Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Impact of Phytomolecules with Nanotechnology on the Treatment of Inflammation

Author(s): Sonia Singh*, Bhupesh C Semwal, Himanshu Sharma and Divya Sharma

Volume 19, Issue 10, 2023

Published on: 28 August, 2023

Article ID: e070823219471 Pages: 27

DOI: 10.2174/1573407219666230807150030

Price: $65

Abstract

Inflammation is a part of the biological response of body tissues against harmful stimuli, such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including anti-inflammatory drugs that treat the condition of inflammation, are available for its management. Because of the severe adverse effects associated with synthetic medications, phytotherapy may be a promising and effective approach to treating inflammation. The therapeutic potential of herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines, cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore, nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability. The current manuscript provides a thorough description of many phytoconstituents and herbal plants that have great potential for treating inflammation-related diseases, as well as information on their limitations, drug formulations, and regulatory issues.

Keywords: Herbs, inflammation, mediators, lipooxygenase, phytoconstituents, nanotechnology.

Graphical Abstract
[1]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[2]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[3]
Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910.
[http://dx.doi.org/10.1159/000452591] [PMID: 27871079]
[4]
Beg, S.; Hasan, H.; Hussain, M.S.; Swain, S.; Barkat, M.A. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. Pharmacogn. Rev., 2011, 5(10), 120-137.
[http://dx.doi.org/10.4103/0973-7847.91102] [PMID: 22279370]
[5]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[6]
Singh, A.; Malhotra, S.; Subban, R. Anti-inflammatory and analgesic agents from Indian medicinal plants. Int. J. Integr. Biol., 2008, 3(1), 57-72.
[7]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[8]
Chertov, O.; Yang, D.; Howard, O.M.Z.; Oppenheim, J.J. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev., 2000, 177(1), 68-78.
[http://dx.doi.org/10.1034/j.1600-065X.2000.17702.x] [PMID: 11138786]
[9]
Serhan, C.N.; Savill, J. Resolution of inflammation: The beginning programs the end. Nat. Immunol., 2005, 6(12), 1191-1197.
[http://dx.doi.org/10.1038/ni1276] [PMID: 16369558]
[10]
Bottazzi, B.; Doni, A.; Garlanda, C.; Mantovani, A. An integrated view of humoral innate immunity: Pentraxins as a paradigm. Annu. Rev. Immunol., 2010, 28(1), 157-183.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101305] [PMID: 19968561]
[11]
Pirmohamed, M.; Park, B.K. Adverse drug reactions: Back to the future. Br. J. Clin. Pharmacol., 2003, 55(5), 486-492.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01847.x] [PMID: 12755814]
[12]
Baillie, T.A.; Rettie, A.E. Role of biotransformation in drug-induced toxicity: Influence of intra- and inter-species differences in drug metabolism. Drug Metab. Pharmacokinet., 2011, 26(1), 15-29.
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RV-089] [PMID: 20978360]
[13]
Uetrecht, J.; Naisbitt, D.J. Idiosyncratic adverse drug reactions: Current concepts. Pharmacol. Rev., 2013, 65(2), 779-808.
[http://dx.doi.org/10.1124/pr.113.007450] [PMID: 23476052]
[14]
Lanas, A. Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: A trip from peptic ulcer to colon cancer. Am. J. Med. Sci., 2009, 338(2), 96-106.
[http://dx.doi.org/10.1097/MAJ.0b013e3181ad8cd3] [PMID: 19680014]
[15]
Kandulski, A.; Venerito, M.; Malfertheiner, P. Non steroidal anti-inflammatory drugs (NSAIDs)-balancing gastrointestinal complications and the cardiovascular risk. Dtsch. Med. Wochenschr., 1946, 134(33), 1635-1640.
[16]
Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol., 2011, 6(4), 274-281.
[http://dx.doi.org/10.1007/s11515-011-1123-9]
[17]
Bhatt, D.; Ghosh, S. Regulation of the NF-κB-mediated transcription of inflammatory genes. Front. Immunol., 2014, 5, 71.
[http://dx.doi.org/10.3389/fimmu.2014.00071] [PMID: 24611065]
[18]
Giuliani, C.; Bucci, I.; Napolitano, G. The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity and cancer. Front. Endocrinol., 2018, 9, 471.
[http://dx.doi.org/10.3389/fendo.2018.00471] [PMID: 30186235]
[19]
Hinz, M.; Scheidereit, C. The IκB kinase complex in NF ‐κB regulation and beyond. EMBO Rep., 2014, 15(1), 46-61.
[http://dx.doi.org/10.1002/embr.201337983] [PMID: 24375677]
[20]
Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs, 2017, 77(5), 521-546.
[http://dx.doi.org/10.1007/s40265-017-0701-9] [PMID: 28255960]
[21]
Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci., 2018, 27(12), 1984-2009.
[http://dx.doi.org/10.1002/pro.3519] [PMID: 30267440]
[22]
Brzezianska, E.; Domanska, D. The JAK/STAT protein activation-role in cancer development and targeted therapy. Curr. Signal Transduct. Ther., 2012, 7(3), 187-201.
[http://dx.doi.org/10.2174/157436212802481619]
[23]
Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal., 2017, 15(1), 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[24]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[25]
Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(4), 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[26]
Zeyen, L.; Seternes, O.M.; Mikkola, I. Crosstalk between p38 MAPK and GR signaling. Int. J. Mol. Sci., 2022, 23(6), 3322.
[http://dx.doi.org/10.3390/ijms23063322] [PMID: 35328742]
[27]
Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr. Pharm. Des., 2018, 24(14), 1449-1484.
[http://dx.doi.org/10.2174/1381612824666180327165604] [PMID: 29589535]
[28]
Yokota, T.; Wang, Y. p38 MAP kinases in the heart. Gene, 2016, 575(2), 369-376.
[http://dx.doi.org/10.1016/j.gene.2015.09.030] [PMID: 26390817]
[29]
Beamer, E.; Corrêa, S.A.L. The p38MAPK-MK2 signaling axis as a critical link between inflammation and synaptic transmission. Front. Cell Dev. Biol., 2021, 9, 635636.
[http://dx.doi.org/10.3389/fcell.2021.635636] [PMID: 33585492]
[30]
Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res., 2005, 15(1), 11-18.
[http://dx.doi.org/10.1038/sj.cr.7290257] [PMID: 15686620]
[31]
Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol., 2012, 13(5), 283-296.
[http://dx.doi.org/10.1038/nrm3330] [PMID: 22473468]
[32]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[33]
Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[34]
Georgewill, U.O.; Georgewill, O.A. Antiarthritic activity of <i> Abrus precatorius</i> in Albino rats. J. Pharmaceut. Allied Sci., 2009, 6(3), 1115-1118.
[http://dx.doi.org/10.4314/jophas.v6i3.48547]
[35]
Choi, Y.H.; Hussain, R.A.; Pezzuto, J.M.; Kingborn, A.D.; Morton, J.F. Abrusosides A-D, four novel sweet-tasting triterpene glycosides from the leaves of Abrus precatorius. J. Nat. Prod., 1989, 52(5), 1118-1127.
[http://dx.doi.org/10.1021/np50065a032] [PMID: 2691636]
[36]
Garaniya, N.; Bapodra, A. Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: A review. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S27-S34.
[http://dx.doi.org/10.12980/APJTB.4.2014C1069] [PMID: 25183095]
[37]
Frohn, D.; Pfander, H.J. A colour atlas of poisonous plants(A Wolf Science Book) London, 1983; pp. 47-81.
[38]
Benni, J.; Suresha, R.N.; Jayanthi, M.K. Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J. Pharmacol., 2011, 43(4), 393-397.
[http://dx.doi.org/10.4103/0253-7613.83108] [PMID: 21844992]
[39]
Manga, H.M.; Brkic, D.; Marie, D.E.P.; Quetin-Leclercq, J. in vivo anti-inflammatory activity of Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. (Euphorbiaceae). J. Ethnopharmacol., 2004, 92(2-3), 209-214.
[http://dx.doi.org/10.1016/j.jep.2004.02.019] [PMID: 15138002]
[40]
Chen, Y.; Xue, R.; Jin, X.; Tan, X. Antiarthritic activity of diallyl disulfide against freund’s adjuvant-induced arthritic rat model. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(4), 291-303.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018027078] [PMID: 30806236]
[41]
Nasri, S.; Anoush, M.; Khatami, N. Evaluation of analgesic and anti-inflammatory effects of fresh onion juice in experimental animals. Afr. J. Pharm. Pharmacol., 2012, 6(23), 1679-1684.
[42]
Ban, J.; Oh, J.; Kim, T.; Kim, D.; Jeong, H.S.; Han, S.; Hong, J. Anti-inflammatory and arthritic effects of thiacremonone, a novel sulfurcompound isolated from garlic via inhibition of NF-κB. Arthritis Res. Ther., 2009, 11(5), R145.
[http://dx.doi.org/10.1186/ar2819] [PMID: 19788760]
[43]
Davis, R.H.; Agnew, P.S.; Shapiro, E. Antiarthritic activity of anthraquinones found in aloe for podiatric medicine. J. Am. Podiatr. Med. Assoc., 1986, 76(2), 61-66.
[http://dx.doi.org/10.7547/87507315-76-2-61] [PMID: 3941379]
[44]
Vázquez, B.; Avila, G.; Segura, D.; Escalante, B. Antiinflammatory activity of extracts from Aloe vera gel. J. Ethnopharmacol., 1996, 55(1), 69-75.
[http://dx.doi.org/10.1016/S0378-8741(96)01476-6] [PMID: 9121170]
[45]
Surjushe, A.; Vasani, R.; Saple, D.G. Aloe vera: A short review. Indian J. Dermatol., 2008, 53(4), 163-166.
[http://dx.doi.org/10.4103/0019-5154.44785] [PMID: 19882025]
[46]
Sharma, P.; Kharkwal, A.C.; Kharkwal, H.; Abdin, M.Z.; Varma, A. A review on pharmacological properties of Aloe vera. Int. J. Pharm. Sci. Rev. Res., 2014, 29(2), 31-37.
[47]
Sulaiman, M.R.; Zakaria, Z.A.; Mohamad, A.S.; Ismail, M.; Hidayat, M.T.; Israf, D.A.; Adilius, M. Antinociceptive and anti-inflammatory effects of the ethanol extract of Alpinia conchigera rhizomes in various animal models. Pharm. Biol., 2010, 48(8), 861-868.
[http://dx.doi.org/10.3109/13880200903302820] [PMID: 20673172]
[48]
Lee, J.H.; Jung, H.S.; Giang, P.M.; Jin, X.; Lee, S.; Son, P.T.; Lee, D.; Hong, Y.S.; Lee, K.; Lee, J.J. Blockade of nuclear factor-kappaB signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera. J. Pharmacol. Exp. Ther., 2006, 316(1), 271-278.
[http://dx.doi.org/10.1124/jpet.105.092486] [PMID: 16183703]
[49]
Ibrahim, H.; Chooi, O.H.; Hassan, R. Ethnobotanical survey of the ginger family in selected Malay villages in Peninsular Malaysia. Malays. J. Sci., 2000, 19(1), 93-99.
[50]
Huh, J.E.; Jung, I.T.; Choi, J.; Baek, Y.H.; Lee, J.D.; Park, D.S.; Choi, D.Y. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-κB in collagen-induced arthritis and bone marrow-derived macrophages. Eur. J. Pharmacol., 2013, 698(1-3), 57-66.
[http://dx.doi.org/10.1016/j.ejphar.2012.08.013] [PMID: 22985747]
[51]
Patil, M.B.; Jalalpure, S.S.; Pramod, H.J.; Manvi, F.V. Antiinflammatory activity of the leaves of Anacardium occidentale linn. Indian J. Pharm. Sci., 2003, 65(1), 70.
[52]
Usmani, A.; Khushtar, M.; Arif, M.; Siddiqui, M.; Sing, S.; Mujahid, M. Pharmacognostic and phytopharmacology study of Anacyclus pyrethrum: An insight. J. Appl. Pharm. Sci., 2016, 6(03), 144-150.
[http://dx.doi.org/10.7324/JAPS.2016.60325]
[53]
Sujith, K.; Ronald, D.; Suba, V. Antioxidant activity of ethanolic root extract of Anacyclus pyrethrum. Int. J. Pharm. Sci. Res., 2011, 2(8), 222-226.
[54]
Elazzouzi, H.; Soro, A.; Elhilali, F.; Bentayeb, A.; El Belghiti, M.A.; Zair, T. Phytochemical study of Anacyclus pyrethrum (L.) of Middle Atlas (Morocco), and in vitro study of antibacterial activity of pyrethrum. Adv. Nat. Appl. Sci., 2014, 8(8), 131-141.
[55]
Sujith, K.; Darwin, R.; Suba, V. Toxicological evaluation of ethanolic extract of Anacyclus pyrethrum in albino wistar rats. Asian Pac. J. Trop. Dis., 2012, 2(6), 437-441.
[http://dx.doi.org/10.1016/S2222-1808(12)60096-6]
[56]
Abbas Zaidi, S.M.; Pathan, S.A.; Singh, S.; Jamil, S.; Ahmad, F.J.; Khar, R.K. Anticonvulsant, anxiolytic and neurotoxicity profile of Aqarqarha (Anacyclus pyrethrum) DC (Compositae) root ethanolic extract. Pharmacol. Pharm., 2013, 4(7), 535-541.
[http://dx.doi.org/10.4236/pp.2013.47077]
[57]
Selles, C. Valorisation d’une plante médicinale à activité antidiabétique de la région de Tlemcen: Anacyclus pyrethrum L. Application de l’extrait aqueux à l’inhibition de corrosion d’un acier doux dans H2SO4 0.5 M.. Thesis Presented for graduation from Doctor of physical sciences,Abu Bekr Belkaid University. Tlemcen 2012.
[58]
Manouze, H.; Bouchatta, O.; Gadhi, A.C.; Bennis, M.; Sokar, Z.; Ba-M’hamed, S. Anti-inflammatory, antinociceptive, and antioxidant activities of methanol and aqueous extracts of Anacyclus pyrethrum roots. Front. Pharmacol., 2017, 8, 598.
[http://dx.doi.org/10.3389/fphar.2017.00598] [PMID: 28928658]
[59]
Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; Ibenmoussa, S.; Bousta, D.; Bari, A. Anacyclus pyrethrum (L): Chemical composition, analgesic, anti-inflammatory, and wound healing properties. Molecules, 2020, 25(22), 5469.
[http://dx.doi.org/10.3390/molecules25225469] [PMID: 33238392]
[60]
Chuang, P.H.; Hsieh, P.W.; Yang, Y.L.; Hua, K.F.; Chang, F.R.; Shiea, J.; Wu, S.H.; Wu, Y.C. Cyclopeptides with anti-inflammatory activity from seeds of Annona montana. J. Nat. Prod., 2008, 71(8), 1365-1370.
[http://dx.doi.org/10.1021/np8001282] [PMID: 18687006]
[61]
Bermejo, A.; Figadère, B.; Zafra-Polo, M.C.; Barrachina, I.; Estornell, E.; Cortes, D. Acetogenins from Annonaceae: Recent progress in isolation, synthesis and mechanisms of action. Nat. Prod. Rep., 2005, 22(2), 269-303.
[http://dx.doi.org/10.1039/B500186M] [PMID: 15806200]
[62]
Foong, C.P.; Hamid, R.A. Evaluation of anti-inflammatory activities of ethanolic extract of Annona muricata leaves. Rev. Bras. Farmacogn., 2012, 22(6), 1301-1307.
[http://dx.doi.org/10.1590/S0102-695X2012005000096]
[63]
Wen, C.L.; Chang, C.C.; Huang, S.S.; Kuo, C.L.; Hsu, S.L.; Deng, J.S.; Huang, G.J. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J. Ethnopharmacol., 2011, 137(1), 575-584.
[http://dx.doi.org/10.1016/j.jep.2011.06.009] [PMID: 21704694]
[64]
Kumar, K.J.S.; Chu, F.H.; Hsieh, H.W.; Liao, J.W.; Li, W.H.; Lin, J.C.C.; Shaw, J.F.; Wang, S.Y. Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. J. Ethnopharmacol., 2011, 136(1), 168-177.
[http://dx.doi.org/10.1016/j.jep.2011.04.030] [PMID: 21540101]
[65]
Hossain, M.M.; Biva, I.J.; Jahangir, R.; Vhuiyan, M.M. Central nervous system depressant and analgesic activity of Aphanamixis polystachya (Wall.) parker leaf extract in mice. Afr. J. Pharm. Pharmacol., 2009, 3(5), 282-286.
[66]
Sadhu, S.K.; Phattanawasin, P.; Choudhuri, M.S.K.; Ohtsuki, T.; Ishibashi, M. A new lignan from Aphanamixis polystachya. J. Nat. Med., 2006, 60(3), 258-260.
[http://dx.doi.org/10.1007/s11418-006-0047-1] [PMID: 29435891]
[67]
Rahman, H.; Eswaraiah, M.C.; Dutta, A.M. Anti-arthritic activity of leaves and oil of Aquilaria agallocha. Saudi J. Life Sci., 2016, 1(1), 34-43.
[68]
Rajvaidhya, S.; Nagori, B.P.; Singh, G.K.; Dubey, B.K.; Desai, P.; Jain, S. A review on Argemone mexicana linn.-an Indian medicinal plant. Int. J. Pharm. Sci. Res., 2012, 3(8), 2494.
[69]
Singh, S.; Pandey, V.B.; Singh, T.D. Alkaloids and flavonoids of Argemone mexicana. Nat. Prod. Res., 2012, 26(1), 16-21.
[http://dx.doi.org/10.1080/14786419.2010.529809] [PMID: 21722040]
[70]
Chitme, H.R. Patel, NP Antiarthritis activity of Aristolochia bracteata extract in experimental animals. Open Nat. Prod. J., 2009, 2(1), 6-15.
[http://dx.doi.org/10.2174/1874848100902010006]
[71]
Sharma, S.; Arif, M.; Nirala, R.K.; Gupta, R.; Thakur, S.C. Cumulative therapeutic effects of phytochemicals in Arnica montana flower extract alleviated collagen-induced arthritis: Inhibition of both pro-inflammatory mediators and oxidative stress. J. Sci. Food Agric., 2016, 96(5), 1500-1510.
[http://dx.doi.org/10.1002/jsfa.7252] [PMID: 25966322]
[72]
Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis., 2013, 3(3), 242-251.
[http://dx.doi.org/10.1016/S2222-1808(13)60049-3]
[73]
Lee, D.Y.; Choo, B.K.; Yoon, T.; Cheon, M.S.; Lee, H.W.; Lee, A.Y.; Kim, H.K. Anti-inflammatory effects of Asparagus cochinchinensis extract in acute and chronic cutaneous inflammation. J. Ethnopharmacol., 2009, 121(1), 28-34.
[http://dx.doi.org/10.1016/j.jep.2008.07.006] [PMID: 18691647]
[74]
Mosaddek, A.S.M.; Rashid, M.M.U. A comparative study of the anti-inflammatory effect of aqueous extract of neem leaf and dexamethasone. Bangladesh J. Pharmacol., 2008, 3(1), 44-47.
[http://dx.doi.org/10.3329/bjp.v3i1.836]
[75]
Gowri, P.M.; Tiwari, A.K.; Ali, A.Z.; Rao, J.M. Inhibition of α-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytother. Res., 2007, 21(8), 796-799.
[http://dx.doi.org/10.1002/ptr.2176] [PMID: 17533638]
[76]
Patil, K.R.; Patil, C.R.; Jadhav, R.B.; Mahajan, V.K.; Patil, P.R.; Gaikwad, P.S. Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia racemosa Roxb.(Lecythidaceae). Evid. Based Complement. Alternat. Med., 2011, 2011, 785245.
[77]
Asadi-Samani, M.; Bahmani, M.; Rafieian-Kopaei, M. The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review. Asian Pac. J. Trop. Med., 2014, 7, S22-S28.
[http://dx.doi.org/10.1016/S1995-7645(14)60199-1] [PMID: 25312125]
[78]
Lu, F.; Foo, L.Y. Phenolic antioxidant components of evening primrose. Nutrition. Lipids Health Dis., 1995, 86-95.
[79]
Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. in vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol., 2008, 116(1), 144-151.
[http://dx.doi.org/10.1016/j.jep.2007.11.015] [PMID: 18164564]
[80]
Paschapur, M.S.; Patil, M.B.; Kumar, R.; Patil, S.R. Evaluation of antiinflammatory activity of ethanolic extract of Borassus flabellifer L. male flowers (inflorescences) in experimental animals. J. Med. Plants Res., 2009, 3(2), 49-54.
[81]
Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia serrata. Clin. Pharmacokinet., 2011, 50(6), 349-369.
[http://dx.doi.org/10.2165/11586800-000000000-00000] [PMID: 21553931]
[82]
Sharma, A.; Bhatia, S.; Kharya, M.D.; Gajbhiye, V.; Ganesh, N.; Namdeo, A.G.; Mahadik, K.R. Anti-inflammatory and analgesic activity of different fractions of Boswellia serrata. Int. J. Phytomed., 2010, 2(1)
[83]
Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci., 2011, 73(3), 255-261.
[PMID: 22457547]
[84]
Mengi, S.A.; Deshpande, S.G. Evaluation of ocular anti-inflammatory activity of Butea frondosa. Indian J. Pharmacol., 1995, 27(2), 116.
[PMID: 8932683]
[85]
Soman, I.; Mengi, S.A.; Kasture, S.B. Effect of leaves of Butea frondosa on stress, anxiety, and cognition in rats. Pharmacol. Biochem. Behav., 2004, 79(1), 11-16.
[http://dx.doi.org/10.1016/j.pbb.2004.05.022] [PMID: 15388278]
[86]
Gupta, S.K.; Gupta, A.; Gupta, A.K.; Pakash, D. Vedpal, in vitro anti arthritic activity of ethanolic extract of Callicarpa macrophylla flower. Int. Res. J. Pharm., 2013, 4(3), 160-162.
[http://dx.doi.org/10.7897/2230-8407.04332]
[87]
Soni, R.K.; Dixit, V.; Irchhaiya, R.; Alok, S. Callicarpa macrophylla: A review update on its botany, ethnobotany, phytochemistry and pharmacology. Int J Pharmacogn., 2014, 1, 87-94.
[88]
Verma, R.K.; Singh, A.K.; Srivastava, P.; Shanker, K.; Kalra, A.; Gupta, M.M. Determination of novel plant growth promoting diterpenes in Callicarpa macrophylla by HPLC and HPTLC. J. Liq. Chromatogr. Relat. Technol., 2009, 32(16), 2437-2450.
[http://dx.doi.org/10.1080/10826070903188211]
[89]
Yadav, V.; Jayalakshmi, S.; Singla, R.K.; Patra, A.; Khan, S. Assessment of anti-inflammatory and analgesic activities of Callicarpa macrophylla vahl. roots extracts. WebmedCentral Pharmacol., 2012, 3(5), WMC003366.
[http://dx.doi.org/10.9754/journal.wmc.2012.003366]
[90]
Shah, B.N.; Nayak, B.S.; Seth, A.K.; Jalalpure, S.S.; Patel, K.N.; Patel, M.A.; Mishra, A.D. Search for medicinal plants as a source of anti-inflammatory and anti-arthritic agents-A review. Pharmacogn. Mag., 2006, 2(6), 77.
[91]
Orhan, I.; Küpeli, E.; Terzioğlu, S.; Yesilada, E. Bioassay-guided isolation of kaempferol-3-O-β-d-galactoside with anti-inflammatory and antinociceptive activity from the aerial part of Calluna vulgaris L. J. Ethnopharmacol., 2007, 114(1), 32-37.
[http://dx.doi.org/10.1016/j.jep.2007.06.017] [PMID: 17765419]
[92]
Haqqi, T.M.; Anthony, D.D.; Gupta, S.; Ahmad, N.; Lee, M.S.; Kumar, G.K.; Mukhtar, H. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc. Natl. Acad. Sci., 1999, 96(8), 4524-4529.
[http://dx.doi.org/10.1073/pnas.96.8.4524] [PMID: 10200295]
[93]
Katiyar, S.; Mukhtar, H. Tea in chemoprevention of cancer. Int. J. Oncol., 1996, 8(2), 221-238.
[PMID: 21544351]
[94]
Shebaby, W.; Saliba, J.; Faour, W.H.; Ismail, J.; El Hage, M.; Daher, C.F.; Taleb, R.I.; Nehmeh, B.; Dagher, C.; Chrabieh, E.; Mroueh, M. in vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.). J. Ethnopharmacol., 2021, 270, 113743.
[http://dx.doi.org/10.1016/j.jep.2020.113743] [PMID: 33359187]
[95]
Marwat, S.K.; Usman, K.; Khakwani, A.A.; Ghulam, S.; Anwar, N.; Sadiq, M.; Khan, S.J. Medico-ethnobotanical studies of edible wild fruit plants species from the flora of north western Pakistan (DI Khan district). J. Med. Plants Res., 2011, 5(16), 3679-3686.
[96]
Júnior, U.L.; Ali, A.; Rehman, R.; Nisar, S. A comprehensive review on phytochemistry and biological activities of Della (Capparis decidua). Int. J. Chem. Biochem. Sci., 2019, 15(2019), 69-73.
[97]
Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[98]
Borbély, É.; Kiss, T.; Szabadfi, K.; Pintér, E.; Szolcsányi, J.; Helyes, Z.; Botz, B. Complex role of capsaicin-sensitive afferents in the collagen antibody-induced autoimmune arthritis of the mouse. Sci. Rep., 2018, 8(1), 15916.
[http://dx.doi.org/10.1038/s41598-018-34005-6] [PMID: 30374145]
[99]
A, B.Y.; Shandra, A.A.; Boiko, I.A.; Kravchenko, I.A. Experimental study of the effectiveness the Capsicum annuum L. Extracts for treatment of the rheumatoid arthritis. J. Phytopharmacol., 2019, 8(2), 46-51.
[http://dx.doi.org/10.31254/phyto.2019.8204]
[100]
Venkatesh, B.K.; Krishnakumari, S. Cardiospermum halicacabum suppresses the production of TNF-alpha and nitric oxide by human peripheral blood mononuclear cells. Afr. J. Biomed. Res., 2006, 9(2), 95-99.
[101]
Jeyadevi, R.; Sivasudha, T.; Rameshkumar, A.; Dinesh Kumar, L. Anti-arthritic activity of the Indian leafy vegetable Cardiospermum halicacabum in Wistar rats and UPLC–QTOF–MS/MS identification of the putative active phenolic components. Inflamm. Res., 2013, 62(1), 115-126.
[http://dx.doi.org/10.1007/s00011-012-0558-z] [PMID: 23052184]
[102]
Jeyadevi, R.; Sivasudha, T.; Ilavarasi, A.; Thajuddin, N. Chemical constituents and antimicrobial activity of Indian green leafy vegetable Cardiospermum halicacabum. Indian J. Microbiol., 2013, 53(2), 208-213.
[http://dx.doi.org/10.1007/s12088-012-0333-4] [PMID: 24426110]
[103]
Gopalakrishnan, C.; Dhananjayan, R.; Kameswaran, L. Studies on the pharmacological actions of cardiospermum helicacabum. Indian J. Physiol. Pharmacol., 1976, 20(4), 203-208.
[PMID: 1010635]
[104]
Jun, M.S.; Ha, Y.M.; Kim, H.S.; Jang, H.J.; Kim, Y.M.; Lee, Y.S.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Lee, S.H.; Chang, K.C. Anti-inflammatory action of methanol extract of Carthamus tinctorius involves in heme oxygenase-1 induction. J. Ethnopharmacol., 2011, 133(2), 524-530.
[http://dx.doi.org/10.1016/j.jep.2010.10.029] [PMID: 20969944]
[105]
Asgarpanah, J.; Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of carthamus tinctorius L. Chin. J. Integr. Med., 2013, 19(2), 153-159.
[http://dx.doi.org/10.1007/s11655-013-1354-5] [PMID: 23371463]
[106]
Shirwaikar, A.; Khan, S.; Kamariya, Y.H.; Patel, B.D.; Gajera, F.P. Medicinal plants for the management of post menopausal osteoporosis: A review. Open Bone J., 2010, 2(1), 1-13.
[http://dx.doi.org/10.2174/1876525401002010001]
[107]
Zhou, F.R.; Zhao, M.B.; Tu, P.F. Simultaneous determination of four nucleosides in Carthamus tinctorius L. and Safflower injection using high-performance liquid chromatography. J. Chin. Pharm. Sci., 2009, 18(4), 326.
[108]
Kim, S.K.; Kim, H.J.; Jeong, B.H.; Cha, J.Y.; Cho, Y.S. Properties of the chemical composition of safflower (Carthamus tinctorius L.). Korean J. Life Sci., 2000, 5, 431-435.
[109]
Sheikh, N.W.; Patel, R.D.; Upwar, N.I.; Mahobia, N.K.; Seth, M.V.; Panchal, U.R. Analgesic study of methyl alcohol extract of Cassia fistula Pod. J. Pharm. Res., 2010, 3(9), 2218-2219.
[110]
Varadharajan, M.; Sunkam, Y.; Magadi, G.; Rajamanickam, D.; Reddy, D.; Bankapura, V. Pharmacognostical studies on the root bark and stem bark of Catunaregam spinosa (Thunb.) Tiruv. (Madanaphala) - an Ayurvedic drug. Spatula dd,, 2014, 4(2), 89-99.
[http://dx.doi.org/10.5455/spatula.20140421034040]
[111]
Maresca, M.; Micheli, L.; Di Cesare Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol., 2016, 193, 456-465.
[http://dx.doi.org/10.1016/j.jep.2016.09.032] [PMID: 27647009]
[112]
Gupta, S.; Walia, A.; Malan, R. Phytochemistry and pharmacology of cedrus deodera: An overview. Int. J. Pharm. Sci. Res., 2011, 2(8), 2010.
[113]
Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil. J. Ethnopharmacol., 1999, 65(1), 21-27.
[http://dx.doi.org/10.1016/S0378-8741(98)00150-0] [PMID: 10350366]
[114]
Banik, B.; Das, S.; Das, M.K. Medicinal plants with potent anti-inflammatory and anti-arthritic properties found in eastern parts of the himalaya: An ethnomedicinal review. Pharmacogn. Rev., 2020, 14(28), 121-137.
[http://dx.doi.org/10.5530/phrev.2020.14.16]
[115]
Zeng, W.C.; Zhang, Z.; Gao, H.; Jia, L.R.; He, Q. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J. Food Sci., 2012, 77(7), C824-C829.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02767.x] [PMID: 22757704]
[116]
Gohil, K.; Patel, J.; Gajjar, A. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546-556.
[http://dx.doi.org/10.4103/0250-474X.78519] [PMID: 21694984]
[117]
Liu, M.; Dai, Y.; Yao, X.; Li, Y.; Luo, Y.; Xia, Y.; Gong, Z. Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int. Immunopharmacol., 2008, 8(11), 1561-1566.
[http://dx.doi.org/10.1016/j.intimp.2008.06.011] [PMID: 18652917]
[118]
Singh, B.; Rastogi, R.P. A reinvestigation of the triterpenes of Centella asiatica. Phytochemistry, 1969, 8(5), 917-921.
[http://dx.doi.org/10.1016/S0031-9422(00)85884-7]
[119]
Küpeli, E.; Yesilada, E. Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. J. Ethnopharmacol., 2007, 112(3), 524-530.
[http://dx.doi.org/10.1016/j.jep.2007.04.011] [PMID: 17540523]
[120]
Marzouk, B.; Haloui, E.; Fenina, N.; Aouni, M.; Marzouk, Z. Comparative evaluation of the analgesic activity of several populations of Tunisian Citrullus colocynthis Schrad. immature fruits. J. Appl. Pharm. Sci., 2013, 3(10), 156.
[121]
Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.A.; Chatha, S.A.S.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol., 2014, 155(1), 54-66.
[http://dx.doi.org/10.1016/j.jep.2014.06.011] [PMID: 24936768]
[122]
Chakraborty, A.K.; Roy, H.K. Evaluation of anti-arthritic activity of ethanolic extract of Cleome rutidosperma. J. Pharm. Sci. Technol., 2010, 2(10), 330-332.
[123]
Patwardhan, S.K.; Bodas, K.S.; Gundewar, S. Coping with arthritis using safer herbal options. Int. J. Pharm. Pharm. Sci., 2010, 2(1), 1-11.
[124]
Sarup, P.; Bala, S.; Kamboj, S. Pharmacology and phytochemistry of oleo-gum resin of Commiphora wightii (Guggulu). Scientifica , 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/138039] [PMID: 26587309]
[125]
Kimura, I.; Yoshikawa, M.; Kobayashi, S.; Sugihara, Y.; Suzuki, M.; Oominami, H.; Murakami, T.; Matsuda, H.; Doiphode, V.V. New triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resins, and their potent anti-inflammatory effect on adjuvant-induced air-pouch granuloma of mice. Bioorg. Med. Chem. Lett., 2001, 11(8), 985-989.
[http://dx.doi.org/10.1016/S0960-894X(01)00111-1] [PMID: 11327606]
[126]
Verma, S.; Jain, A.; Gupta, V.B. Synergistic and sustained anti-inflammatory activity of guguul with the ibuprofen: A preliminary study. Int. J. Pharma Bio Sci., 2010, 1(1)
[127]
Mesrob, B.; Nesbitt, C.; Misra, R.; Pandey, R.C. High-performance liquid chromatographic method for fingerprinting and quantitative determination of E- and Z-guggulsterones in Commiphora mukul resin and its products. J. Chromatogr., Biomed. Appl., 1998, 720(1-2), 189-196.
[http://dx.doi.org/10.1016/S0378-4347(98)00433-2] [PMID: 9892081]
[128]
Patel, M.G.; Pundarikakshudu, K. Anti-arthritic activity of a classical Ayurvedic formulation Vatari Guggulu in rats. J. Tradit. Complement. Med., 2016, 6(4), 389-394.
[http://dx.doi.org/10.1016/j.jtcme.2015.08.007] [PMID: 27774424]
[129]
Shen, T.; Li, G.H.; Wang, X.N.; Lou, H.X. The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2012, 142(2), 319-330.
[http://dx.doi.org/10.1016/j.jep.2012.05.025] [PMID: 22626923]
[130]
Singh, B.B.; Mishra, L.C.; Vinjamury, S.P.; Aquilina, N.; Singh, V.J.; Shepard, N. The effectiveness of Commiphora mukul for osteoarthritis of the knee: An outcomes study. Altern. Ther. Health Med., 2003, 9(3), 74-79.
[PMID: 12776478]
[131]
Shishodia, S.; Aggarwal, B.B. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem., 2004, 279(45), 47148-47158.
[http://dx.doi.org/10.1074/jbc.M408093200] [PMID: 15322087]
[132]
Lv, N.; Song, M.Y.; Kim, E.K.; Park, J.W.; Kwon, K.B.; Park, B.H. Guggulsterone, a plant sterol, inhibits NF-κB activation and protects pancreatic β cells from cytokine toxicity. Mol. Cell. Endocrinol., 2008, 289(1-2), 49-59.
[http://dx.doi.org/10.1016/j.mce.2008.02.001] [PMID: 18343024]
[133]
Neha Mohan, P.V. Suganthi, V.; Gowri, S. Evaluation of anti-inflammatory activity in ethanolic extract of Coriandrum sativum L. using carrageenan induced paw oedema in albino rats. Pharma Chem., 2013, 5(2), 139-143.
[134]
Nair, V.; Singh, S.; Gupta, Y.K. Evaluation of disease modifying activity of Coriandrum sativum in experimental models. Indian J. Med. Res., 2012, 135(2), 240-245.
[PMID: 22446868]
[135]
Kohli, K.; Ali, J.; Ansari, M.J.; Raheman, Z. Curcumin: A natural antiinflammatory agent. Indian J. Pharmacol., 2005, 37(3), 141.
[http://dx.doi.org/10.4103/0253-7613.16209]
[136]
Sharma, P.; Hullatti, K.; Sharma, S.; Mukesh, S.S. Evaluation of anti-inflammatory activity of Cyamopsis tetragonoloba seeds in rodents. J. Pharm. Res., 2010, 3(1), 163-165.
[137]
Chatterjee, G.K.; Pal, S.D. Antiinflammatory agents from Indian medicinal plants. Indian Drugs., 1984, 21, 431.
[138]
Biradar, S.; Kangralkar, V.A.; Mandavkar, Y.; Thakur, M.; Chougule, N. Antiinflammatory, antiarthritic, analgesic and anticonvulsant activity of Cyperus essential oils. Int. J. Pharm. Pharm. Sci., 2010, 2(4), 112-115.
[139]
Sivapalan, S.R. Medicinal uses and pharmacological activities of Cyperus rotundus Linn-A Review. Int. J. Sci. Res. Publications., 2013, 3(5), 1-8.
[140]
Qabaha, K.; Ras, S.A.; Abbadi, J.; Al-Rimawi, F. Anti-inflammatory of both Eucalyptus spp. and Pistascia lentiscus were investigated along with their phenolic compounds analysis using HPLC with UV detection. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(5), 1-6.
[http://dx.doi.org/10.21010/ajtcam.v13i5.1] [PMID: 28487887]
[141]
Deka, P.; Nath, K.K.; Borthakur, S.K. Ethoiatrical uses of Euphorbia antiquorum L. and E. ligularia Roxb. in Assam. Indian J. Tradit. Knowl., 2008, 7(3), 466-468.
[142]
Harpalani, A.N.; Taranalli, A.D.; Otari, K.V.; Karadi, R.V.; Shete, R.V. Antiinflammatory and anti-arthritic potential of aqueous and alcoholic extracts of Euphorbia antiquorum Linn. Pharmacologyonline, 2011, 2, 287-298.
[143]
Bigoniya, P. anti-arthritic effect of triterpene fraction isolated from Euphorbia neriifolia L. leaf. J. Ethnobiol. Traditional Med. Photon., 2015, 124, 1007-1017.
[144]
Bigoniya, P.; Rana, A. A comprehensive phyto-pharmacological review of Euphorbia neriifolia Linn. Pharmacogn. Rev., 2008, 2(4), 57.
[145]
Manocha, N.; Chandra, S.K.; Sharma, V.; Sangameswaran, B.; Saluja, M. Anti-rheumatic and antioxidant activity of extract of stem bark of Ficus bengalensis. Res. J. Chem. Sci., 2011, 1(2), 1-8.
[146]
Saha, S.; Yadav, R.K.; Nandy, B.C.; Maity, S.; Sarkar, S. Phytochemistry, pharmacology, toxicology, and clinical trial of Ficus racemosa. Pharmacogn. Rev., 2015, 9(17), 73-80.
[http://dx.doi.org/10.4103/0973-7847.156356] [PMID: 26009696]
[147]
Kaur, A.; Rana, A.C.; Tiwari, V.; Sharma, R.; Kumar, S. Review on ethanomedicinal and pharmacological properties of Ficus religiosa. J. Appl. Pharm. Sci., 2011, 1(8), 6-11.
[148]
Viswanathan, S.; Thirugnanasambantham, P.; Reddy, M.K.; Narasimhan, S.; Subramaniam, G.A. Anti-inflammatory and mast cell protective effect of ficus religiosa. Anc. Sci. Life, 1990, 10(2), 122-125.
[PMID: 22556521]
[149]
Sreelekshmi, R.; Latha, P.G. Anti-inflammatory, analgesic and anti-lipid peroxidation studies on stem bark of Ficus religiosa Linn. Nat. Prod. Radiance, 2007, 6(5), 377-381.
[150]
Verma, N.; Chaudhary, S.; Garg, V.K.; Tyagi, S. Antiinflammatory and analgesic activity of methanolic extract of stem bark of Ficus religiosa. Int. J. Pharma. Professional’s Res., 2010, 1(2), 145.
[151]
Silambujanaki, P.; Bala Tejo Chandra, C.H.; Anil Kumar, K.; Chitra, V. Wound healing activity of Glycosmis arborea leaf extract in rats. J. Ethnopharmacol., 2011, 134(1), 198-201.
[http://dx.doi.org/10.1016/j.jep.2010.11.046] [PMID: 21129469]
[152]
Patel, M.; Mishra, R.P. Estimation of total phenol and flavonoids contents of Gossypium herbaceum. World J. Pharm. Res., 2017, 7, 1615-1622.
[153]
Stewart, K.M.; Cole, D. The commercial harvest of devil’s claw (Harpagophytum spp.) in southern Africa: The devil’s in the details. J. Ethnopharmacol., 2005, 100(3), 225-236.
[http://dx.doi.org/10.1016/j.jep.2005.07.004] [PMID: 16112533]
[154]
Inaba, K.; Murata, K.; Naruto, S.; Matsuda, H. Inhibitory effects of devil’s claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages. J. Nat. Med., 2010, 64(2), 219-222.
[http://dx.doi.org/10.1007/s11418-010-0395-8] [PMID: 20177800]
[155]
Georgiev, M.I.; Alipieva, K.I.; Denev, P. Antioxidant activity and bioactive constituents of the aerial parts of Harpagophytum procumbens plants. Biotechnol. Biotechnol. Equip., 2010, 24(S1), 438-443.
[156]
Osungunna, M.O.; Adedeji, K.A. Phytochemical and antimicrobial screening of methanol extract of Heliotropium indicum leaf. J. Microbiol. Antimicrob., 2011, 3(8), 213-216.
[157]
Ganguly, A. Normalization of varus/valgus deformities in osteoarthritis by external application of phytoconstituents: Confirmed with anatomical observations and biochemical profiles and radiological images. Anat. Physiol., 2016, 6(3), 2161-0940.
[http://dx.doi.org/10.4172/2161-0940.1000224]
[158]
Srinivas, K.; Rao, M.E.; Rao, S.S. Anti-inflammatory activity of Heliotropium indicum Linn. and Leucas aspera Spreng. in albino rats. Indian J. Pharmacol., 2000, 32(1), 37-38.
[159]
Parrotta, J.A. Healing plants of peninsular India; CABI publishing, 2001, pp. 614-615.
[http://dx.doi.org/10.1079/9780851995014.0000]
[160]
Bhukya, B.R. Analgesic and anti-inflammatory activity of different fractions of hiptage benghalensis (linn). Int. J. Pharm. Pharm. Sci., 2014, 6(2), 205-210.
[161]
Hsu, C.L.; Fang, S.C.; Huang, H.W.; Yen, G.C. Anti-inflammatory effects of triterpenes and steroid compounds isolated from the stem bark of Hiptage benghalensis. J. Funct. Foods, 2015, 12, 420-427.
[http://dx.doi.org/10.1016/j.jff.2014.12.009]
[162]
Saha, S.A.; Subrahmanyam, E.V. Evaluation of anti-inflammatory activity of ethanolic extract of seeds of (Holarrhena pubescens Buch.-Ham.) wall. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 915-919.
[163]
Rahman, A.U.; Choudhary, M.I. Chemistry and biology of steroidal alkaloids. In: The alkaloids: Chemistry and biology; Academic Press, 1998; pp. 61-108.
[http://dx.doi.org/10.1016/S1099-4831(08)60040-1]
[164]
Shaheen Siddiqui, B.; Bader Usmani, S.; Begum, S.; Siddiqui, S.; Aftab, K.; Gilani, A-H. Hypotensive constituents from the bark of Holarrhena pubescens (Holarrhena antidysenterica). Heterocycles, 1995, 41(2), 267-276.
[http://dx.doi.org/10.3987/COM-94-6862]
[165]
Siddiqui, B.S.; Usmani, S.B.; Begum, S.; Siddiqui, S. Steroidal alkaloids and an androstane derivative from the bark of Holarrhena pubescens. Phytochemistry, 1993, 33(4), 925-928.
[http://dx.doi.org/10.1016/0031-9422(93)85306-C]
[166]
Kumar, N.; Singh, B.; Bhandari, P.; Gupta, A.P.; Kaul, V.K. Steroidal alkaloids from Holarrhena antidysenterica (L.) WALL. Chem. Pharm. Bull, 2007, 55(6), 912-914.
[http://dx.doi.org/10.1248/cpb.55.912] [PMID: 17541193]
[167]
Tuntiwachwuttikul, P.; Pootaeng-on, Y.; Phansa, P.; Limpachayaporn, P.; Charoenchai, P.; Taylor, W.C. Constituents of the leaves of Holarrhena pubescens. Fitoterapia, 2007, 78(3), 271-273.
[http://dx.doi.org/10.1016/j.fitote.2006.11.003] [PMID: 17329039]
[168]
Ferrante, A.; Seow, W.K.; Rowan-Kelly, B.; Thong, Y.H. Tetrandrine, a plant alkaloid, inhibits the production of tumour necrosis factor-alpha (cachectin) hy human monocytes. Clin. Exp. Immunol., 2008, 80(2), 232-235.
[http://dx.doi.org/10.1111/j.1365-2249.1990.tb05239.x] [PMID: 2357850]
[169]
Teh, B.S.; Seow, W.K.; Li, S.Y.; Thong, Y.H. Inhibition of prostaglandin and leukotriene generation by the plant alkaloids tetrandrine and berbamine. Int. J. Immunopharmacol., 1990, 12(3), 321-326.
[http://dx.doi.org/10.1016/0192-0561(90)90088-5] [PMID: 2109734]
[170]
Sutradhar, R.K.; Rahman, A.M.; Ahmad, M.; Bachar, S.C.; Saha, A.; Roy, T.G. Anti-inflammatory and analgesic alkaloid from Sida cordifolia linn. Pak. J. Pharm. Sci., 2007, 20(3), 185-188.
[PMID: 17545101]
[171]
Atta-ur-Rahman Asif, E; Ali, S.S.; Nasir, H.; Jamal, S.A.; Ata, A.; Farooq, A; Choudhary, M.I; Sener, B.; Turkoz, S. New steroidal alkaloids from the roots of Buxus papillosa. J. Nat. Prod., 1992, 55(8), 1063-1066.
[http://dx.doi.org/10.1021/np50086a005]
[172]
Chakraborty, A.; Brantner, A.H. Study of alkaloids from Adhatoda vasica Nees on their antiinflammatory activity. Phytother. Res., 2001, 15(6), 532-534.
[http://dx.doi.org/10.1002/ptr.737] [PMID: 11536385]
[173]
Gomes, A.; Sharma, R.M.; Ghatak, B.J. Pharmacological investigation of a glycosidal fraction isolated from Maesa chisia D. Don var. angustifolia Hook f and Th. Indian J. Exp. Biol., 1987, 25(12), 826-831.
[PMID: 3453812]
[174]
Lanhers, M.C.; Fleurentin, J.; Mortier, F.; Vinche, A.; Younos, C. Anti-inflammatory and analgesic effects of an aqueous extract of Harpagophytum procumbens. Planta Med., 1992, 58(2), 117-123.
[http://dx.doi.org/10.1055/s-2006-961411] [PMID: 1529021]
[175]
Sánchez-Mateo, C.C.; Bonkanka, C.X.; Hernández-Pérez, M.; Rabanal, R.M. Evaluation of the analgesic and topical anti-inflammatory effects of Hypericum reflexum L. fil. J. Ethnopharmacol., 2006, 107(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2006.01.032] [PMID: 16549285]
[176]
Shi, H.M.; Wen, J.; Jia, C.Q.; Jin, W.; Zhang, X.F.; Yao, Z.R.; Tu, P.F. Two new phenolic glycosides from the barks of Hydnocarpus annamensis and their anti-inflammatory and anti-oxidation activities. Planta Med., 2006, 72(10), 948-950.
[http://dx.doi.org/10.1055/s-2006-946678] [PMID: 16972202]
[177]
Kim, J.S.; Kim, J.C.; Shim, S.H.; Lee, E.J.; Jin, W.Y.; Bae, K.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res., 2006, 29(8), 617-623.
[http://dx.doi.org/10.1007/BF02968244] [PMID: 16964755]
[178]
Thangavel, N.; Gupta, J.K. Anti-inflammatory and anti-snake venom activity of Andrographis stenophylla leaf. Asian J. Chem., 2007, 19(2), 1307.
[179]
Xu, L.P.; Wang, H.; Yuan, Z. Triterpenoid saponins with anti-inflammatory activity from Codonopsis lanceolata. Planta Med., 2008, 74(11), 1412-1415.
[http://dx.doi.org/10.1055/s-2008-1081318] [PMID: 18666043]
[180]
Tragni, E.; Galli, C.L.; Tubaro, A.; Del Negro, P.; Della Loggia, R. Anti-inflammatory activity of Echinacea angustifolia fractions separated on the basis of molecular weight. Pharmacol. Res. Commun., 1988, 20(Suppl. 5), 87-90.
[http://dx.doi.org/10.1016/S0031-6989(88)80848-8] [PMID: 3247359]
[181]
Popov, S.V.; Popova, G.Y.; Ovodova, R.G.; Ovodov, Y.S. Antiinflammatory activity of the pectic polysaccharide from Comarum palustre. Fitoterapia, 2005, 76(3-4), 281-287.
[http://dx.doi.org/10.1016/j.fitote.2005.03.018] [PMID: 15885926]
[182]
Byard, R.W. A review of the potential forensic significance of traditional herbal medicines. J. Forensic Sci., 2010, 55(1), 89-92.
[http://dx.doi.org/10.1111/j.1556-4029.2009.01252.x] [PMID: 20412155]
[183]
Huang, S.; Chang, W. Advantages of nanotechnology-based Chinese herb drugs on biological activities. Curr. Drug Metab., 2009, 10(8), 905-913.
[http://dx.doi.org/10.2174/138920009790274603] [PMID: 20214585]
[184]
Kim, E.J.Y.; Chen, Y.; Huang, J.Q.; Li, K.M.; Razmovski-Naumovski, V.; Poon, J.; Chan, K.; Roufogalis, B.D.; McLachlan, A.J.; Mo, S.L.; Yang, D.; Yao, M.; Liu, Z.; Liu, J.; Li, G.Q. Evidence-based toxicity evaluation and scheduling of Chinese herbal medicines. J. Ethnopharmacol., 2013, 146(1), 40-61.
[http://dx.doi.org/10.1016/j.jep.2012.12.027] [PMID: 23286904]
[185]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[186]
Joshi, M.; Pathak, K.; Dhaneshwa, S. Nanotechnology-based strategies for effective delivery of phytoconstituents for the management of rheumatoid arthritis. Pharmacol.l Res. -. Modern Chinese Med., 2022, 2, 100061.
[http://dx.doi.org/10.1016/j.prmcm.2022.100061]
[187]
Davatgaran Taghipour, Y.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[188]
Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[189]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[190]
Karthikeyan, A.; Senthil, N.; Min, T. Nanocurcumin: A promising candidate for therapeutic applications. Front. Pharmacol., 2020, 11, 487.
[http://dx.doi.org/10.3389/fphar.2020.00487] [PMID: 32425772]
[191]
Wacker, M.G.; Proykova, A.; Santos, G.M.L. Dealing with nanosafety around the globe-Regulation vs. innovation. Int. J. Pharm., 2016, 509(1-2), 95-106.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.015] [PMID: 27184102]
[192]
Singh, P.; Ahn, S.; Kang, J.P.; Veronika, S.; Huo, Y.; Singh, H.; Chokkaligam, M.; El-Agamy Farh, M.; Aceituno, V.C.; Kim, Y.J.; Yang, D.C. in vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: A green synthetic approach. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2022-2032.
[PMID: 29190154]
[193]
Belle Ebanda Kedi, P.; Eya’ane Meva, F.; Kotsedi, L.; Nguemfo, E.L.; Bogning Zangueu, C.; Ntoumba, A.A.; Mohamed, H.; Dongmo, A.B.; Maaza, M. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int. J. Nanomedicine, 2018, 13, 8537-8548.
[http://dx.doi.org/10.2147/IJN.S174530] [PMID: 30587976]
[194]
Siu, F.; Ye, S.; Lin, H.; Li, S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. Int. J. Nanomedicine, 2018, 13, 4133-4144.
[http://dx.doi.org/10.2147/IJN.S164235] [PMID: 30038494]
[195]
Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B Biointerfaces, 2018, 164, 281-290.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.053] [PMID: 29413607]
[196]
Castellani, S.; Trapani, A.; Spagnoletta, A.; di Toma, L.; Magrone, T.; Di Gioia, S.; Mandracchia, D.; Trapani, G.; Jirillo, E.; Conese, M. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J. Transl. Med., 2018, 16(1), 140.
[http://dx.doi.org/10.1186/s12967-018-1509-4] [PMID: 29792199]
[197]
Sharma, M.; Yadav, S.; Srivastava, M.; Ganesh, N.; Srivastava, S. Promising anti-inflammatory bio-efficacy of saponin loaded silver nanoparticles prepared from the plant Madhuca longifolia. Asian J. Nanosci. Mater., 2018, 1(4), 244-261.
[198]
Kumaran, N.S. in vitro anti-inflammatory activity of silver nanoparticle synthesized Avicennia marina (Forssk.) Vierh.: A green synthetic approach. Int. J. Green Pharm., 2018, 12(03)
[199]
Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Ravishankar Rai, V.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys., 2018, 9, 400-408.
[http://dx.doi.org/10.1016/j.rinp.2018.02.049]
[200]
Kang, J.P.; Kim, Y.J.; Singh, P.; Huo, Y.; Soshnikova, V.; Markus, J.; Ahn, S.; Chokkalingam, M.; Lee, H.A.; Yang, D.C. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1530-1540.
[PMID: 28918663]
[201]
Prabakaran, A.S.; Mani, N. Anti-inflammatory activity of silver nanoparticles synthesized from Eichhornia crassipes: An in vitro study. J. Pharmacogn. Phytochem., 2019, 8(4), 2556-2558.
[202]
Rangeela, M; Rajeshkumar, S; Lakshmi, T; Roy, A Anti-inflammatory activity of zinc oxide nanoparticles prepared using amla fruits. Drug Invent. Today, 2019, 11(10)
[203]
Crivelli, B.; Bari, E.; Perteghella, S.; Catenacci, L.; Sorrenti, M.; Mocchi, M.; Faragò, S.; Tripodo, G.; Prina-Mello, A.; Torre, M.L. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur. J. Pharm. Biopharm., 2019, 137, 37-45.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.008] [PMID: 30772432]
[204]
Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng., 2019, 7(3), 103094.
[http://dx.doi.org/10.1016/j.jece.2019.103094]
[205]
Aafreen, M.M.; Anitha, R.; Preethi, R.C.; Rajeshkumar, S.; Lakshmi, T. Anti-inflammatory activity of silver nanoparticles prepared from ginger oil—An in vitro approach. Indian J. Public Health Res. Dev., 2019, 10(7), 145.
[http://dx.doi.org/10.5958/0976-5506.2019.01552.3]
[206]
Das, A.; Roy, A.; Rajeshkumar, S.; Lakshmi, T. Anti-inflammatory activity of turmeric oil mediated silver nanoparticles. Res. J. Pharma. Technol., 2019, 12(7), 3507-3510.
[http://dx.doi.org/10.5958/0974-360X.2019.00596.1]
[207]
Park, S.Y.; Yi, E.H.; Kim, Y.; Park, G. Anti-neuroinflammatory effects of Ephedra sinica Stapf extract-capped gold nanoparticles in microglia. Int. J. Nanomedicine, 2019, 14, 2861-2877.
[http://dx.doi.org/10.2147/IJN.S195218] [PMID: 31118612]
[208]
Liu, H.; Kang, P.; Liu, Y.; An, Y.; Hu, Y.; Jin, X.; Cao, X.; Qi, Y.; Ramesh, T.; Wang, X. Zinc oxide nanoparticles synthesised from the Vernonia amygdalina shows the anti-inflammatory and antinociceptive activities in the mice model. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1068-1078.
[http://dx.doi.org/10.1080/21691401.2020.1809440] [PMID: 32815404]
[209]
Kannayiram, G. A, S.; S, S.; S, V.; Joseph, D. Anti-inflammatory activity of nigella sativa silver nanoparticles: Biochemical study. Asian J. Pharm. Clin. Res., 2019, 12(2), 346-349.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i2.29775]
[210]
Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int. J. Nanomedicine, 2019, 14, 9113-9125.
[http://dx.doi.org/10.2147/IJN.S219413] [PMID: 31819422]
[211]
Krajewska, J.B.; Długosz, O.; Sałaga, M.; Banach, M.; Fichna, J. Silver nanoparticles based on blackcurrant extract show potent anti-inflammatory effect in vitro and in DSS-induced colitis in mice. Int. J. Pharm., 2020, 585, 119549.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119549] [PMID: 32554032]
[212]
Sheorain, J.; Mehra, M.; Thakur, R.; Grewal, S.; Kumari, S. in vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int. J. Biol. Macromol., 2019, 125, 1069-1074.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.095] [PMID: 30552929]
[213]
Das, P.; Ghosal, K.; Jana, N.K.; Mukherjee, A.; Basak, P. Green synthesis and characterization of silver nanoparticles using belladonna mother tincture and its efficacy as a potential antibacterial and anti-inflammatory agent. Mater. Chem. Phys., 2019, 228, 310-317.
[http://dx.doi.org/10.1016/j.matchemphys.2019.02.064]
[214]
Mohammad, G.R.K.S.; Tabrizi, M.H.; Ardalan, T.; Yadamani, S.; Safavi, E. Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. J. Biosci., 2019, 44(2), 1-9.
[PMID: 31180043]
[215]
Hassanen, E.I.; Tohamy, A.F.; Issa, M.Y.; Ibrahim, M.A.; Farroh, K.Y.; Hassan, A.M. Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int. J. Nanomedicine, 2019, 14, 8905-8922.
[http://dx.doi.org/10.2147/IJN.S229461] [PMID: 31814719]
[216]
Filip, G.A.; Moldovan, B.; Baldea, I.; Olteanu, D.; Suharoschi, R.; Decea, N.; Cismaru, C.M.; Gal, E.; Cenariu, M.; Clichici, S.; David, L. UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J. Photochem. Photobiol. B, 2019, 191, 26-37.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.006] [PMID: 30562719]
[217]
Thiruvengadam, M.; Chung, I.M.; Gomathi, T.; Ansari, M.A.; Gopiesh Khanna, V.; Babu, V.; Rajakumar, G. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst. Eng., 2019, 42(11), 1769-1777.
[http://dx.doi.org/10.1007/s00449-019-02173-y] [PMID: 31372759]
[218]
Liu, Y.; Kim, S.; Kim, Y.J.; Perumalsamy, H.; Lee, S.; Hwang, E.; Yi, T.H. Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. Int. J. Nanomedicine, 2019, 14, 2945-2959.
[http://dx.doi.org/10.2147/IJN.S199781] [PMID: 31114201]
[219]
Swathy, S.; Roy, A.; Rajeshkumar, S. Anti-inflammatory activity of Ginger oleoresin mediated Silver nanoparticles. Res. J. Pharma. Technol., 2020, 13(10), 4591-4593.
[http://dx.doi.org/10.5958/0974-360X.2020.00808.2]
[220]
Cui, P.; Qu, F.; Sreeharsha, N.; Sharma, S.; Mishra, A.; Gubbiyappa, S.K. Antiarthritic effect of chitosan nanoparticle loaded with embelin against adjuvant‐induced arthritis in Wistar rats. IUBMB Life, 2020, 72(5), 1054-1064.
[http://dx.doi.org/10.1002/iub.2248] [PMID: 32043729]
[221]
Ganta, S.S.L.; Jeevitha, M.; Preetha, S.; Rajeshkumar, S. Anti-Inflammatory Activity of Dried Ginger Mediated Iron Nanoparticles. J. Pharm. Res. Int., 2020, 32(28), 14-19.
[http://dx.doi.org/10.9734/jpri/2020/v32i2830866]
[222]
Shah, M.; Nawaz, S.; Jan, H.; Uddin, N.; Ali, A.; Anjum, S.; Giglioli-Guivarc’h, N.; Hano, C.; Abbasi, B.H. Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Mater. Sci. Eng. C, 2020, 112, 110889.
[http://dx.doi.org/10.1016/j.msec.2020.110889] [PMID: 32409047]
[223]
Sati, S.C.; Kour, G.; Bartwal, A.S.; Sati, M.D. Biosynthesis of metal nanoparticles from leaves of Ficus palmata and evaluation of their anti-inflammatory and anti-diabetic activities. Biochemistry, 2020, 59(33), 3019-3025.
[http://dx.doi.org/10.1021/acs.biochem.0c00388] [PMID: 32794692]
[224]
Alkhalaf, M.I.; Hussein, R.H.; Hamza, A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J. Biol. Sci., 2020, 27(9), 2410-2419.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.005] [PMID: 32884424]
[225]
Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep., 2020, 39(7), 921-939.
[http://dx.doi.org/10.1007/s00299-020-02539-7] [PMID: 32300886]
[226]
Jabbari, N.; Eftekhari, Z.; Roodbari, N.H.; Parivar, K. Evaluation of Encapsulated Eugenol by Chitosan Nanoparticles on the aggressive model of rheumatoid arthritis. Int. Immunopharmacol., 2020, 85, 106554.
[http://dx.doi.org/10.1016/j.intimp.2020.106554] [PMID: 32447218]
[227]
Kameswari, S.; Narayanan, A.L.; Rajeshkumar, S. Free radical scavenging and anti-inflammatory potential of Acalypha indica mediated selenium nanoparticles. Drug Invent. Today, 2020, 13(2), 348-351.
[228]
Devi, B.V.; Rajasekar, A.; Rajeshkumar, S. Antiinflammatory activity of zinc oxide nanoparticles synthesised using grape seed extract: An in vitro study. Plant Cell Biotechnol. Mol. Biol., 2020, 6-16.
[229]
Sulaiman, G.M.; Waheeb, H.M.; Jabir, M.S.; Khazaal, S.H.; Dewir, Y.H.; Naidoo, Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci. Rep., 2020, 10(1), 9362.
[http://dx.doi.org/10.1038/s41598-020-66419-6] [PMID: 32518242]
[230]
Manasa, D.J.; Chandrashekar, K.R.; Pavan Kumar, M.A.; Suresh, D.; Madhu Kumar, D.J.; Ravikumar, C.R.; Bhattacharya, T.; Ananda Murthy, H.C. Proficient synthesis of zinc oxide nanoparticles from Tabernaemontana heyneana Wall. via green combustion method: Antioxidant, anti-inflammatory, antidiabetic, anticancer and photocatalytic activities. Results Chem., 2021, 3, 100178.
[http://dx.doi.org/10.1016/j.rechem.2021.100178]
[231]
Berihu, H.T.; Welderfael, T.; Tekluu, B.; Gopalakrishnan, V.K.; Rao, M.R.; Kumar, P.P.N.V.; Shameem, U.; Dogulas, P.J.; Chaithanya, K.K. Anti-inflammatory and cytotoxicity activities of green synthesized silver nanoparticles from stem bark of Terminalia brownii. Bionanoscience, 2021, 11(4), 998-1016.
[http://dx.doi.org/10.1007/s12668-021-00885-8]
[232]
Uma Maheswari, T.N.; Chaithanya, M.V.; Rajeshkumar, S. Anti-inflammatory and antioxidant activity of lycopene, raspberry, green tea herbal formulation mediated silver nanoparticle. J. Indian Acad. Oral Med. Radiol., 2021, 33(4), 397.
[http://dx.doi.org/10.4103/jiaomr.jiaomr_98_21]
[233]
Lammari, N.; Demautis, T.; Louaer, O.; Meniai, A.H.; Casabianca, H.; Bensouici, C.; Devouassoux, G.; Fessi, H.; Bentaher, A.; Elaïssari, A. Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. Int. J. Pharm., 2021, 593, 120138.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120138] [PMID: 33278497]
[234]
Mohanty, S.; Konkimalla, V.B.; Pal, A.; Sharma, T.; Si, S.C. Naringin as Sustained delivery nanoparticles ameliorates the anti-inflammatory activity in a freund’s complete adjuvant-induced arthritis model. ACS Omega, 2021, 6(43), 28630-28641.
[http://dx.doi.org/10.1021/acsomega.1c03066] [PMID: 34746558]
[235]
Vijayakumar, S.; Divya, M.; Vaseeharan, B.; Chen, J.; Biruntha, M.; Silva, L.P.; Durán-Lara, E.F.; Shreema, K.; Ranjan, S.; Dasgupta, N. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): A potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J. Inorg. Organomet. Polym. Mater., 2021, 31(2), 624-635.
[http://dx.doi.org/10.1007/s10904-020-01713-4]
[236]
Rajeshkumar, S.; Menon, S. S, V.K.; Ponnanikajamideen, M.; Ali, D.; Arunachalam, K. Anti-inflammatory and antimicrobial potential of Cissus quadrangularis-assisted copper oxide nanoparticles. J. Nanomater., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/5742981]
[237]
Chan, Y.; Ng, S.W.; Chellappan, D.K.; Madheswaran, T.; Zeeshan, F.; Kumar, P.; Pillay, V.; Gupta, G.; Wadhwa, R.; Mehta, M.; Wark, P.; Hsu, A.; Hansbro, N.G.; Hansbro, P.M.; Dua, K.; Panneerselvam, J. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int. J. Polym. Mater., 2021, 70(11), 754-763.
[http://dx.doi.org/10.1080/00914037.2020.1765350]
[238]
Wadhwa, R.; Paudel, K.R.; Chin, L.H.; Hon, C.M.; Madheswaran, T.; Gupta, G.; Panneerselvam, J.; Lakshmi, T.; Singh, S.K.; Gulati, M.; Dureja, H.; Hsu, A.; Mehta, M.; Anand, K.; Devkota, H.P.; Chellian, J.; Chellappan, D.K.; Hansbro, P.M.; Dua, K. Anti‐inflammatory and anticancer activities of Naringenin‐loaded liquid crystalline nanoparticles in vitro. J. Food Biochem., 2021, 45(1), e13572.
[http://dx.doi.org/10.1111/jfbc.13572] [PMID: 33249629]
[239]
Shanmugam, R.; Subramaniam, R.; Kathirason, S.G.; Ali, D.; Balusamy, S.R.; Gurusamy, A.; Arunachalam, K.; Sellami, H. Curcumin-chitosan nanocomposite formulation containing Pongamia pinnata-mediated silver nanoparticles, wound pathogen control, and anti-inflammatory potential. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/3091587] [PMID: 34977237]
[240]
Xu, X.Y.; Tran, T.H.M.; Perumalsamy, H.; Sanjeevram, D.; Kim, Y.J. Biosynthetic gold nanoparticles of Hibiscus syriacus L. callus potentiates anti-inflammation efficacy via an autophagy-dependent mechanism. Mater. Sci. Eng. C, 2021, 124, 112035.
[http://dx.doi.org/10.1016/j.msec.2021.112035] [PMID: 33947536]
[241]
Khuda, F.; Ul Haq, Z.; Ilahi, I.; Ullah, R.; Khan, A.; Fouad, H.; Ali Khan Khalil, A.; Ullah, Z.; Umar Khayam Sahibzada, M.; Shah, Y.; Abbas, M.; Iftikhar, T.; El-Saber Batiha, G. Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. Arab. J. Chem., 2021, 14(10), 103343.
[http://dx.doi.org/10.1016/j.arabjc.2021.103343]
[242]
Muniyappan, N.; Pandeeswaran, M.; Amalraj, A. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti-inflammatory activities. Environ. Toxicol. Chem., 2021, 3, 117-124.
[243]
Zhao, Z.; Xiao, Y.; Xu, L.; Liu, Y.; Jiang, G.; Wang, W.; Li, B.; Zhu, T.; Tan, Q.; Tang, L.; Zhou, H.; Huang, X.; Shan, H. Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces, 2021, 13(18), 20995-21006.
[http://dx.doi.org/10.1021/acsami.1c02755] [PMID: 33930273]
[244]
Anwar, S. Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: An effective approach for attenuation of oxidative stress mediated diseases. Int. J. Food Prop., 2021, 24(1), 677-701.
[http://dx.doi.org/10.1080/10942912.2021.1914083]
[245]
Gudimella, K.; Gedda, G.; Kumar, P.S.; Babu, B.K.; Yamajala, B.; Rao, B.V.; Singh, P.P.; Kumar, D.; Sharma, A. ovel synthesis of fluorescent carbon dots from bio-based Carica Papaya Leaves: Optical and structural properties with antioxidant and antiinflammatory activities. Environ. Res., 2022, 204((Pt A)), 11854.
[http://dx.doi.org/10.1016/j.envres.2021.111854] [PMID: 34437850]
[246]
Tan, T.; Huang, Q.; Chu, W.; Li, B.; Wu, J.; Xia, Q.; Cao, X. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Deliv., 2022, 29(1), 692-701.
[http://dx.doi.org/10.1080/10717544.2022.2044936] [PMID: 35225122]
[247]
Al-Qubaisi, M.S.; Al-Abboodi, A.S.; Alhassan, F.H.; Hussein-Al-Ali, S.; Flaifel, M.H.; Eid, E.E.M.; Alshwyeh, H.A.; Hussein, M.Z.; Alnasser, S.M.; Saeed, M.I.; Rasedee, A.; Ibrahim, W.N. Preparation, characterization, in vitro drug release and anti-inflammatory of thymoquinone-loaded chitosan nanocomposite. Saudi Pharm. J., 2022, 30(4), 347-358.
[http://dx.doi.org/10.1016/j.jsps.2022.02.002] [PMID: 35527823]
[248]
Ganesh, S.; Arthanari, A.; Rajeshkumar, S. Anti-inflammatory activity of centella asiatica mediated silver nanoparticles. J. Med. Dent. Sci., 2022, 10(1), 325-329.
[249]
Khader, S.Z.A.; Ahmed, S.S.Z.; Mahboob, M.R.; Prabaharan, S.B.; Lakshmanan, S.O.; Kumar, K.R.; David, D. In vitro anti-inflammatory, anti-arthritic and anti- proliferative activity of green synthesized silver nanoparticles - Phoenix dactylifera (Rothan dates). Braz. J. Pharm. Sci., 2022, 58, e18594.
[http://dx.doi.org/10.1590/s2175-97902022e18594]
[250]
Tran, T.H.; Puja, A.M.; Kim, H.; Kim, Y.J. Nanoemulsions prepared from mountain ginseng-mediated gold nanoparticles and silydianin increase the anti-inflammatory effects by regulating NF-κB and MAPK signaling pathways. Biomater. Sci., 2022, 137, 212814.
[251]
Yi, W.; Chen, R.; Xie, F.; Xu, C.; Tian, W. Anti-inflammatory and immunomodulatory properties of Mentha piperita green-formulated gold nanoparticles and its effect on ovalbumin-induced asthma and lung pathological changes in rats. J. Exp. Nanosci., 2022, 17(1), 163-172.
[http://dx.doi.org/10.1080/17458080.2022.2033730]
[252]
Thakur, S.; Mohan, G.K. In vivo antiinflammatory activity of facile boswellic acid silver nanoparticles and in vitro drug release kinetics. Bionanoscience, 2022, 12(2), 670-684.
[http://dx.doi.org/10.1007/s12668-022-00962-6]
[253]
Yin, C.; Han, X.; Lu, Q.; Qi, X.; Guo, C.; Wu, X. Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds. Int. J. Biol. Macromol., 2022, 201, 14-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.156] [PMID: 34995653]
[254]
Kwak, G.Y.; Han, Y.; Baik, S.; Kong, B.M.; Yang, D.C.; Kang, S.C.; Sukweenadhi, J. Gold Nanoparticles green-synthesized by the Suaeda japonica leaf extract and screening of anti-inflammatory activities on raw 267.4 macrophages. Coatings, 2022, 12(4), 460.
[http://dx.doi.org/10.3390/coatings12040460]
[255]
Barma, M.D.; Indiran, M.A.; Rathinavelu, P.K.; Srisakthi, D. Anti-inflammatory and antioxidant activity of Clitoria ternatea extract mediated selenium nanoparticles. Int. J. Health Sci., 2022, 6(S1), 2605-2613.
[http://dx.doi.org/10.53730/ijhs.v6nS1.5329]
[256]
Yahya, R.; Al-Rajhi, A.M.H.; Alzaid, S.Z.; Al Abboud, M.A.; Almuhayawi, M.S.; Al Jaouni, S.K.; Selim, S.; Ismail, K.S.; Abdelghany, T.M. Molecular docking and efficacy of Aloe vera gel based on chitosan nanoparticles against helicobacter pylori and its antioxidant and anti-inflammatory activities. Polymers, 2022, 14(15), 2994.
[http://dx.doi.org/10.3390/polym14152994] [PMID: 35893958]
[257]
Faisal, S.; Jan, H. Abdullah; Alam, I.; Rizwan, M.; Hussain, Z.; Sultana, K.; Ali, Z.; Uddin, M.N. In vivo analgesic, anti-inflammatory, and anti-diabetic screening of Bacopa monnieri-synthesized copper oxide nanoparticles. ACS Omega, 2022, 7(5), 4071-4082.
[http://dx.doi.org/10.1021/acsomega.1c05410] [PMID: 35155901]
[258]
Velsankar, K.; Parvathy, G.; Mohandoss, S.; Krishna Kumar, M.; Sudhahar, S. Celosia argentea leaf extract-mediated green synthesized iron oxide nanoparticles for bio-applications. J. Nanostructure Chem., 2022, 12(4), 625-640.
[http://dx.doi.org/10.1007/s40097-021-00434-5]
[259]
Al-Radadi, N.S. Biogenic proficient synthesis of (Au-NPs) via aqueous extract of Red Dragon Pulp and seed oil: Characterization, antioxidant, cytotoxic properties, anti-diabetic anti-inflammatory, anti-Alzheimer and their anti-proliferative potential against cancer cell lines. Saudi J. Biol. Sci., 2022, 29(4), 2836-2855.
[http://dx.doi.org/10.1016/j.sjbs.2022.01.001] [PMID: 35531221]
[260]
Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[261]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P T., 2017, 42(12), 742-755.
[PMID: 29234213]
[262]
Grossman, J.H.; Crist, R.M.; Clogston, J.D. Early development challenges for drug products containing nanomaterials. AAPS J., 2017, 19(1), 92-102.
[http://dx.doi.org/10.1208/s12248-016-9980-4] [PMID: 27612680]
[263]
Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I.M. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng., 2018, 41(1), 21-30.
[http://dx.doi.org/10.1007/s00449-017-1840-9] [PMID: 28916855]
[264]
Biswas, S.; Mukherjee, P.K.; Harwansh, R.K.; Bannerjee, S.; Bhattacharjee, P. Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid–phospholipid complex. Drug Dev. Ind. Pharm., 2019, 45(6), 946-958.
[http://dx.doi.org/10.1080/03639045.2019.1583755] [PMID: 30767678]
[265]
Bahadur, S.; Sachan, N.; Harwansh, R.K.; Deshmukh, R. Nanoparticlized system: Promising approach for the management of Alzheimer’s disease through intranasal delivery. Curr. Pharm. Des., 2020, 26(12), 1331-1344.
[http://dx.doi.org/10.2174/1381612826666200311131658] [PMID: 32160843]
[266]
Pathak, K; Mishra, SK; Porwal, A Bahadur, S Nanocarriers for Alzheimer’s disease: Research and patent update. J. Appl. Pharmaceut.sci, 2021, 11(3), 001-21.
[267]
Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205.
[http://dx.doi.org/10.2174/1381612826666200131101156] [PMID: 32003686]
[268]
Sun, H.; Zhan, M.; Mignani, S.; Shcharbin, D.; Majoral, J.P.; Rodrigues, J.; Shi, X.; Shen, M. Modulation of macrophages using nanoformulations with curcumin to treat inflammatory diseases: A concise review. Pharmaceutics, 2022, 14(10), 2239.
[http://dx.doi.org/10.3390/pharmaceutics14102239] [PMID: 36297677]
[269]
Song, J.; Kim, J.Y.; You, G.; Kang, Y.Y.; Yang, J.; Mok, H. Formulation of glycyrrhizic acid-based nanocomplexes for enhanced anti-cancer and anti-inflammatory effects of curcumin. Biotechnol. Bioprocess Eng.; BBE, 2022, 27(2), 163-170.
[http://dx.doi.org/10.1007/s12257-021-0198-7] [PMID: 35530367]
[270]
Lee, G.H.; Lee, S.J.; Jeong, S.W.; Kim, H.C.; Park, G.Y.; Lee, S.G.; Choi, J.H. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf. B Biointerfaces, 2016, 143, 511-517.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.060] [PMID: 27038916]
[271]
Guan, F.; Wang, Q.; Bao, Y.; Chao, Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Advances, 2021, 11(13), 7280-7293.
[http://dx.doi.org/10.1039/D0RA08817J] [PMID: 35423269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy