Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Recent Trends in Electrospun Antibacterial Nanofibers for Chronic Wound Management

Author(s): Ganesan Padmini Tamilarasi, Govindaraj Sabarees, Krishnan Manikandan*, Siddan Gouthaman, Veerachamy Alagarsamy* and Viswas Raja Solomon*

Volume 13, Issue 3, 2023

Published on: 31 August, 2023

Page: [159 - 187] Pages: 29

DOI: 10.2174/2468187313666230817151543

Price: $65

Abstract

Chronic wounds and lesions have a severe impact on the socioeconomic status and compliance of patients all over the world. Diabetes-related chronic, non-healing lesions may necessitate amputation of the damaged limb or organ. These skin lesions are susceptible to microorganisms that cause infections that impede the healing process. Despite the advances in medication development and sophisticated formulations, treating persistent wound infections remains difficult. Electrospun antimicrobial wound dressings offer considerable potential for lowering the risk of infection and accelerating the healing of chronic wounds. Electrospinning is a cost-effective, reproducible, simple, and multifaceted technique for encapsulating hydrophobic and hydrophilic therapeutic molecules within polymeric carriers with wide-ranging applications. In this review, we have discussed extensively the recent advances in electrospun nanofiber formulation techniques for use as wound dressings, as well as the entrapment of various antibacterial biomolecules, such as synthetic antibiotics, phytoconstituents, and metal nanoparticles, which have been embedded into the electrospun nanofibers, highlighting bioactive antibacterial agents capable of enhancing wound healing. In addition, we focus on the challenges currently being faced in the area of biomedicine as well as the opportunities for electrospinning-based nanomaterials.

Keywords: Electrospinning, nanofibers, drug delivery, antibacterial agents, metal nanoparticles, phytoconstituents, wound healing.

Graphical Abstract
[1]
Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol 2017; 137(6): 1213-4.
[http://dx.doi.org/10.1016/j.jid.2016.11.045] [PMID: 28395897]
[2]
Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine 2017; 12(11): 1335-52.
[http://dx.doi.org/10.2217/nnm-2017-0017] [PMID: 28520509]
[3]
Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol 2016; 74(4): 607-25.
[http://dx.doi.org/10.1016/j.jaad.2015.08.070] [PMID: 26979353]
[4]
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest 2007; 117(5): 1219-22.
[http://dx.doi.org/10.1172/JCI32169] [PMID: 17476353]
[5]
Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules 2018; 19(6): 1764-82.
[http://dx.doi.org/10.1021/acs.biomac.8b00276] [PMID: 29684268]
[6]
Miguel SP, Sequeira RS, Moreira AF, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm 2019; 139: 1-22.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.010] [PMID: 30853442]
[7]
Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: Scope and advancement. Nanomedicine 2015; 10(16): 2593-612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]
[8]
Croitoru AM, Ficai D, Ficai A, Mihailescu N, Andronescu E, Turculet S. Nanostructured fibers containing natural or synthetic bioactive compounds in wound dressing applications. Materials 2020; 13(10): 2407.
[http://dx.doi.org/10.3390/ma13102407] [PMID: 32456196]
[9]
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 2010; 21(2): 77-95.
[http://dx.doi.org/10.1002/pat.1625]
[10]
Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing - a review. J Mater Chem B Mater Biol Med 2013; 1(36): 4531-41.
[http://dx.doi.org/10.1039/c3tb20795a] [PMID: 32261196]
[11]
Brennan DA, Conte AA, Kanski G, et al. Mechanical considerations for electrospun nanofibers in tendon and ligament repair. Adv Healthc Mater 2018; 7(12): 1701277.
[http://dx.doi.org/10.1002/adhm.201701277] [PMID: 29603679]
[12]
Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of electrospun nanofibers with antioxidant properties: A review. Nanomaterials 2020; 10(1): 175.
[http://dx.doi.org/10.3390/nano10010175] [PMID: 31968539]
[13]
Sabarees G, Velmurugan V, Tamilarasi GP, Alagarsamy V, Raja Solomon V. Recent advances in silver nanoparticles containing nanofibers for chronic wound management. Polymers 2022; 14(19): 3994.
[http://dx.doi.org/10.3390/polym14193994] [PMID: 36235942]
[14]
Porrelli D, Mardirossian M, Musciacchio L, et al. Antibacterial electrospun polycaprolactone membranes coated with polysaccharides and silver nanoparticles for guided bone and tissue regeneration. ACS Appl Mater Interfaces 2021; 13(15): 17255-67.
[http://dx.doi.org/10.1021/acsami.1c01016] [PMID: 33822574]
[15]
Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. Sci Technol Adv Mater 2021; 22(1): 885-907.
[http://dx.doi.org/10.1080/14686996.2021.1978801] [PMID: 34675754]
[16]
Liu X, Xu H, Zhang M, Yu DG. Electrospun medicated nanofibers for wound healing. ReviewMembranes 2021; 11(10): 770.
[http://dx.doi.org/10.3390/membranes11100770] [PMID: 34677536]
[17]
Cochis A, Ferraris S, Sorrentino R, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing. J Mater Chem B Mater Biol Med 2017; 5(42): 8366-77.
[http://dx.doi.org/10.1039/C7TB01965C] [PMID: 32264505]
[18]
Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 2018; 100: 1-11.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.046]
[19]
Vermeulen H, Ubbink DT, Goossens A, de Vos R, Legemate DA. Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br J Surg 2005; 92(6): 665-72.
[http://dx.doi.org/10.1002/bjs.5055] [PMID: 15912490]
[20]
Dhivya S, Padma VV, Santhini E. Wound dressings - A review. Biomed 2015; 5: 24-8.
[21]
Yao CH, Lee CY, Huang CH, Chen YS, Chen KY. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater Sci Eng C 2017; 79: 533-40.
[http://dx.doi.org/10.1016/j.msec.2017.05.076] [PMID: 28629050]
[22]
Chattopadhyay S, Raines RT. Collagen‐based biomaterials for wound healing. Biopolymers 2014; 101(8): 821-33.
[http://dx.doi.org/10.1002/bip.22486] [PMID: 24633807]
[23]
Sweeney IR, Miraftab M, Collyer G. A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int Wound J 2012; 9(6): 601-12.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00923.x] [PMID: 22248337]
[24]
Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 2016; 4: 82.
[http://dx.doi.org/10.3389/fbioe.2016.00082] [PMID: 27843895]
[25]
Okada T, Niiyama E, Uto K, Aoyagi T, Ebara M. Inactivated sendai virus (HVJ-E) immobilized electrospun nanofiber for cancer therapy. Materials 2015; 9(1): 12.
[http://dx.doi.org/10.3390/ma9010012] [PMID: 28787810]
[26]
Flores C, Lopez M, Tabary N, et al. Preparation and characterization of novel chitosan and β-cyclodextrin polymer sponges for wound dressing applications. Carbohydr Polym 2017; 173: 535-46.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.026] [PMID: 28732897]
[27]
DeFrates K, Moore R, Borgesi J, et al. Protein-based fiber materials in medicine: A review. Nanomaterials 2018; 8(7): 457.
[http://dx.doi.org/10.3390/nano8070457] [PMID: 29932123]
[28]
Akhmetova A, Heinz A. Electrospinning proteins for wound healing purposes: Opportunities and challenges. Pharmaceutics 2020; 13(1): 4.
[http://dx.doi.org/10.3390/pharmaceutics13010004] [PMID: 33374930]
[29]
Juncos Bombin AD, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C 2020; 114: 110994.
[http://dx.doi.org/10.1016/j.msec.2020.110994] [PMID: 32993991]
[30]
Iacob AT, Drăgan M, Ionescu OM. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics 2020; 12(10): 983.
[http://dx.doi.org/10.3390/pharmaceutics12100983] [PMID: 33080849]
[31]
Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. Int J Biol Macromol 2021; 184: 648-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.021] [PMID: 34102239]
[32]
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials 2020; 11(1): 21.
[http://dx.doi.org/10.3390/nano11010021] [PMID: 33374248]
[33]
Zhou T, Wang N, Xue Y, et al. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 2016; 143: 415-22.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.052] [PMID: 27037778]
[34]
Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res A 2008; 84A(4): 1078-86.
[http://dx.doi.org/10.1002/jbm.a.31498] [PMID: 17685398]
[35]
Ulubayram K, Nur Cakar A, Korkusuz P, Ertan C, Hasirci N. EGF containing gelatin-based wound dressings. Biomaterials 2001; 22(11): 1345-56.
[http://dx.doi.org/10.1016/S0142-9612(00)00287-8] [PMID: 11336307]
[36]
Sultan MT, Lee OJ, Kim SH, Ju HW, Park CH. Silk fibroin in wound healing process. Adv Exp Med Biol 2018; 1077: 115-26.
[http://dx.doi.org/10.1007/978-981-13-0947-2_7] [PMID: 30357686]
[37]
Vasconcelos A, Gomes AC, Cavaco-Paulo A. Novel silk fibroin/elastin wound dressings. Acta Biomater 2012; 8(8): 3049-60.
[http://dx.doi.org/10.1016/j.actbio.2012.04.035] [PMID: 22546517]
[38]
Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011; 29(3): 322-37.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[39]
Jung HS, Kim MH, Shin JY, Park SR, Jung JY, Park WH. Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr Polym 2018; 193: 205-11.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.100] [PMID: 29773374]
[40]
Konwarh R, Karak N, Misra M. Electrospun cellulose acetate nanofibers: The present status and gamut of biotechnological applications. Biotechnol Adv 2013; 31(4): 421-37.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.002] [PMID: 23318668]
[41]
Xie Y, Upton Z, Richards S, Rizzi SC, Leavesley DI. Hyaluronic acid: Evaluation as a potential delivery vehicle for vitronectin:Growth factor complexes in wound healing applications. J Control Release 2011; 153(3): 225-32.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.021] [PMID: 21457738]
[42]
Thu HE, Zulfakar MH, Ng SF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm 2012; 434(1-2): 375-83.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.044] [PMID: 22643226]
[43]
Coşkun G, Karaca E, Ozyurtlu M, Özbek S, Yermezler A, Çavuşoğlu İ. Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 2014; 24(2): 1527-36.
[http://dx.doi.org/10.3233/BME-130956] [PMID: 24642979]
[44]
Tarun K, Gobi N. Calcium alginate/PVA blended nano fibre matrix for wound dressing. IJFTR 2012; 37(2): 127-32.
[45]
Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S, Khorasani AC. Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. Int J Biol Macromol 2020; 155: 119-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.194] [PMID: 32224167]
[46]
Silva NHCS, Garrido-Pascual P, Moreirinha C, et al. Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing. Int J Biol Macromol 2020; 165((Pt A)): 1198-210.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.249] [PMID: 33031849]
[47]
Bacakova M, Musilkova J, Riedel T, et al. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering. Int J Nanomedicine 2016; 11: 771-89.
[http://dx.doi.org/10.2147/IJN.S99317] [PMID: 26955273]
[48]
Guha Ray P, Pal P, Srivas PK, Basak P, Roy S, Dhara S. Surface modification of eggshell membrane with electrospun chitosan/polycaprolactone nanofibers for enhanced dermal wound healing. ACS Appl Bio Mater 2018; 1(4): 985-98.
[http://dx.doi.org/10.1021/acsabm.8b00169] [PMID: 34996140]
[49]
Khalili S, Nouri Khorasani S, Razavi M, Hashemi Beni B, Heydari F, Tamayol A. Nanofibrous scaffolds with biomimetic structure. J Biomed Mater Res A 2018; 106(2): 370-6.
[http://dx.doi.org/10.1002/jbm.a.36246] [PMID: 28944539]
[50]
Ahn S, Chantre CO, Gannon AR, et al. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv Healthc Mater 2018; 7(9): 1701175.
[http://dx.doi.org/10.1002/adhm.201701175] [PMID: 29359866]
[51]
Liu F, Li X, Wang L, et al. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol 2020; 149: 627-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.277] [PMID: 32004602]
[52]
Chen S, Cui S, Zhang H, et al. Cross-linked pectin nanofibers with enhanced cell adhesion. Biomacromolecules 2018; 19(2): 490-8.
[http://dx.doi.org/10.1021/acs.biomac.7b01605] [PMID: 29257671]
[53]
Mistry P, Chhabra R, Muke S, et al. Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C 2021; 119: 111316.
[http://dx.doi.org/10.1016/j.msec.2020.111316] [PMID: 33321573]
[54]
Uzunalli G, Mammadov R, Yesildal F, et al. Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds. ACS Biomater Sci Eng 2017; 3(7): 1296-303.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00165] [PMID: 33440518]
[55]
Pezeshki-Modaress M, Mirzadeh H, Zandi M, et al. Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: In-vitro and in-vivo study. J Biomed Mater Res A 2017; 105(7): 2020-34.
[http://dx.doi.org/10.1002/jbm.a.35890] [PMID: 27588562]
[56]
Shahriari-Khalaji M, Hu G, Chen L, et al. Functionalization of aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-Doped pullulan electrospun nanofibers for multifunctional wound dressing. ACS Biomater Sci Eng 2021; 7(8): 3933-46.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00444] [PMID: 34296596]
[57]
Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surf B Biointerfaces 2020; 188: 110713.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110713] [PMID: 31884080]
[58]
Hajikhani M, Emam-Djomeh Z, Askari G. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int J Biol Macromol 2021; 172: 143-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.051] [PMID: 33450342]
[59]
Amer S, Attia N, Nouh S, El-Kammar M, Korittum A, Abu-Ahmed H. Fabrication of sliver nanoparticles/polyvinyl alcohol/gelatin ternary nanofiber mats for wound healing application. J Biomater Appl 2020; 35(2): 287-98.
[http://dx.doi.org/10.1177/0885328220927317] [PMID: 32443958]
[60]
Huang Y-J, Huang C-L, Lai R-Y, Zhuang C-H, Chiu W-H, Lee K-M. Microstructure and biological properties of electrospun in situ polymerization of polycaprolactone-graft-polyacrylic acid nanofibers and its composite nanofiber dressings. Polymers 2021; 13(23): 4246.
[61]
Rameshbabu AP, Datta S, Bankoti K, et al. Polycaprolactone nanofibers functionalized with placental derived extracellular matrix for stimulating wound healing activity. J Mater Chem B Mater Biol Med 2018; 6(42): 6767-80.
[http://dx.doi.org/10.1039/C8TB01373J] [PMID: 32254693]
[62]
El-Ghazali S, Kobayashi H, Khatri M, et al. Preparation of a cage-type polyglycolic acid/collagen nanofiber blend with improved surface wettability and handling properties for potential biomedical applications. Polymers 2021; 13(20): 3458.
[63]
Chinatangkul N, Tubtimsri S, Panchapornpon D, Akkaramongkolporn P, Limmatvapirat C, Limmatvapirat S. Design and characterisation of electrospun shellac-polyvinylpyrrolidone blended micro/nanofibres loaded with monolaurin for application in wound healing. Int J Pharm 2019; 562: 258-70.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.048] [PMID: 30910635]
[64]
Khan AR, Huang K, Jinzhong Z, et al. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J Mater Chem B Mater Biol Med 2021; 9(5): 1452-65.
[http://dx.doi.org/10.1039/D0TB02822C] [PMID: 33470267]
[65]
Liu SJ, Kau YC, Chou CY, Chen JK, Wu RC, Yeh WL. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 2010; 355(1-2): 53-9.
[http://dx.doi.org/10.1016/j.memsci.2010.03.012]
[66]
Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res 2003; 67B(2): 675-9.
[http://dx.doi.org/10.1002/jbm.b.10058] [PMID: 14598393]
[67]
Almasian A, Najafi F, Eftekhari M, Ardekani MRS, Sharifzadeh M, Khanavi M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater Sci Eng C 2020; 114: 111039.
[http://dx.doi.org/10.1016/j.msec.2020.111039] [PMID: 32994005]
[68]
Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007; 46(30): 5670-703.
[http://dx.doi.org/10.1002/anie.200604646] [PMID: 17585397]
[69]
Kadavil H, Zagho M, Elzatahry A, Altahtamouni T. Sputtering of electrospun polymer-based nanofibers for biomedical applications: A perspective. Nanomaterials 2019; 9(1): 77.
[http://dx.doi.org/10.3390/nano9010077] [PMID: 30626067]
[70]
Shahriar S, Mondal J, Hasan M, Revuri V, Lee D, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials 2019; 9(4): 532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[71]
Jiang YN, Mo HY, Yu DG. Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm 2012; 438(1-2): 232-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.053] [PMID: 22981688]
[72]
Liao IC, Chew SY, Leong KW. Aligned core–shell nanofibers delivering bioactive proteins. Nanomedicine 2006; 1(4): 465-71.
[http://dx.doi.org/10.2217/17435889.1.4.465] [PMID: 17716148]
[73]
Zhao G, Zhang X, Lu TJ, Xu F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv Funct Mater 2015; 25(36): 5726-38.
[http://dx.doi.org/10.1002/adfm.201502142]
[74]
Barhoum A, Pal K, Rahier H, Uludag H, Kim IS, Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today 2019; 17: 1-35.
[http://dx.doi.org/10.1016/j.apmt.2019.06.015]
[75]
Zhang Z, Wang XJ. Current progresses of 3D bioprinting based tissue engineering. Quant Biol 2017; 5(2): 136-42.
[http://dx.doi.org/10.1007/s40484-017-0103-8]
[76]
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int J Pharm 2015; 484(1-2): 57-74.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.043] [PMID: 25701683]
[77]
Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci 2014; 14(6): 772-92.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[78]
Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for biomedical and healthcare applications. Macromol Biosci 2019; 19(2): 1800256.
[http://dx.doi.org/10.1002/mabi.201800256] [PMID: 30485660]
[79]
Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier - An overview. Artif Cells Nanomed Biotechnol 2016; 44(1): 135-43.
[http://dx.doi.org/10.3109/21691401.2014.927879] [PMID: 25016918]
[80]
Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 2005; 6(5): 2583-9.
[http://dx.doi.org/10.1021/bm050314k] [PMID: 16153095]
[81]
Zhang S. Designer self-assembling Peptide nanofiber scaffolds for study of 3-d cell biology and beyond. Adv Cancer Res 2008; 99: 335-62.
[http://dx.doi.org/10.1016/S0065-230X(07)99005-3] [PMID: 18037409]
[82]
Feng C, Khulbe KC, Matsuura T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J Appl Polym Sci 2010; 115(2): 756-76.
[http://dx.doi.org/10.1002/app.31059]
[83]
Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng 2006; 12(5): 1197-211.
[http://dx.doi.org/10.1089/ten.2006.12.1197] [PMID: 16771634]
[84]
Schiffman JD, Schauer CL. A review: Electrospinning of biopolymer nanofibers and their applications. Polym Rev 2008; 48(2): 317-52.
[http://dx.doi.org/10.1080/15583720802022182]
[85]
Song L, Xie X, Lv C, et al. Electrospun biodegradable nanofibers loaded with epigallocatechin gallate for guided bone regeneration. Compos, Part B Eng 2022; 238: 109920.
[http://dx.doi.org/10.1016/j.compositesb.2022.109920]
[86]
Siracusa V. Microbial degradation of synthetic biopolymers waste. Polymers 2019; 11(6): 1066.
[http://dx.doi.org/10.3390/polym11061066] [PMID: 31226767]
[87]
Babitha S, Rachita L, Karthikeyan K, et al. Electrospun protein nanofibers in healthcare: A review. Int J Pharm 2017; 523(1): 52-90.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.013] [PMID: 28286080]
[88]
Priya S, Batra U. R N S, Sharma S, Chaurasiya A, Singhvi G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int J Biol Macromol 2022; 218: 209-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.118] [PMID: 35872310]
[89]
Rather AH, Khan RS, Wani TU, Beigh MA, Sheikh FA. Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnol Bioeng 2022; 119(1): 9-33.
[http://dx.doi.org/10.1002/bit.27963] [PMID: 34672360]
[90]
Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: Mechanisms and estimation techniques – A review. Chemosphere 2008; 73(4): 429-42.
[http://dx.doi.org/10.1016/j.chemosphere.2008.06.064] [PMID: 18723204]
[91]
Ryan JJ, Casalini R, Orlicki JA, Lundin JG. Controlled release of the insect repellent picaridin from electrospun nylon‐6,6 nanofibers. Polym Adv Technol 2020; 31(12): 3039-47.
[http://dx.doi.org/10.1002/pat.5028]
[92]
Gavasane AJ. Synthetic biodegradable polymers used in controlled drug delivery system: An overview. Clin Pharmacol Biopharm 2014; 3(2): 3.
[http://dx.doi.org/10.4172/2167-065X.1000121]
[93]
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, B, Polym Phys 2011; 49(12): 832-64.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[94]
Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: Perspectives and challenges. Trends Biotechnol 2010; 28(4): 189-97.
[http://dx.doi.org/10.1016/j.tibtech.2009.12.006] [PMID: 20116113]
[95]
Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng Part B Rev 2009; 15(3): 333-51.
[http://dx.doi.org/10.1089/ten.teb.2008.0619] [PMID: 19459780]
[96]
Calamak S, Shahbazi R, Eroglu I, Gultekinoglu M, Ulubayram K. An overview of nanofiber-based antibacterial drug design. Expert Opin Drug Discov 2017; 12(4): 391-406.
[http://dx.doi.org/10.1080/17460441.2017.1290603] [PMID: 28165829]
[97]
Topcu B, Gultekinoglu M, Timur SS, Eroglu I, Ulubayram K, Eroglu H. Current approaches and future prospects of nanofibers: A special focus on antimicrobial drug delivery. J Drug Target 2021; 29(6): 563-75.
[http://dx.doi.org/10.1080/1061186X.2020.1867991] [PMID: 33345641]
[98]
Kurtz I, Schiffman J. Current and emerging approaches to engineer antibacterial and antifouling electrospun nanofibers. Materials 2018; 11(7): 1059.
[http://dx.doi.org/10.3390/ma11071059] [PMID: 29932127]
[99]
Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: From specifics to technological convergence. Chem Soc Rev 2012; 41(13): 4708-35.
[http://dx.doi.org/10.1039/c2cs35083a] [PMID: 22618026]
[100]
Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 2010; 6(10): 3824-46.
[http://dx.doi.org/10.1016/j.actbio.2010.04.001] [PMID: 20371386]
[101]
Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD. Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 2017; 56(19): 5724-33.
[http://dx.doi.org/10.1021/acs.iecr.7b00631] [PMID: 30679885]
[102]
Sabitha M, Rajiv S. Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym Eng Sci 2015; 55(3): 541-8.
[http://dx.doi.org/10.1002/pen.23917]
[103]
Cerchiara T, Abruzzo A, Ñahui Palomino RA, et al. Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity. Eur J Pharm Sci 2017; 99: 105-12.
[http://dx.doi.org/10.1016/j.ejps.2016.11.028] [PMID: 27931851]
[104]
Lan Y, Li W, Guo R, Zhang Y, Xue W, Zhang Y. Preparation and characterisation of vancomycin-impregnated gelatin microspheres/silk fibroin scaffold. J Biomater Sci Polym Ed 2014; 25(1): 75-87.
[http://dx.doi.org/10.1080/09205063.2013.836951] [PMID: 24053472]
[105]
Pásztor N, Rédai E, Szabó ZI, Sipos E. Preparation and characterization of levofloxacin-loaded nanofibers as potential wound dressings. Acta Med Marisiensis 2017; 63(2): 66-9.
[http://dx.doi.org/10.1515/amma-2017-0014]
[106]
Mohseni M, Shamloo A, Aghababaei Z, Vossoughi M, Moravvej H. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: In vitro study. Artif Organs 2016; 40(8): 765-73.
[http://dx.doi.org/10.1111/aor.12682] [PMID: 27094090]
[107]
Shao W, Liu H, Liu X, et al. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 2015; 132: 351-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.057] [PMID: 26256359]
[108]
Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M. Collagen-based wound dressing for doxycycline delivery: In-vivo evaluation in an infected excisional wound model in rats. J Pharm Pharmacol 2010; 61(12): 1617-23.
[http://dx.doi.org/10.1211/jpp.61.12.0005] [PMID: 19958583]
[109]
Shao W, Liu H, Wang S, et al. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 2016; 145: 114-20.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.065] [PMID: 27106158]
[110]
Tamilarasi GP, Sabarees G, Manikandan K, Gouthaman S, Alagarsamy V, Solomon VR. Electrospun scaffold-based antibiotic therapeutics for chronic wound recovery. Mini Rev Med Chem 2023; 23.
[111]
Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010; 8(6): 423-35.
[http://dx.doi.org/10.1038/nrmicro2333] [PMID: 20440275]
[112]
Bermingham A, Derrick JP. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. BioEssays 2002; 24(7): 637-48.
[http://dx.doi.org/10.1002/bies.10114] [PMID: 12111724]
[113]
Hong W, Zeng J, Xie J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 2014; 4(4): 258-65.
[http://dx.doi.org/10.1016/j.apsb.2014.06.012] [PMID: 26579393]
[114]
Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry 2014; 53(10): 1565-74.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[115]
Chen H, Xing X, Tan H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 2017; 70(Pt 1): 287-95.
[http://dx.doi.org/10.1016/j.msec.2016.08.086] [PMID: 27770893]
[116]
Contardi M, Heredia-Guerrero JA, Perotto G, et al. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 2017; 104: 133-44.
[http://dx.doi.org/10.1016/j.ejps.2017.03.044] [PMID: 28366652]
[117]
Monteiro N, Martins M, Martins A, et al. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 2015; 18: 196-205.
[http://dx.doi.org/10.1016/j.actbio.2015.02.018] [PMID: 25749293]
[118]
Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R. Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydr Polym 2017; 157: 1963-70.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.087] [PMID: 27987918]
[119]
Chouhan D, Chakraborty B, Nandi SK, Mandal BB. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 2017; 48: 157-74.
[http://dx.doi.org/10.1016/j.actbio.2016.10.019] [PMID: 27746359]
[120]
Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310(5751): 1135-8.
[121]
Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 2008; 58(2): 185-206.
[http://dx.doi.org/10.1016/j.jaad.2007.08.048] [PMID: 18222318]
[122]
Yu K, Zhu T, Wu Y, et al. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids Surf B Biointerfaces 2017; 151: 314-23.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.034] [PMID: 28040663]
[123]
Torres-Giner S, Martinez-Abad A, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM. Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Eng Mater 2012; 14(4): B112-22.
[http://dx.doi.org/10.1002/adem.201180006]
[124]
Zahedi P, Karami Z, Rezaeian I, et al. Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ϵ-caprolactone) blends. J Appl Polym Sci 2012; 124(5): 4174-83.
[http://dx.doi.org/10.1002/app.35372]
[125]
Ramalingam R, Dhand C, Mayandi V, et al. Core-shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl Mater Interfaces 2021; 13(21): 24356-69.
[http://dx.doi.org/10.1021/acsami.0c20642] [PMID: 34024104]
[126]
Razzaq A, Khan ZU, Saeed A, et al. Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: In-vitro and in-vivo assessments. Pharmaceutics 2021; 13(3): 349.
[http://dx.doi.org/10.3390/pharmaceutics13030349] [PMID: 33799983]
[127]
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater Sci Eng C 2016; 58: 242-53.
[http://dx.doi.org/10.1016/j.msec.2015.08.050] [PMID: 26478308]
[128]
Safdari M, Shakiba E, Kiaie SH, Fattahi A. Preparation and characterization of Ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing. Fibers Polym 2016; 17(5): 744-50.
[http://dx.doi.org/10.1007/s12221-016-5822-3]
[129]
Li X, Wang C, Yang S, Liu P, Zhang B. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int J Nanomedicine 2018; 13: 5287-99.
[http://dx.doi.org/10.2147/IJN.S177256] [PMID: 30237715]
[130]
Sabarees G, Gouthaman S, Alagarsamy V, Velmurugan V, Solomon VR. Isolation, functionalization, in silico investigation, and synthesis of 1,8-cineole analog as antitubercular agent targeting inhA. Russ J Bioorganic Chem 2023; 49(2): 390-402.
[http://dx.doi.org/10.1134/S1068162023020206]
[131]
Eynde J, Vanden , Ajith G, et al. Recent developments in electrospun nanofibers as delivery of phytoconstituents for wound healing. Drugs Drug Candidates 2023; 2: 148-71.
[132]
Saleem M, Nazir M, Ali MS, et al. Antimicrobial natural products: An update on future antibioticdrug candidates. Nat Prod Rep 2010; 27(2): 238-54.
[http://dx.doi.org/10.1039/B916096E] [PMID: 20111803]
[133]
Shefa AA, Sultana T, Park MK, Lee SY, Gwon JG, Lee BT. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater Des 2020; 186: 108313.
[http://dx.doi.org/10.1016/j.matdes.2019.108313]
[134]
Tamilarasi GP, Krishnan M, Sabarees G, Gouthaman S, Alagarsamy V, Solomon VR. Emerging trends in curcumin embedded electrospun nanofibers for impaired diabetic wound healing. Appl Nanosci 2022; 3: 202-32.
[135]
Ravikumar R, Ganesh M, Ubaidulla U, Young Choi E, Tae Jang H. Preparation, characterization, and in vitro diffusion study of nonwoven electrospun nanofiber of curcumin-loaded cellulose acetate phthalate polymer. Saudi Pharm J 2017; 25(6): 921-6.
[http://dx.doi.org/10.1016/j.jsps.2017.02.004] [PMID: 28951679]
[136]
Lin J, Li C, Zhao Y, Hu J, Zhang LM. Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl Mater Interfaces 2012; 4(2): 1050-7.
[http://dx.doi.org/10.1021/am201669z] [PMID: 22242622]
[137]
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: A mechanistic review. Arch Dermatol Res 2020; 312(1): 5-23.
[138]
Zhang D, Li L, Shan Y, et al. in vivo study of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the effect of promoting wound healing and relieving scar. J Drug Deliv Sci Technol 2019; 52: 272-81.
[http://dx.doi.org/10.1016/j.jddst.2019.04.021]
[139]
Ardekani NT, Khorram M, Zomorodian K, Yazdanpanah S, Veisi H, Veisi H. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int J Biol Macromol 2019; 125: 743-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.085] [PMID: 30543881]
[140]
Zha X, Xiong X, Chen C, et al. Usnic‐acid‐functionalized silk fibroin composite scaffolds for cutaneous wounds healing. Macromol Biosci 2021; 21(3): 2000361.
[http://dx.doi.org/10.1002/mabi.202000361] [PMID: 33369081]
[141]
Zhou L, Cai L, Ruan H, et al. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int J Biol Macromol 2021; 183: 1145-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.031] [PMID: 33965491]
[142]
Ali A, Shahid MA, Hossain MD, Islam MN. Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. Int J Biol Macromol 2019; 138: 13-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.015] [PMID: 31279061]
[143]
Ahlawat J, Kumar V, Gopinath P. Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing. Mater Sci Eng C 2019; 103: 109834.
[http://dx.doi.org/10.1016/j.msec.2019.109834] [PMID: 31349516]
[144]
Selvaraj S, Fathima NN. Fenugreek incorporated silk fibroin Nanofibers-A potential antioxidant scaffold for enhanced wound healing. ACS Appl Mater Interfaces 2017; 9(7): 5916-26.
[http://dx.doi.org/10.1021/acsami.6b16306] [PMID: 28125204]
[145]
Adeli-Sardou M, Yaghoobi MM, Torkzadeh-Mahani M, Dodel M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int J Biol Macromol 2019; 124: 478-91.
[146]
Avci H, Monticello R, Kotek R. Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. J Biomater Sci Polym Ed 2013; 24(16): 1815-30.
[http://dx.doi.org/10.1080/09205063.2013.804758] [PMID: 23758488]
[147]
Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 2013; 452(1-2): 333-43.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.012] [PMID: 23680732]
[148]
Mwiiri FK, Daniels R. Influence of PVA molecular weight and concentration on electrospinnability of birch bark extract-loaded nanofibrous scaffolds intended for enhanced wound healing. Molecules 2020; 25(20): 4799.
[http://dx.doi.org/10.3390/molecules25204799] [PMID: 33086645]
[149]
Dehelean CA, Şoica C, Ledeţi I, et al. Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation. Chem Cent J 2012; 6(1): 137.
[http://dx.doi.org/10.1186/1752-153X-6-137] [PMID: 23158079]
[150]
Ramanathan G, Singaravelu S, Raja MD, et al. Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Advances 2016; 6(10): 7914-22.
[http://dx.doi.org/10.1039/C5RA19529B]
[151]
Jara CP, Mendes NF, Prado TP, de Araújo EP. Bioactive fatty acids in the resolution of chronic inflammation in skin wounds. Adv Wound Care 2020; 9(8): 472-90.
[http://dx.doi.org/10.1089/wound.2019.1105] [PMID: 32320357]
[152]
Casillas-Vargas G, Ocasio-Malavé C, Medina S, et al. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res 2021; 82: 101093.
[http://dx.doi.org/10.1016/j.plipres.2021.101093] [PMID: 33577909]
[153]
Yoon BK, Jackman JA, Kim MC, Cho NJ. Spectrum of membrane morphological responses to antibacterial fatty acids and related surfactants. Langmuir 2015; 31(37): 10223-32.
[http://dx.doi.org/10.1021/acs.langmuir.5b02088] [PMID: 26325618]
[154]
Kim SA, Rhee MS. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans -cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control 2016; 60: 447-54.
[http://dx.doi.org/10.1016/j.foodcont.2015.08.022]
[155]
Chinatangkul N, Limmatvapirat C, Nunthanid J, Luangtana-Anan M, Sriamornsak P, Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian J Pharmaceut Sci 2018; 13(5): 459-71.
[http://dx.doi.org/10.1016/j.ajps.2017.12.006] [PMID: 32104420]
[156]
Chen B, Dang J, Tan TL, et al. Dynamics of smooth muscle cell deadhesion from thermosensitive hydroxybutyl chitosan. Biomaterials 2007; 28(8): 1503-14.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.027] [PMID: 17157377]
[157]
Nguyen TH, Nguyen TB, Tran NM, Nguyen T-H. Fabrication of virgin coconut oil-loaded electrospun polycaprolactone/polyurethane membrane for application in vascular engineering. IFMBE Proc 2022; 85: 393-401.
[http://dx.doi.org/10.1007/978-3-030-75506-5_32]
[158]
Salouti M, Ahangari A. Nanoparticle based drug delivery systems for treatment of infectious diseases.Application of Nanotechnology in Drug Delivery. InTech 2014.
[http://dx.doi.org/10.5772/58423]
[159]
Yang Y, Qin Z, Zeng W, et al. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev 2017; 6(3): 279-89.
[http://dx.doi.org/10.1515/ntrev-2016-0047]
[160]
Kandi V, Kandi S. Antimicrobial properties of nanomolecules: Potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health 2015; 37: e2015020.
[http://dx.doi.org/10.4178/epih/e2015020] [PMID: 25968114]
[161]
Sanvicens N, Marco MP. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol 2008; 26(8): 425-33.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[162]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[163]
Nam G, Rangasamy S, Purushothaman B, Song JM. The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotechnol 2015; p. 5.
[164]
Mokhena TC, Luyt AS. Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydr Polym 2017; 165: 304-12.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.068] [PMID: 28363554]
[165]
Leaper DJ. Silver dressings: Their role in wound management. Int Wound J 2006; 3(4): 282-94.
[http://dx.doi.org/10.1111/j.1742-481X.2006.00265.x] [PMID: 17199764]
[166]
Yah CS, Simate GS. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru 2015; 23(1): 43.
[http://dx.doi.org/10.1186/s40199-015-0125-6] [PMID: 26329777]
[167]
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target 2016; 24(6): 520-9.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[168]
Nairn BL, Lonergan ZR, Wang J, et al. The Response of Acinetobacter baumannii to Zinc Starvation. Cell Host Microbe 2016; 19(6): 826-36.
[http://dx.doi.org/10.1016/j.chom.2016.05.007] [PMID: 27281572]
[169]
Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioact Mater 2018; 3(2): 201-11.
[http://dx.doi.org/10.1016/j.bioactmat.2017.09.006] [PMID: 29744458]
[170]
Stager MA, Bardill J, Raichart A, et al. Photopolymerized zwitterionic hydrogels with a sustained delivery of cerium oxide nanoparticle-mir146a conjugate accelerate diabetic wound healing. ACS Appl Bio Mater 2022; 5(3): 1092-103.
[http://dx.doi.org/10.1021/acsabm.1c01155] [PMID: 35167263]
[171]
Babitha S, Korrapati PS. Biodegradable zein–polydopamine polymeric scaffold impregnated with TiO 2 nanoparticles for skin tissue engineering. Biomed Mater 2017; 12(5): 055008.
[http://dx.doi.org/10.1088/1748-605X/aa7d5a] [PMID: 28944761]
[172]
Doostmohammadi M, Forootanfar H, Shakibaie M, et al. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl 2021; 36(2): 193-209.
[http://dx.doi.org/10.1177/08853282211001359] [PMID: 33722085]
[173]
Ahmed MK, Menazea AA, Abdelghany AM. Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications. Int J Biol Macromol 2020; 155: 636-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.257] [PMID: 32251752]
[174]
Esmaeili E, Eslami-Arshaghi T, Hosseinzadeh S, et al. The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int J Biol Macromol 2020; 152: 418-27.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.295] [PMID: 32112830]
[175]
Zhang H, Xia J, Pang X, et al. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater Sci Eng C 2017; 73: 537-43.
[http://dx.doi.org/10.1016/j.msec.2016.12.116] [PMID: 28183642]
[176]
Costa PRA, Menezes LR, Dias ML, Silva EO. Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics-Mini‐. Polym Adv Technol 2022; 33(4): 1031-46.
[http://dx.doi.org/10.1002/pat.5604]
[177]
Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen-based formulations for wound healing: A literature review. Life Sci 2022; 290: 120096.
[http://dx.doi.org/10.1016/j.lfs.2021.120096]
[178]
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers 2021; 13(17): 2959.
[http://dx.doi.org/10.3390/polym13172959] [PMID: 34502997]
[179]
Augustine R, Rehman SRU, Ahmed R, et al. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 2020; 156: 153-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.207] [PMID: 32229203]
[180]
Iqbal H, Khan BA, Khan ZU, et al. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int J Biol Macromol 2020; 144: 921-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.169] [PMID: 31704336]
[181]
Muhamed I, Sproul EP, Ligler FS, Brown AC. Fibrin nanoparticles coupled with keratinocyte growth factor enhance the dermal wound-healing rate. ACS Appl Mater Interfaces 2019; 11(4): 3771-80.
[http://dx.doi.org/10.1021/acsami.8b21056] [PMID: 30604611]
[182]
Barbu A, Neamtu B. Zăhan M, Iancu GM, Bacila C, Mireșan V. Current trends in advanced alginate-based wound dressings for chronic wounds. J Pers Med 2021; 11(9): 890.
[http://dx.doi.org/10.3390/jpm11090890] [PMID: 34575668]
[183]
Fu R, Li C, Yu C, et al. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv 2016; 23(3): 818-29.
[http://dx.doi.org/10.3109/10717544.2014.918676] [PMID: 24870202]
[184]
Abdel Khalek MA, Abdel Gaber SA, El-Domany RA, El-Kemary MA. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing. Int J Biol Macromol 2021; 1930((Pt B)): 1752-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.012] [PMID: 347748642021]
[185]
Tamahkar E, Bakhshpour M, Denizli A. Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J Biomater Sci Polym Ed 2019; 30(6): 450-61.
[http://dx.doi.org/10.1080/09205063.2019.1580665] [PMID: 30773098]
[186]
Valachová K, El Meligy MA, Šoltés L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int J Biol Macromol 2022; 206: 74-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.117] [PMID: 35218807]
[187]
El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr Polym 2020; 238: 116175.
[http://dx.doi.org/10.1016/j.carbpol.2020.116175] [PMID: 32299548]
[188]
Sabarees G, Tamilarasi GP, Velmurugan V, et al. Emerging trends in silk fibroin based nanofibers for impaired wound healing. J Drug Deliv Sci Technol 2023; 79: 103994.
[http://dx.doi.org/10.1016/j.jddst.2022.103994]
[189]
Roth AD, Elmer J, Harris DR, et al. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol Prog 2014; 30(5): 1214-20.
[http://dx.doi.org/10.1002/btpr.1950] [PMID: 25044995]
[190]
Huang Z, Wang D, Sønderskov SM, et al. Tannic acid-functionalized 3d porous nanofiber sponge for antibiotic-free wound healing with enhanced hemostasis, antibacterial, and antioxidant properties. J Nanobiotechnology 2023; 21: 1-15.
[191]
El-Aassar MR, El-Beheri NG, Agwa MM, et al. Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement. Int J Biol Macromol 2021; 167: 1552-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.109] [PMID: 33212109]
[192]
Wen Q, Mithieux SM, Weiss AS. Elastin biomaterials in dermal repair. Trends Biotechnol 2020; 38(3): 280-91.
[http://dx.doi.org/10.1016/j.tibtech.2019.08.005] [PMID: 31870589]
[193]
Castillo-Ortega MM, López-Peña IY, Rodríguez-Félix DE, et al. Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering. Polym Bull 2022; 79(7): 5495-513.
[http://dx.doi.org/10.1007/s00289-021-03734-6]
[194]
Anaya Mancipe JM, Boldrini Pereira LC, de Miranda Borchio PG, Dias ML, da Silva Moreira Thiré RM. Novel polycaprolactone (PCL)-Type I collagen core-shell electrospun nanofibers for wound healing applications. J Biomed Mater Res B Appl Biomater 2022.
[PMID: 36068930]
[195]
Peng Y, Ma Y, Bao Y, et al. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. Int J Biol Macromol 2021; 183: 68-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.021] [PMID: 33892031]
[196]
Gámez-Herrera E, García-Salinas S, Salido S, et al. Drug-eluting wound dressings having sustained release of antimicrobial compounds. Eur J Pharm Biopharm 2020; 152: 327-39.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.025] [PMID: 32473289]
[197]
Yuan J, Geng J, Xing Z, et al. Novel wound dressing based on nanofibrous PHBV-keratin mats. J Tissue Eng Regen Med 2015; 9(9): 1027-35.
[http://dx.doi.org/10.1002/term.1653] [PMID: 23208930]
[198]
Mutlu G, Calamak S, Ulubayram K, Guven E. Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J Drug Deliv Sci Technol 2018; 43: 185-93.
[http://dx.doi.org/10.1016/j.jddst.2017.09.017]
[199]
Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm 2019; 569: 118590.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118590] [PMID: 31381988]
[200]
Han Y, Jiang Y, Li Y, et al. An aligned porous electrospun fibrous scaffold with embedded asiatic acid for accelerating diabetic wound healing. J Mater Chem B Mater Biol Med 2019; 7(40): 6125-38.
[http://dx.doi.org/10.1039/C9TB01327J] [PMID: 31553023]
[201]
Chen J, Zhou B, Li Q, et al. PLLA-PEG-TCH-labeled bioactive molecule nanofibers for tissue engineering. Int J Nanomedicine 2011; 6: 2533-42.
[PMID: 22072887]
[202]
Zhang D, Yang W, Wang C, et al. Methylcobalamin‐loaded PLCL conduits facilitate the peripheral nerve regeneration. Macromol Biosci 2020; 20(3): 1900382.
[http://dx.doi.org/10.1002/mabi.201900382] [PMID: 32058665]
[203]
Li A, Li L, Zhao B, et al. Antibacterial, antioxidant and anti-inflammatory PLCL/gelatin nanofiber membranes to promote wound healing. Int J Biol Macromol 2022; 194: 914-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.146] [PMID: 34838860]
[204]
Eren Boncu T, Ozdemir N. Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: Effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties. Int J Polym Mater 2022; 71(9): 669-76.
[http://dx.doi.org/10.1080/00914037.2021.1876057]
[205]
Cui S, Sun X, Li K, et al. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater Sci Eng C 2019; 104: 109745.
[http://dx.doi.org/10.1016/j.msec.2019.109745] [PMID: 31499963]
[206]
Zhang Y, Song W, Lu Y, et al. Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules 2022; 12(5): 636.
[http://dx.doi.org/10.3390/biom12050636] [PMID: 35625562]
[207]
Rouhollahi F, Hosseini SA, Alihosseini F, Allafchian A, Haghighat F. Investigation on the biodegradability and antibacterial properties of nanohybrid suture based on silver incorporated PGA-PLGA nanofibers. Fibers Polym 2018; 19(10): 2056-65.
[http://dx.doi.org/10.1007/s12221-018-8316-7]
[208]
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO tri-block copolymers for gene delivery applications in human regenerative medicine-an overview. Int J Mol Sci 2018; 19(3): 775.
[http://dx.doi.org/10.3390/ijms19030775] [PMID: 29518011]
[209]
Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR. in vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 2014; 469(1): 102-10.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.047] [PMID: 24751731]
[210]
Wentao Z, Lei G, Liu Y, Wang W, Song T, Fan J. Approach to osteomyelitis treatment with antibiotic loaded PMMA. Microb Pathog 2017; 102: 42-4.
[http://dx.doi.org/10.1016/j.micpath.2016.11.016] [PMID: 27894964]
[211]
Zupančič Š, Sinha-Ray S, Sinha-Ray S, Kristl J, Yarin AL. Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Mol Pharm 2016; 13(1): 295-305.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00804] [PMID: 26635214]
[212]
Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 2021; 600: 120478.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120478] [PMID: 33722756]
[213]
Chao S, Li Y, Zhao R, et al. Synthesis and characterization of tigecycline-loaded sericin/poly(vinyl alcohol) composite fibers via electrospinning as antibacterial wound dressings. J Drug Deliv Sci Technol 2018; 44: 440-7.
[http://dx.doi.org/10.1016/j.jddst.2018.01.022]
[214]
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217: 113372.
[http://dx.doi.org/10.1016/j.ejmech.2021.113372] [PMID: 33744689]
[215]
Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol 2020; 60: 102046.
[http://dx.doi.org/10.1016/j.jddst.2020.102046] [PMID: 32905026]
[216]
Yang J, Wang K, Yu DG, Yang Y, Bligh SWA, Williams GR. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater Sci Eng C 2020; 111: 110805.
[http://dx.doi.org/10.1016/j.msec.2020.110805] [PMID: 32279788]
[217]
Bakhsheshi-Rad HR, Ismail AF, Aziz M, et al. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int J Biol Macromol 2020; 149: 513-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.139] [PMID: 31954780]
[218]
Nejaddehbashi F, Hashemitabar M, Bayati V, et al. Incorporation of silver sulfadiazine into an electrospun composite of polycaprolactone as an antibacterial scaffold for wound healing in rats. Cell J 2020; 21(4): 379-90.
[PMID: 31376319]
[219]
Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 2021; 259: 117640.
[http://dx.doi.org/10.1016/j.carbpol.2021.117640] [PMID: 33673981]
[220]
Khoshnevisan K, Maleki H, Samadian H, Doostan M, Khorramizadeh MR. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol 2019; 140: 1260-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.207] [PMID: 31472212]
[221]
Ahire JJ, Dicks LMT. 2,3-dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58(4): 2098-104.
[http://dx.doi.org/10.1128/AAC.02397-13] [PMID: 24449781]
[222]
Srivastava P, Lakshmi GBVS, Sri S, et al. Potential of electrospun cellulose acetate nanofiber mat integrated with silver nanoparticles from Azadirachta indica as antimicrobial agent. J Polym Res 2020; 27(11): 350.
[http://dx.doi.org/10.1007/s10965-020-02308-w]
[223]
Mouro C, Simões M, Gouveia IC, Xu B. Emulsion electrospun fiber Mats of PCL/PVA/Chitosan and eugenol for wound dressing applications. Adv Polym Technol 2019; 2019: 11.
[224]
Lin S, Chen M, Jiang H, et al. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids Surf B Biointerfaces 2016; 139: 156-63.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.001] [PMID: 26707696]
[225]
Yousefi I, Pakravan M, Rahimi H, Bahador A, Farshadzadeh Z, Haririan I. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C 2017; 75: 433-44.
[http://dx.doi.org/10.1016/j.msec.2017.02.076] [PMID: 28415483]
[226]
Han J, Chen TX, Branford-White CJ, Zhu LM. Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int J Pharm 2009; 382(1-2): 215-21.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.027] [PMID: 19660536]
[227]
Ramalingam R, Dhand C, Leung CM, et al. Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater Sci Eng C 2019; 98: 503-14.
[http://dx.doi.org/10.1016/j.msec.2018.12.135] [PMID: 30813052]
[228]
García-Salinas S, Evangelopoulos M, Gámez-Herrera E, et al. Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int J Pharm 2020; 577: 119067.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119067] [PMID: 31981705]
[229]
Harandi FN, Khorasani AC, Shojaosadati SA, Hashemi-Najafabadi S. Living Lactobacillus–ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. Mater Sci Eng C 2021; 130: 112457.
[http://dx.doi.org/10.1016/j.msec.2021.112457] [PMID: 34702533]
[230]
Ahmed R, Tariq M, Ali I, et al. ovel electrospun chitosan/ polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterialand antioxidant properties for diabetic wound healing Int J BiolMacromol 2018; 120((Pt A)): 385-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.057] [PMID: 301106032018]
[231]
Sun L, Han J, Liu Z, Wei S, Su X, Zhang G. The facile fabrication of wound compatible anti-microbial nanoparticles encapsulated Collagenous Chitosan matrices for effective inhibition of poly-microbial infections and wound repairing in burn injury care: Exhaustive in vivo evaluations. J Photochem Photobiol B 2019; 197: 111539.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111539] [PMID: 31301638]
[232]
Doostmohammadi M, Forootanfar H, Shakibaie M, et al. Polycaprolactone/gelatin electrospun nanofibres containing biologically produced tellurium nanoparticles as a potential wound dressing scaffold: Physicochemical, mechanical, and biological characterisation. IET Nanobiotechnol 2021; 15(3): 277-90.
[http://dx.doi.org/10.1049/nbt2.12020] [PMID: 34694673]
[233]
Al-Musawi S, Albukhaty S, Al-Karagoly H, et al. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules 2020; 25(20): 4770.
[http://dx.doi.org/10.3390/molecules25204770] [PMID: 33080798]
[234]
Toczek J. Sadłocha M, Major K, Stojko R. Benefit of silver and gold nanoparticles in wound healing process after endometrial cancer protocol. Biomedicines 2022; 10(3): 679.
[http://dx.doi.org/10.3390/biomedicines10030679] [PMID: 35327481]
[235]
Dodero A, Scarfi S, Pozzolini M, Vicini S, Alloisio M, Castellano M. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: Biological, mechanical, and physicochemical characterization. ACS Appl Mater Interfaces 2020; 12(3): 3371-81.
[http://dx.doi.org/10.1021/acsami.9b17597] [PMID: 31876405]
[236]
Arumugam V, Moodley KG. Mixed metal and metal oxide nanofibers: Preparation, fabrication, and applications. Handbook of Nanofibers. Cham: Springer 2019; pp. 323-46.
[237]
Mondal K, Kumar R, Isaac B, Pawar G. Metal oxide nanofibers and their applications for biosensing. Metal Oxide-Based Nanofibers and Their Applications. Elsevier 2021; pp. 113-37.
[238]
Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. Nanostructured ceramics by electrospinning. J Appl Phys 2007; 102(11): 111101.
[239]
Su L, Zhu K, Qiu J, Ji H. Isopropanol-assisted hydrothermal synthesis of (K, Na)NbO3 piezoelectric ceramic powders. J Mater Sci 2010; 45(12): 3311-7.
[http://dx.doi.org/10.1007/s10853-010-4348-0]
[240]
Lupan O, Guérin VM, Ghimpu L, Tiginyanu IM, Pauporté T. Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chem Phys Lett 2012; 550: 125-9.
[http://dx.doi.org/10.1016/j.cplett.2012.08.071]
[241]
Kenry, Lim CT. Nanofiber technology: Current status and emerging developments. Prog Polym Sci 2017; 70: 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002]
[242]
Song X, Zhang K, Song Y, Duan Z, Liu Q, Liu Y. Morphology, microstructure and mechanical properties of electrospun alumina nanofibers prepared using different polymer templates: A comparative study. J Alloys Compd 2020; 829: 154502.
[http://dx.doi.org/10.1016/j.jallcom.2020.154502]
[243]
Ghasemi E, Ziyadi H, Afshar AM, Sillanpää M. Iron oxide nanofibers: A new magnetic catalyst for azo dyes degradation in aqueous solution. Chem Eng J 2015; 264: 146-51.
[http://dx.doi.org/10.1016/j.cej.2014.11.021]
[244]
Shilpa S, Basavaraja BM, Majumder SB, Sharma A. Electrospun hollow glassy carbon–reduced graphene oxide nanofibers with encapsulated ZnO nanoparticles: A free standing anode for Li-ion batteries. J Mater Chem A Mater Energy Sustain 2015; 3(10): 5344-51.
[http://dx.doi.org/10.1039/C4TA07220K]
[245]
Abouali S, Akbari Garakani M, Zhang B, et al. Electrospun carbon nanofibers with in situ encapsulated Co 3 O 4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 2015; 7(24): 13503-11.
[http://dx.doi.org/10.1021/acsami.5b02787] [PMID: 26028432]
[246]
Chen JY, Kuo CC, Lai CS, Chen WC, Chen HL. Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly(3-hexylthiophene) for field-effect transistor applications. Macromolecules 2011; 44(8): 2883-92.
[http://dx.doi.org/10.1021/ma102286m]
[247]
Amna T, Shamshi Haasan M, Khil MS, Hwang I. Impact of electrospun biomimetic extracellular environment on proliferation and intercellular communication of muscle precursor cells: An overview - intercellular communication of muscle precursor cells with extracellular environment. Emerg Res Bioinspired Mater Eng 2016; pp. 249-67.
[http://dx.doi.org/10.4018/978-1-4666-9811-6.ch009]
[248]
Mordina B, Tiwari RK, Setua DK, Sharma A. Superior elastomeric nanocomposites with electrospun nanofibers and nanoparticles of CoFe 2 O 4 for magnetorheological applications. RSC Advances 2015; 5(25): 19091-105.
[http://dx.doi.org/10.1039/C5RA00537J]
[249]
Singh P, Mondal K, Sharma A. Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J Colloid Interface Sci 2013; 394: 208-15.
[http://dx.doi.org/10.1016/j.jcis.2012.12.006] [PMID: 23295026]
[250]
Ghosh P, Manikandan M, Sen S, Devi PS. Some interesting insights into the acetone sensing characteristics of monoclinic WO 3. Mater Advances 2023; 4(4): 1146-60.
[http://dx.doi.org/10.1039/D2MA00651K]
[251]
Lotus AF, Bender ET, Evans EA, Ramsier RD, Reneker DH, Chase GG. Electrical, structural, and chemical properties of semiconducting metal oxide nanofiber yarns. J Appl Phys 2008; 103(2): 024910.
[http://dx.doi.org/10.1063/1.2831362]
[252]
Shen Y, Turner S, Yang P, Van Tendeloo G, Lebedev OI, Wu T. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations. Nano Lett 2014; 14(8): 4342-51.
[http://dx.doi.org/10.1021/nl501163n] [PMID: 24971997]
[253]
Wu H, Pan W, Lin D, Li H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceramics 2012; 1(1): 2-23.
[http://dx.doi.org/10.1007/s40145-012-0002-4]
[254]
Yoo S, Akbar SA, Sandhage KH. Nanocarving of titania (TiO2): A novel approach for fabricating chemical sensing platform. Ceram Int 2004; 30(7): 1121-6.
[http://dx.doi.org/10.1016/j.ceramint.2003.12.085]
[255]
Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004; 4(5): 933-8.
[http://dx.doi.org/10.1021/nl049590f]
[256]
Zhang CL, Yu SH. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem Soc Rev 2014; 43(13): 4423-48.
[http://dx.doi.org/10.1039/c3cs60426h] [PMID: 24695773]
[257]
Dzenis Y. Materials science: Structural nanocomposites. Science 2008; 3198: 419-20.
[258]
Ivanova EP, Hasan J, Webb HK, et al. Bactericidal activity of black silicon. Nat Commun 2013; 4(1): 2838.
[http://dx.doi.org/10.1038/ncomms3838] [PMID: 24281410]
[259]
Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61(12): 1033-42.
[http://dx.doi.org/10.1016/j.addr.2009.07.007] [PMID: 19643152]
[260]
Smit DW. Marketing ingrid bergman. Int J Phytoremediation 2005; 21: 237-50.
[261]
Khorsand-Ghayenia M, Sadeghia A, Nokhasteha S, et al. Collagen modified PLGA nanofibers as wound-dressing. roceedings of the 6th International Conference on Nanostructures (ICNS6) Kish Island,Iran. 2005.7-10 March
[262]
Grace JM, Gerenser LJ. Plasma treatment of polymers. J Dispers Sci Technol 2003; 24(3-4): 305-41.
[http://dx.doi.org/10.1081/DIS-120021793]
[263]
Yoshida S, Hagiwara K, Hasebe T, Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf Coat Tech 2013; 233: 99-107.
[http://dx.doi.org/10.1016/j.surfcoat.2013.02.042]
[264]
Jeong L, Yeo IS, Kim HN, et al. Plasma-treated silk fibroin nanofibers for skin regeneration. Int J Biol Macromol 2009; 44(3): 222-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.12.008] [PMID: 19150367]
[265]
Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol 2015; 33(11): 637-52.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.002] [PMID: 26463723]
[266]
Hasan J, Crawford RJ, Ivanova EP. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol 2013; 31(5): 295-304.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.017] [PMID: 23434154]
[267]
Chen G, Ali F, Dong S, Yin Z, Li S, Chen Y. Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. Carbohydr Polym 2018; 202: 39-46.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.122] [PMID: 30287014]
[268]
Griesser SS, Jasieniak M, Vasilev K, Griesser HJ. Antimicrobial peptides grafted onto a plasma polymer interlayer platform: Performance upon extended bacterial challenge. Coatings 2021; 11(1): 68.
[http://dx.doi.org/10.3390/coatings11010068]
[269]
Kuzminova A, Beranová J, Polonskyi O, et al. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf Coat Tech 2016; 294: 225-30.
[http://dx.doi.org/10.1016/j.surfcoat.2016.03.097]
[270]
Ostrikov K, Macgregor-Ramiasa M, Cavallaro A, Ostrikov KK, Vasilev K. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss. J Phys D Appl Phys 2016; 49(30): 304001.
[http://dx.doi.org/10.1088/0022-3727/49/30/304001]
[271]
Wan LS, Liu ZM, Xu ZK. Surface engineering of macroporous polypropylene membranes. Soft Matter 2009; 5(9): 1775-85.
[http://dx.doi.org/10.1039/b813600a]
[272]
Penaloza DP Jr, Seery TAP. Utilizing exfoliated clay–poly(norbornene) nanocomposite prepared by metal-mediated surface-initiated polymerization as model end-tethered polymers on an organoclay substrate. J Appl Phys 2020; 127(16): 164702.
[http://dx.doi.org/10.1063/1.5143825]
[273]
Bellmann C. Surface modification by adsorption of polymers and surfactants. Polym Surfaces Interfaces Charact Modif Appl 2008; pp. 235-59.
[274]
Casper CL, Yamaguchi N, Kiick KL, Rabolt JF. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 2005; 6(4): 1998-2007.
[http://dx.doi.org/10.1021/bm050007e] [PMID: 16004438]
[275]
Richardson JJ, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015; 80: 348.
[276]
Li X, Tu H, Huang M, et al. Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. Int J Biol Macromol 2017; 102: 789-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.076] [PMID: 28450247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy