Generic placeholder image

Current Pharmacogenomics and Personalized Medicine

Editor-in-Chief

ISSN (Print): 1875-6921
ISSN (Online): 1875-6913

Research Article

Single Nucleotide Polymorphisms of MTHFR (rs1051266) and SLC19A1 (rs1801133) Associated to Genomic Ancestry in Cuban Healthy Population

Author(s): Goitybell Martínez*, Yaima Zuñiga, Jonas Bybjerg, Ole Mors and Beatriz Marcheco

Volume 20, Issue 2, 2023

Published on: 10 October, 2023

Page: [106 - 115] Pages: 10

DOI: 10.2174/1875692120666230816152420

Price: $65

Abstract

Background: Several single nucleotide polymorphisms on methotrexate pathway have been implicated with hyperhomocysteinemia, susceptibility to autoimmune diseases and the therapy effectiveness of methotrexate.

Objective: The present study estimates the ethnogeographic prevalence of rs1801133 (c.665C>T) in methylenetetrahydrofolate reductase and rs1051266 (c.80A>G) in solute carrier family 19 member 1, according to genomic ancestry analysis in Cuba healthy population.

Methods: Genomic data was collected from a dense genome-wide genotyping array analysis of a large sample of individuals from all provinces of Cuba, with a final sample of 946 individuals for rs1801133 and 948 individuals for rs1051266.

Results: For rs1801133, T allele and TT genotype were more prevalent in Mayabeque, the province with the highest European (p<0.0001) and the lowest African ancestry proportion (p<0.0001). Whereas, T allele and TT genotype frequency were low in Guantánamo (23.7% and 1.8%), the province with the highest African ancestry proportion (p<0.0001) and the lowest European ancestry proportion (p<0.0001). For rs1051266, the higher frequency of G allele was observed in Villa Clara, Las Tunas, Holguín and Granma and this group was associated with AG and GG genotypes (p=0.0045). This seems to be related to high Native American ancestry proportion in Las Tunas (p<0.0001), Holguín (p<0.0001) and Granma (p<0.0001); with the low African ancestry proportion in Villa Clara (p<0.0001) and with a Native American ancestry-enriched pattern observed for these provinces (p=0.0005).

Conclusion: These results provide evidence that ancestry contribution impacts in the ethnogeographic prevalence of rs1801133 (c.665C>T) and rs1051266 (c.80A>G) polymorphisms in healthy Cuban individuals.

Keywords: Single nucleotide polymorphism, methotrexate, methylenetetrahydrofolate reductase, solute carrier family 19 member 1, ancestry, methotrexate.

Next »
Graphical Abstract
[1]
Lima A, Monteiro J, Bernardes M, et al. Prediction of methotrexate clinical response in Portuguese Rheumatoid Arthritis patients: Implication of MTHFR rs1801133 and ATIC rs4673993 polymorphisms. BioMed Res Int 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/368681] [PMID: 24967362]
[2]
Hiraoka M, Kagawa Y. Genetic polymorphisms and folate status. Congenit Anom 2017; 57(5): 142-9.
[http://dx.doi.org/10.1111/cga.12232] [PMID: 28598562]
[3]
Coppedè F, Stoccoro A, Tannorella P, Gallo R, Nicolì V, Migliore L. Association of polymorphisms in genes involved in one-carbon metabolism with MTHFR methylation levels. Int J Mol Sci 2019; 20(15): 3754.
[http://dx.doi.org/10.3390/ijms20153754] [PMID: 31370354]
[4]
Bedoui Y, Guillot X, Sélambarom J, et al. Methotrexate an old drug with new tricks. Int J Mol Sci 2019; 20(20): 5023.
[http://dx.doi.org/10.3390/ijms20205023] [PMID: 31658782]
[5]
Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 2020; 16(3): 145-54.
[http://dx.doi.org/10.1038/s41584-020-0373-9] [PMID: 32066940]
[6]
Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10(1): 111-3.
[http://dx.doi.org/10.1038/ng0595-111] [PMID: 7647779]
[7]
Rozen R. Annotation Molecular genetics of methylenetetrahydrofolate reductase deficiency. J Inherit Metab Dis 1996; 19(5): 589-94.
[http://dx.doi.org/10.1007/BF01799831] [PMID: 8892013]
[8]
Goyette P, Pai A, Milos R, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome 1998; 9(8): 652-6.
[http://dx.doi.org/10.1007/s003359900838] [PMID: 9680386]
[9]
Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64(3): 169-72.
[http://dx.doi.org/10.1006/mgme.1998.2714] [PMID: 9719624]
[10]
Hider SL, Bruce IN, Thomson W. The pharmacogenetics of methotrexate. Rheumatology 2007; 46(10): 1520-4.
[http://dx.doi.org/10.1093/rheumatology/kem147] [PMID: 17586865]
[11]
Yu J, Zhou P. The advances of methotrexate resistance in rheumatoid arthritis. Inflammopharmacology 2020; 28(5): 1183-93.
[http://dx.doi.org/10.1007/s10787-020-00741-3] [PMID: 32757110]
[12]
Moscow JA, Gong M, He R, et al. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 1995; 55(17): 3790-4.
[PMID: 7641195]
[13]
Yan L, Zhao L, Long Y, et al. Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: Evidence from 25 case-control studies. PLoS One 2012; 7(10): e41689.
[http://dx.doi.org/10.1371/journal.pone.0041689] [PMID: 23056169]
[14]
Zhang T, Lou J, Zhong R, et al. Genetic variants in the folate pathway and the risk of neural tube defects: A meta-analysis of the published literature. PLoS One 2013; 8(4): e59570.
[http://dx.doi.org/10.1371/journal.pone.0059570] [PMID: 23593147]
[15]
Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR 677C->T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 2002; 288(16): 2023-31.
[http://dx.doi.org/10.1001/jama.288.16.2023] [PMID: 12387655]
[16]
Yi K, Ma YH, Wang W, et al. The roles of reduced folate carrier-1 (RFC1) A80G (rs1051266) polymorphism in congenital heart disease: A meta-analysis. Med Sci Monit 2021; 27: e929911.
[http://dx.doi.org/10.12659/MSM.929911] [PMID: 33935279]
[17]
Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am J Epidemiol 2006; 165(1): 1-13.
[http://dx.doi.org/10.1093/aje/kwj347] [PMID: 17074966]
[18]
Romero-Gutiérrez E, Vázquez-Cárdenas P, Moreno-Macías H, Salas-Pacheco J, Tusié-Luna T, Arias-Carrión O. Differences in MTHFR and LRRK2 variant’s association with sporadic Parkinson’s disease in Mexican Mestizos correlated to Native American ancestry. NPJ Parkinsons Dis 2021; 7(1): 13.
[http://dx.doi.org/10.1038/s41531-021-00157-y] [PMID: 33574311]
[19]
Xie SZ, Liu ZZ, Yu J, et al. Association between the MTHFR C677T polymorphism and risk of cancer: Evidence from 446 case-control studies. Tumour Biol 2015; 36(11): 8953-72.
[http://dx.doi.org/10.1007/s13277-015-3648-z] [PMID: 26081619]
[20]
Gong Z, Yao S, Zirpoli G, et al. Genetic variants in one-carbon metabolism genes and breast cancer risk in European American and African American women. Int J Cancer 2015; 137(3): 666-77.
[http://dx.doi.org/10.1002/ijc.29434] [PMID: 25598430]
[21]
Du B, Shi X, Yin C, Feng X. Polymorphisms of methalenetetrahydrofolate reductase in recurrent pregnancy loss: An overview of systematic reviews and meta-analyses. J Assist Reprod Genet 2019; 36(7): 1315-28.
[http://dx.doi.org/10.1007/s10815-019-01473-2] [PMID: 31254142]
[22]
Yigit S, Karakus N, Inanir A. Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy. Mol Vis 2013; 19: 1626-30.
[PMID: 23901246]
[23]
Calderón-Larrañaga A, Saadeh M, Hooshmand B, et al. Association of homocysteine, methionine, and MTHFR 677C>T polymorphism with rate of cardiovascular multimorbidity development in older adults in sweden. JAMA Netw Open 2020; 3(5): e205316.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.5316] [PMID: 32432712]
[24]
Porter K, Hughes C, Hoey L, et al. Investigation of the role of riboflavin, vitamin B6 and MTHFR genotype as determinants of cognitive health in ageing. Proc Nutrition Soc 2016; 75(OCE3): E114.
[http://dx.doi.org/10.1017/S0029665116001294]
[25]
Bagheri-Hosseinabadi Z, Imani D, Yousefi H, Abbasifard M. MTHFR gene polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis based on 16 studies. Clin Rheumatol 2020; 39(8): 2267-79.
[http://dx.doi.org/10.1007/s10067-020-05031-5] [PMID: 32170488]
[26]
Kyvsgaard N, Mikkelsen TS, Als TD, Christensen AE, Corydon TJ, Herlin T. Single nucleotide polymorphisms associated with methotrexate-induced nausea in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2021; 19(1): 51.
[http://dx.doi.org/10.1186/s12969-021-00539-9] [PMID: 33794950]
[27]
Fujimaki C, Hayashi H, Tsuboi S, et al. Plasma total homocysteine level and methylenetetrahydrofolate reductase 677C>T genetic polymorphism in Japanese patients with rheumatoid arthritis. Biomarkers 2009; 14(1): 49-54.
[http://dx.doi.org/10.1080/13547500902730664] [PMID: 19283524]
[28]
Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within methotrexate pathway genes: Relationship between plasma methotrexate levels, toxicity experienced and outcome in pediatric acute lymphoblastic leukemia. Iran J Basic Med Sci 2020; 23(6): 800-9.
[http://dx.doi.org/10.22038/ijbms.2020.41754.9858] [PMID: 32695297]
[29]
Adam A, Lisa DB, Richard MD, et al. A global reference for human genetic variation. Nature 2015; 526(7571): 68-74.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[30]
Marcheco-Teruel B, Parra EJ, Fuentes-Smith E, et al. Cuba: Exploring the history of admixture and the genetic basis of pigmentation using autosomal and uniparental markers. PLoS Genet 2014; 10(7): e1004488.
[http://dx.doi.org/10.1371/journal.pgen.1004488] [PMID: 25058410]
[31]
Fortes-Lima C, Bybjerg-Grauholm J, Marin-Padrón LC, et al. Exploring Cuba’s population structure and demographic history using genome-wide data. Sci Rep 2018; 8(1): 11422.
[http://dx.doi.org/10.1038/s41598-018-29851-3] [PMID: 30061702]
[32]
Norris ET, Wang L, Conley AB, et al. Genetic ancestry, admixture and health determinants in Latin America. BMC Genomics 2018; 19(S8): 861.
[http://dx.doi.org/10.1186/s12864-018-5195-7] [PMID: 30537949]
[33]
Hernandez W, Danahey K, Pei X, et al. Pharmacogenomic genotypes define genetic ancestry in patients and enable population-specific genomic implementation. Pharmacogenomics J 2020; 20(1): 126-35.
[http://dx.doi.org/10.1038/s41397-019-0095-z] [PMID: 31506565]
[34]
Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, et al. Admixture in latin America: Geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet 2014; 10(9): e1004572.
[http://dx.doi.org/10.1371/journal.pgen.1004572] [PMID: 25254375]
[35]
Graydon JS, Claudio K, Baker S, et al. Ethnogeographic prevalence and implications of the 677C>T and 1298A>C MTHFR polymorphisms in US primary care populations. Biomarkers Med 2019; 13(8): 649-61.
[http://dx.doi.org/10.2217/bmm-2018-0392] [PMID: 31157538]
[36]
Contreras-Cubas C, Sánchez-Hernández BE, García-Ortiz H, et al. Heterogenous distribution of MTHFR gene variants among mestizos and diverse amerindian groups from Mexico. PLoS One 2016; 11(9): e0163248.
[http://dx.doi.org/10.1371/journal.pone.0163248] [PMID: 27649570]
[37]
Gosselt HR, van Zelst BD, de Rotte MCFJ, Hazes JMW, de Jonge R, Heil SG. Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. Arthritis Res Ther 2019; 21(1): 157.
[http://dx.doi.org/10.1186/s13075-019-1936-5] [PMID: 31242943]
[38]
Qiu Q, Huang J, Lin Y, et al. Polymorphisms and pharmacogenomics for the toxicity of methotrexate monotherapy in patients with Rheumatoid arthritis. Medicine 2017; 96(11): e6337.
[http://dx.doi.org/10.1097/MD.0000000000006337] [PMID: 28296761]
[39]
Jenko B, Tomšič M, Jekić B, Milić V, Dolžan V, Praprotnik S. Clinical pharmacogenetic models of treatment response to methotrexate monotherapy in slovenian and serbian rheumatoid arthritis patients: Differences in patient’s management may preclude generalization of the models. Front Pharmacol 2018; 9: 20.
[http://dx.doi.org/10.3389/fphar.2018.00020] [PMID: 29422864]
[40]
Shao W, Yuan Y, Li Y. Association between MTHFR C677T polymorphism and methotrexate treatment outcome in rheumatoid arthritis patients: A systematic review and meta-analysis. Genet Test Mol Biomarkers 2017; 21(5): 275-85.
[http://dx.doi.org/10.1089/gtmb.2016.0326] [PMID: 28277784]
[41]
Zhu J, Wang Z, Tao L, et al. MTHFR gene polymorphism association with psoriatic arthritis risk and the efficacy and hepatotoxicity of methotrexate in Psoriasis. Front Med 2022; 9: 869912.
[http://dx.doi.org/10.3389/fmed.2022.869912] [PMID: 35479943]
[42]
Cwiklinska M, Czogala M, Kwiecinska K, et al. Polymorphisms of SLC19A1 80 G>A, MTHFR 677 C>T, and Tandem TS repeats influence pharmacokinetics, acute liver toxicity, and vomiting in children with acute lymphoblastic leukemia treated with high doses of methotrexate. Front Pediatr 2020; 8: 307.
[http://dx.doi.org/10.3389/fped.2020.00307] [PMID: 32612964]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy