroatom (C-X; X=Si) coupling reactions.

Keywords: Manganese, homogeneous coupling, density functional theory, mechanistic studies, coupling reactions, catalyst.

Next »
Graphical Abstract
Yao W, Wang J, Lou Y, et al. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org Chem Front 2021; 8(16): 4554-9.
Yao W, Wang J, Zhong A, Wang S, Shao Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org Chem Front 2020; 7(21): 3515-20.
Negishi E. Magical power of transition metals: Past, present, and future (Nobel Lecture). Angew Chem Int Ed 2011; 50(30): 6738-64.
[] [PMID: 21717531]
Ullmann F, Bielecki J. Ueber synthesen in der biphenylreihe. Reports German Chem Soc 1901; 34: 2174-85.
Ullmann F. Ueber eine neue bildungsweise von diphenylaminderivaten. Ber Dtsch Chem Ges 1903; 36(2): 2382-4.
Ullmann F, Sponagel P. Ueber die pheny- Ilrung von phenolen. Chem Ber 1903; 2211-2.
Goldberg I. Goldberg-1906-Berichte_der_deutschen_chemischen_Gesell-schaft. Berichte der Dtsch. Chem Gesellerschaft 1906; 39(April): 5-6.
Leenders SHAM, Gramage-Doria R, de Bruin B, Reek JNH. Transition metal catalysis in confined spaces Chem Soc Rev, 2015; 44(2): 433-48.
Hickman AJ, Sanford MS. High-valent organometallic copper and palladium in catalysis. Nature 2012; 484(7393): 177-85.
[] [PMID: 22498623]
Xue L, Lin Z. Theoretical aspects of palladium-catalysed carbon-carbon cross-coupling reactions. Chem Soc Rev 2010; 39(5): 1692-705.
[] [PMID: 20419215]
Gridnev ID. Birds of a feather-asymmetric organocatalysis meets asymmetric transition metal catalysis. Catalysts 2022; 12(2): 214.
Martelli LSR, Machado IV, dos Santos JRN, Corrêa AG. Recent advances in greener asymmetric organocatalysis using bio-based solvents. Catalysts 2023; 13(3): 553.
Swift EC, Jarvo ER. Asymmetric transition metal-catalyzed cross-coupling reactions for the construction of tertiary stereocenters. Tetrahedron 2013; 69(29): 5799-817.
[] [PMID: 23956470]
Wang YF, Wang CJ, Feng QZ, et al. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para -quinone methides with β-ketoesters. Chem Commun 2022; 58(46): 6653-6.
[] [PMID: 35593224]
Yang L, Huang H. Asymmetric catalytic carbon–carbon coupling reactions via C–H bond activation. Catal Sci Technol 2012; 2(6): 1099.
Cornils B, Herrmann WA. Concepts in homogeneous catalysis: The industrial view. J Catal 2003; 216(1-2): 23-31.
D’Alterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Mechanistic aspects of the palladium-catalyzed suzuki-miyaura cross-coupling reaction. Chemistry 2021; 27(54): 13481-93.
[] [PMID: 34269488]
Chung IS, Kim SY, Advanced K. Meta-Activated nucleophilic aromatic substitution reaction: Poly (biphenylene oxide) s with trifluoromethyl pendent groups via nitro displacement. Macromolecules 2001; (13): 11071-2.
Yamamura S, Nishiyama S. Biomimetic syntheses of isodityrosine natural products, and an approach to chemistry and molecular recognition of secoaglucovancomycin and related oligopeptides. J Synth Org Chem Jpn 1997; 55(11): 1029-39.
Evano G, Theunissen C, Pradal A. Impact of copper-catalyzed cross-coupling reactions in natural product synthesis: The emergence of new retrosynthetic paradigms. Nat Prod Rep 2013; 30(12): 1467-89.
[] [PMID: 24154547]
Torborg C, Beller M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv Synth Catal 2009; 351(18): 3027-43.
Wang LH, Chen XJ, Ye DN, et al. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C–H direct arylation. Polym Chem 2022; 13(16): 2351-61.
Liu SY, Liu WQ, Yuan CX, et al. Diketopyrrolopyrrole-based oligomers accessed via sequential C H activated coupling for fullerene-free organic photovoltaics. Dyes Pigments 2016; 134: 139-47.
Hao W, Liu H, Yin L, Cai M. Phosphine-free, heterogeneous palladium-catalyzed atom-efficient carbonylative cross-coupling of triarylbismuths with aryl iodides: Synthesis of biaryl ketones. J Org Chem 2016; 81(10): 4244-51.
[] [PMID: 27129099]
Kondolff I, Doucet H, Santelli M. Palladium-tetraphosphine as catalyst precursor for high-turnover-number negishi cross-coupling of Alkyl- or phenylzinc derivatives with aryl bromides. Organometallics 2006; 25(22): 5219-22.
Rajalakshmi C, Jibin SS, Sulay R, Asha S, Ipe Thomas V, Anilkumar G. Theoretical investigation into the mechanism of copper-catalyzed Sonogashira coupling using trans-1,2-diamino cyclohexane ligand. Polyhedron 2021; 193114869
Shirakawa E, Sato T, Imazaki Y, Kimura T, Hayashi T. Cobalt-catalyzed cross-coupling of alkynyl Grignard reagents with alkenyl triflates. Chem Commun 2007; (43): 4513-5.
[] [PMID: 17971973]
Cahiez G, Moyeux A. Cobalt-catalyzed cross-coupling reactions. Chem Rev 2010; 110(3): 1435-62.
[] [PMID: 20148539]
Lipschutz MI, Tilley TD. Carbon-carbon cross-coupling reactions catalyzed by a two-coordinate nickel(II)-bis(amido) complex via observable Ni(I), Ni(II), and Ni(III) intermediates. Angew Chem Int Ed 2014; 53(28): 7290-4.
[] [PMID: 24889777]
Beletskaya IP, Latyshev GV, Tsvetkov AV, Lukashev NV. The nickel-catalyzed sonogashira-hagihara reaction. Tetrahedron Lett 2003; 44(27): 5011-3.
Procter RJ, Dunsford JJ, Rushworth PJ, Hulcoop DG, Layfield RA, Ingleson MJ. A zinc catalyzed C(sp3)-C(sp2) suzuki-miyaura cross-coupling reaction mediated by aryl-zincates. Chemistry 2017; 23(63): 15889-93.
[] [PMID: 28960610]
Kharasch MS, Fields EK. Factors determining the course and mechanisms of grignard reactions. IV. The effect of metallic halides on the reaction of aryl grignard reagents and organic halides. J Am Chem Soc 1941; 63(9): 2316-20.
Carril M, Correa A, Bolm C. Iron-catalyzed Sonogashira reactions. Angew Chem Int Ed 2008; 47(26): 4862-5.
[] [PMID: 18506862]
Rohit KR, Saranya S, Harry NA, Anilkumar G. A Novel Ligand-free manganese-catalyzed C-O coupling protocol for the synthesis of biaryl ethers. ChemistrySelect 2019; 4(17): 5150-4.
Rohit KR, Radhika S, Saranya S, Anilkumar G. Manganese-catalysed dehydrogenative coupling - An overview. Adv Synth Catal 2020; 362(8): 1602-50.
Dessie Y, Tadesse S, Eswaramoorthy R. Review on manganese oxide based biocatalyst in microbial fuel cell: Nanocomposite approach. Mater Sci Energy Technol 2020; 3: 136-49.
Wang L, Zhu B, Deng Y, et al. Biocatalytic and antioxidant nanostructures for ros scavenging and biotherapeutics. Adv Funct Mater 2021; 31(31)2101804
Snider BB, Mohan R, Kates SA. Manganese(III)-based oxidative free-radical cyclization. Synthesis of (.+-.)-podocarpic acid. J Org Chem 1985; 50(19): 3659-61.
Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J Am Chem Soc 1991; 113(18): 7063-4.
Donnelly KD, Fristad WE, Gellerman BJ, Peterson JR, Selle BJ. Chlorination of alkenes by manganese(III) chloride species. Tetrahedron Lett 1984; 25(6): 607-10.
Waiba S, Maji B. Manganese catalyzed acceptorless dehydrogenative coupling reactions. ChemCatChem 2020; 12(7): 1891-902.
Hu Y, Wang C. Manganese-catalyzed C-H olefination reactions. ChemCatChem 2019; 11(4): 1167-74.
Sharma K, Shrivastava A, Mehra RN, et al. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch Pharm 2018; 351(1)1700251
[] [PMID: 29227011]
Lan Y. Computational Methods in Organometallic Catalysis: From Elementary Reactions to Mechanisms. Wiley 2021; p. 672.
Wang K, He X, Rong C, Zhong A, Liu S, Zhao D. On the origin and nature of internal methyl rotation barriers: An information-theoretic approach study. Theor Chem Acc 2022; 141(11): 68.
Cramer CJ, Truhlar DG. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 2009; 11(46): 10757-816.
[] [PMID: 19924312]
Niu S, Hall MB. Theoretical studies on reactions of transition-metal complexes. Chem Rev 2000; 100(2): 353-406.
[] [PMID: 11749240]
Cahiez G, Moyeux A, Buendia J, Duplais C. Manganese- or iron-catalyzed homocoupling of Grignard reagents using atmospheric oxygen as an oxidant. J Am Chem Soc 2007; 129(45): 13788-9.
[] [PMID: 17944469]
Bottoni A, Cahiez G, Calvaresi M, Moyeux A, Giacinto P, Miscione GP. A mechanistic insights into manganese-catalyzed oxidative homocoupling reactions of Grignard reagents: A computational DFT investigation. J Organomet Chem 2016; 814: 25-34.
Pearson RG. The HSAB Principle - more quantitative aspects. Inorg Chim Acta 1995; 240(1-2): 93-8.
Calderazzo F. Synthetic and mechanistic aspects of inorganic insertion reactions. Insertion of carbon monoxide. Angew Chem Int Ed Engl 1977; 16(5): 299-311.
Weber S, Veiros LF, Kirchner K. Selective manganese-catalyzed dimerization and cross-coupling of terminal alkynes. ACS Catal 2021; 11(11): 6474-83.
[] [PMID: 34123484]
Troegel D, Stohrer J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 2011; 255(13-14): 1440-59.
Dong J, Yuan XA, Yan Z, et al. Manganese catalysed divergent silylation of alkenes. Nat Chem 2021; 13(2): 182-90.
[] [PMID: 33318674]
Luque-Urrutia J A, Solà M, Milstein D, Poater A. Mechanism of the manganese-pincer-catalyzed acceptorless dehydrogenative coupling of nitriles and alcohols. J Am Chem Soc 2019; 141(6): 2398-403.
Jorner K, Brinck T, Norrby PO, Buttar D. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chem Sci 2021; 12(3): 1163-75.
[] [PMID: 36299676]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy