Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Janus Dendrimers as Nanocarriers of Ibuprofen, Chlorambucil and their Anticancer Activity

Author(s): Luis Daniel Pedro-Hernández, Israel Barajas-Mendoza, Irving Osiel Castillo-Rodríguez, Elena Klimova, Teresa Ramírez-Ápan and Marcos Martínez-García*

Volume 12, Issue 3, 2024

Published on: 17 October, 2023

Page: [276 - 287] Pages: 12

DOI: 10.2174/2211738511666230817160636

Price: $65

Abstract

Background: Janus Dendrimer represents a novel class of synthetic nanocarriers. Since it is possible to introduce multiple drugs and target moieties, this helps the designing of new biocompatible forms with pharmacological activities comprised of different drugs with tailor-made functionalities, such as anticancer and nonsteroidal anti-inflammatory, which could improve the anticancer activity with less toxicity.

Aims: This study aimed to determine the anticancer activity of the Janus dendrimers formed by two dendrons. One dendron conjugates with chlorambucil, and the other dendron conjugates with Ibuprofen.

Methods: The cytotoxicity of the drug carriers was determined by the sulforhodamine B (SRB) assay for three cell lines. PC-3 (human prostatic adenocarcinoma), HCT-15 (human colorectal adenocarcinoma), MFC-7 (human breast cancer) and the COS-7 African green monkey kidney (used as a control) cell lines were seeded into 96-well plates at a density of 5x103 cells/well and cultured for 24 h before use. All the obtained compounds were characterized by 1H and 13C NMR one and two dimensions, UVvis, FTIR, MALDI-TOF, Electrospray mass, and FAB+. Microscopic images were taken in an Inverted microscope Nikon, Diaphot 300, 10x4 in culture medium.

Results: Janus dendrimers (G1 and G2) were synthesized via an azide-alkyne click-chemistry reaction attaching on one face dendrons with ibuprofen molecules and, on the other face, attached a chlorambucil- derivative. The IC50 behavior of the conjugates of the first and second generations showed anticancer activity against PC-3, HCT-15, and MFC-7 cell lines. The second generation was more active against PC-3, HCT-15 and MFC-7 with IC50 of 3.8±0.5, 3.0±0.2 and 3.7 ± 1.1 mM, respectively.

Conclusion: The new Janus dendrimers with anticancer chlorambucil and nonsteroidal antiinflammatory Ibuprofen can improve the anticancer activity of chlorambucil with less toxicity.

Future Prospects: Now, we are working on the synthesis of new Janus dendrimers using the most effective and fine methods. Moreover, we hope that we shall be able to obtain different generations that are more selective against cancer cells.

Keywords: Anticancer activity, click reaction, Janus dendrimers, chlorambucil, Ibuprofen, dendrons.

« Previous
Graphical Abstract
[1]
Twyman LJ, King ASH, Martin IK. Catalysis inside dendrimers. Chem Soc Rev 2002; 31(2): 69-82.
[http://dx.doi.org/10.1039/b107812g] [PMID: 12109207]
[2]
Helms B, Fréchet JMJ. The dendrimer effect in homogeneous catalysis. Adv Synth Catal 2006; 348(10-11): 1125-48.
[http://dx.doi.org/10.1002/adsc.200606095]
[3]
Caminade A-M, Ouali A, Laurent R, Majoral J-P. Catalysis within dendrimers effects of nanoconfinement on catalysis fundamental and applied catalysis. Cham: Springer 2017; pp. 173-207.
[http://dx.doi.org/10.1007/978-3-319-50207-6_8]
[4]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[5]
Ma Y, Mou Q, Wang D, Zhu X, Yan D. Dendritic polymers for theranostics. Theranostics 2016; 6(7): 930-47.
[http://dx.doi.org/10.7150/thno.14855] [PMID: 27217829]
[6]
Mignani S. Dendrimers in combination with natural products and analogues as anticancer agents. Chem Soc Rev 2018; 47: 514-32.
[http://dx.doi.org/10.1039/C7CS00550D] [PMID: 29154385]
[7]
Mekuria SL, Debele TA, Tsai H-C. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Advances 2016; 6(68): 63761-72.
[http://dx.doi.org/10.1039/C6RA12895E]
[8]
McMahon MT, Bulte JWM. Two decades of dendrimers as versatile MRI agents: A tale with and without metals. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(3): e1496.
[http://dx.doi.org/10.1002/wnan.1496] [PMID: 28895298]
[9]
Caminade AM, Laurent R, Delavaux-Nicot B, Majoral JP. “Janus” dendrimers: Syntheses and properties. New J Chem 2012; 36(2): 217-26.
[http://dx.doi.org/10.1039/C1NJ20458K]
[10]
Walther A, Müller AHE. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem Rev 2013; 113(7): 5194-261.
[http://dx.doi.org/10.1021/cr300089t] [PMID: 23557169]
[11]
Sikwal DR, Kalhapure RS, Govender T. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur J Pharm Sci 2017; 97: 113-34.
[http://dx.doi.org/10.1016/j.ejps.2016.11.013] [PMID: 27864064]
[12]
Rosati M. Janus-type dendrimers based on highly branched fluorinated chains with tunable self-assembly and 19f nuclear magnetic reso-nance properties. Macromolecules 2022; 55(7): 2486-96.
[http://dx.doi.org/10.1021/acs.macromol.2c00129]
[13]
Percec V, Wilson DA, Leowanawat P, et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architec-tures. Science 2010; 328(5981): 1009-14.
[http://dx.doi.org/10.1126/science.1185547] [PMID: 20489021]
[14]
Căta A, Ienașcu IMC, Ştefănuț MN, Roșu D, Pop OR. Properties and bioapplications of amphiphilic janus dendrimers: A review. Pharmaceutics 2023; 15(2): 589.
[http://dx.doi.org/10.3390/pharmaceutics15020589] [PMID: 36839911]
[15]
Selin M, Nummelin S, Deleu J, et al. High-generation amphiphilic janus-dendrimers as stabilizing agents for drug suspensions. Biomacromolecules 2018; 19(10): 3983-93.
[http://dx.doi.org/10.1021/acs.biomac.8b00931] [PMID: 30207704]
[16]
Nummelin S, Selin M, Legrand S, et al. Modular synthesis of self-assembling Janus-dendrimers and facile preparation of drug-loaded dendrimersomes. Nanoscale 2017; 9(21): 7189-98.
[http://dx.doi.org/10.1039/C6NR08102A] [PMID: 28513636]
[17]
Mikkilä J, Rosilo H, Nummelin S, Seitsonen J, Ruokolainen J, Kostiainen MA. Janus-dendrimer-mediated formation of crystalline virus assemblies. ACS Macro Lett 2013; 2(8): 720-4.
[http://dx.doi.org/10.1021/mz400307h] [PMID: 35606958]
[18]
Xiao Q, Zhang S, Wang Z, et al. Onion-like glycodendrimersomes from sequence-defined Janus glycodendrimers and influence of archi-tecture on reactivity to a lectin. Proc Natl Acad Sci USA 2016; 113(5): 1162-7.
[http://dx.doi.org/10.1073/pnas.1524976113] [PMID: 26787853]
[19]
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis of amphiphilic Janus dendrimer and its application in improvement of hy-drophobic drugs solubility in aqueous media. Eur Polym J 2020; 134: 109804.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109804]
[20]
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. Janus-type dendrimers: Synthesis, properties, and applications. J Mol Liq 2022; 347: 118396.
[http://dx.doi.org/10.1016/j.molliq.2021.118396]
[21]
Liu X, Gitsov I. Thermosensitive amphiphilic janus dendrimers with embedded metal binding sites. Synthesis and self-assembly. Macromolecules 2018; 51(14): 5085-100.
[http://dx.doi.org/10.1021/acs.macromol.8b00700]
[22]
Zhang D, Atochina-Vasserman EN, Maurya DS, et al. Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers. J Am Chem Soc 2021; 143(43): 17975-82.
[http://dx.doi.org/10.1021/jacs.1c09585] [PMID: 34672554]
[23]
Tomalia DA. Dendritic effects: Dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs)†. Chem Eur J 2011; 17: 839-46.
[http://dx.doi.org/10.1039/C1NJ20501C]
[24]
Ornelas C, Pennell R, Liebes LF, Weck M. Construction of a well-defined multifunctional dendrimer for theranostics. Org Lett 2011; 13(5): 976-9.
[http://dx.doi.org/10.1021/ol103019z] [PMID: 21291239]
[25]
Wang T, Zhang Y, Wei L, Teng YG, Honda T, Ojima I. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega 2018; 3(4): 3717-36.
[http://dx.doi.org/10.1021/acsomega.8b00409] [PMID: 29732446]
[26]
Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carci-nomas. Proc Natl Acad Sci USA 2006; 103(45): 16649-54.
[http://dx.doi.org/10.1073/pnas.0607705103] [PMID: 17075050]
[27]
Wu P, Malkoch M, Hunt JN, et al. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun 2005; 5775-5777(46): 5775-7.
[http://dx.doi.org/10.1039/b512021g] [PMID: 16307142]
[28]
Ouyang L, Ma L, Li Y, Pan J, Guo L. Synthesis of first generation Janus-Type dendrimers bearing Asp oligopeptides and naproxen. ARKIVOC 2010; 2010(2): 256-66.
[http://dx.doi.org/10.3998/ark.5550190.0011.221]
[29]
Rainsford KD. Fifty years since the discovery of Ibuprofen. Int J Clin Pract Suppl 2003; 135: 3-8.
[http://dx.doi.org/10.1007/s10787-011-0103-7] [PMID: 12723739]
[30]
Takkouche B, Regueira-Méndez C, Etminan M. Breast cancer and use of nonsteroidal anti-inflammatory drugs: A meta-analysis. J Natl Cancer Inst 2008; 100(20): 1439-47.
[http://dx.doi.org/10.1093/jnci/djn324] [PMID: 18840819]
[31]
Harris RE, Beebe-Donk J, Alshafie GA. Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer 2008; 8(1): 237.
[http://dx.doi.org/10.1186/1471-2407-8-237] [PMID: 18702823]
[32]
Yao M, Zhou W, Sangha S, et al. Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res 2005; 11(4): 1618-28.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1696] [PMID: 15746067]
[33]
Pedro-Hernández LD, Ramirez-Ápan T, Martínez-García M. synthesis of bifunctional tris‐dendrimers conjugated with ibuprofen and naproxen. ChemistrySelect 2022; 7(27): e202201335.
[http://dx.doi.org/10.1002/slct.202201335]
[34]
Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solís D. From lectin structure to functional glycomics: Principles of the sugar code. Trends Biochem Sci 2011; 36(6): 298-313.
[http://dx.doi.org/10.1016/j.tibs.2011.01.005] [PMID: 21458998]
[35]
Lis H, Sharon N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 1998; 98(2): 637-74.
[http://dx.doi.org/10.1021/cr940413g] [PMID: 11848911]
[36]
Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev 2002; 102(2): 555-78.
[http://dx.doi.org/10.1021/cr000418f] [PMID: 11841254]
[37]
Efthimiou M, Stephanou G, Demopoulos NA, Nikolaropoulos SS. Aneugenic potential of the anticancer drugs melphalan and chlorambucil. The involvement of apoptosis and chromosome segregation regulating proteins. J Appl Toxicol 2013; 33(7): 537-45.
[http://dx.doi.org/10.1002/jat.1743] [PMID: 22025197]
[38]
Bastien D, Hanna R, Leblanc V, Asselin É, Bérubé G. Synthesis and preliminary in vitro biological evaluation of 7α-testosterone–chlorambucil hybrid designed for the treatment of prostate cancer. Eur J Med Chem 2013; 64: 442-7.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.027] [PMID: 23665800]
[39]
Mendoza-Cardozo S, Pedro-Hernández LD, Organista-Mateos U, et al. In vitro activity of resorcinarene–chlorambucil conjugates for therapy in human chronic myelogenous leukemia cells. Drug Dev Ind Pharm 2019; 45(4): 683-8.
[http://dx.doi.org/10.1080/03639045.2019.1569036] [PMID: 30633576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy