Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors

Author(s): Totan Das, Samima Khatun, Tarun Jha* and Shovanlal Gayen*

Volume 24, Issue 7, 2024

Published on: 05 October, 2023

Page: [767 - 784] Pages: 18

DOI: 10.2174/0113895575267301230919165827

Price: $65

Abstract

HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.

Keywords: Epigenetic, cancer, HDAC9 inhibitor, selectivity, structure-activity relationships, SARs.

« Previous
Graphical Abstract
[1]
Yao, Y.; Liao, C.; Li, Z.; Wang, Z.; Sun, Q.; Liu, C.; Yang, Y.; Tu, Z.; Jiang, S. Design, synthesis, and biological evaluation of 1, 3-disubstituted-pyrazole derivatives as new class I and II b histone deacetylase inhibitors. Eur. J. Med. Chem., 2014, 86, 639-652.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.024] [PMID: 25218912]
[2]
Majdzadeh, N.; Morrison, B.E.; D’Mello, S.R. Class IIA HDACs in the regulation of neurodegeneration. Front. Biosci., 2008, 13(13), 1072-1082.
[http://dx.doi.org/10.2741/2745] [PMID: 17981613]
[3]
Marks, P.A.; Richon, V.M.; Rifkind, R.A. Histone deacetylase inhibitors: Inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst., 2000, 92(15), 1210-1216.
[http://dx.doi.org/10.1093/jnci/92.15.1210] [PMID: 10922406]
[4]
Verza, F.A.; Das, U.; Fachin, A.L.; Dimmock, J.R.; Marins, M. Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers (Basel), 2020, 12(6), 1664.
[http://dx.doi.org/10.3390/cancers12061664] [PMID: 32585896]
[5]
Cress, W.D.; Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol., 2000, 184(1), 1-16.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200007)184:1<1:AID-JCP1>3.0.CO;2-7] [PMID: 10825229]
[6]
Hassig, C.A.; Tong, J.K.; Fleischer, T.C.; Owa, T.; Grable, P.G.; Ayer, D.E.; Schreiber, S.L. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3519-3524.
[http://dx.doi.org/10.1073/pnas.95.7.3519] [PMID: 9520398]
[7]
Yang, C.; Croteau, S.; Hardy, P. Histone deacetylase (HDAC) 9: Versatile biological functions and emerging roles in human cancer. Cell Oncol. (Dordr.), 2021, 44(5), 997-1017.
[http://dx.doi.org/10.1007/s13402-021-00626-9] [PMID: 34318404]
[8]
Moinul, M.; Amin, S.A.; Khatun, S.; Das, S.; Jha, T.; Gayen, S. A detail survey and analysis of selectivity criteria for indole-based histone deacetylase 8 (HDAC8) inhibitors. J. Mol. Struct., 2023, 1271, 133967.
[http://dx.doi.org/10.1016/j.molstruc.2022.133967]
[9]
Amin, S.A.; Kumar, J.; Khatun, S.; Das, S.; Qureshi, I.A.; Jha, T.; Gayen, S. Binary quantitative activity-activity relationship (QAAR) studies to explore selective HDAC8 inhibitors: In light of mathematical models, DFT-based calculation and molecular dynamic simulation studies. J. Mol. Struct., 2022, 1260, 132833.
[http://dx.doi.org/10.1016/j.molstruc.2022.132833]
[10]
Bhattacharya, A.; Amin, S.A.; Kumar, P.; Jha, T.; Gayen, S. Exploring structural requirements of HDAC10 inhibitors through comparative machine learning approaches. J. Mol. Graph. Model., 2023, 123, 108510.
[http://dx.doi.org/10.1016/j.jmgm.2023.108510] [PMID: 37216830]
[11]
Brancolini, C.; Di Giorgio, E.; Formisano, L.; Gagliano, T. Quis custodiet ipsos custodes (Who controls the controllers)? two decades of studies on HDAC9. Life (Basel), 2021, 11(2), 90.
[http://dx.doi.org/10.3390/life11020090] [PMID: 33513699]
[12]
Zheng, W. The zinc-dependent HDACs: Non-histone substrates and catalytic deacylation beyond deacetylation. Mini Rev. Med. Chem., 2022, 22(19), 2478-2485.
[http://dx.doi.org/10.2174/1389557522666220330144151] [PMID: 35362374]
[13]
Parra, M. Class IIa HDACs - new insights into their functions in physiology and pathology. FEBS J., 2015, 282(9), 1736-1744.
[http://dx.doi.org/10.1111/febs.13061] [PMID: 25244360]
[14]
Jayathilaka, N.; Han, A.; Gaffney, K.J.; Dey, R.; Jarusiewicz, J.A.; Noridomi, K.; Philips, M.A.; Lei, X.; He, J.; Ye, J.; Gao, T.; Petasis, N.A.; Chen, L. Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2. Nucleic Acids Res., 2012, 40(12), 5378-5388.
[http://dx.doi.org/10.1093/nar/gks189] [PMID: 22396528]
[15]
Zhou, X.; Marks, P.A.; Rifkind, R.A.; Richon, V.M. Cloning and characterization of a histone deacetylase, HDAC9. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10572-10577.
[http://dx.doi.org/10.1073/pnas.191375098] [PMID: 11535832]
[16]
Wang, C.; Henkes, L.M.; Doughty, L.B.; He, M.; Wang, D.; Meyer-Almes, F.J.; Cheng, Y.Q. Thailandepsins: Bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J. Nat. Prod., 2011, 74(10), 2031-2038.
[http://dx.doi.org/10.1021/np200324x] [PMID: 21793558]
[17]
Protein Data Bank Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. 2021. Available From: https://www.rcsb.org/structure/1TQE
[18]
Han, A.; He, J.; Wu, Y.; Liu, J.O.; Chen, L. Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J. Mol. Biol., 2005, 345(1), 91-102.
[http://dx.doi.org/10.1016/j.jmb.2004.10.033] [PMID: 15567413]
[19]
Elmezayen, A.D.; Yelekçi, K. Homology modeling and in silico design of novel and potential dual-acting inhibitors of human histone deacetylases HDAC5 and HDAC9 isozymes. J. Biomol. Struct. Dyn., 2021, 39(17), 6396-6414.
[http://dx.doi.org/10.1080/07391102.2020.1798812] [PMID: 32715940]
[20]
Yuan, Z.; Peng, L.; Radhakrishnan, R.; Seto, E. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J. Biol. Chem., 2010, 285(50), 39329-39338.
[http://dx.doi.org/10.1074/jbc.M110.179333] [PMID: 20947501]
[21]
Zhou, X.; Richon, V.M.; Rifkind, R.A.; Marks, P.A. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc. Natl. Acad. Sci. USA, 2000, 97(3), 1056-1061.
[http://dx.doi.org/10.1073/pnas.97.3.1056] [PMID: 10655483]
[22]
Mahlknecht, U.; Schnittger, S.; Ottmann, O.G.; Schoch, C.; Mosebach, M.; Hiddemann, W.; Hoelzer, D. Chromosomal organization and localization of the human histone deacetylase 5 gene (HDAC5). Biochim. Biophys. Acta Gene Struct. Expr., 2000, 1493(3), 342-348.
[http://dx.doi.org/10.1016/S0167-4781(00)00191-3] [PMID: 11018260]
[23]
Li, L.; Liu, W.; Wang, H.; Yang, Q.; Zhang, L.; Jin, F.; Jin, Y. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions. Cell Death Dis., 2018, 9(5), 480.
[http://dx.doi.org/10.1038/s41419-018-0480-6] [PMID: 29691366]
[24]
Li, X.; Zhang, Q.; Ding, Y.; Liu, Y.; Zhao, D.; Zhao, K.; Shen, Q.; Liu, X.; Zhu, X.; Li, N.; Cheng, Z.; Fan, G.; Wang, Q.; Cao, X. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat. Immunol., 2016, 17(7), 806-815.
[http://dx.doi.org/10.1038/ni.3464] [PMID: 27240213]
[25]
Rastogi, B.; Raut, S.K.; Panda, N.K.; Rattan, V.; Radotra, B.D.; Khullar, M. Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression and inhibits apoptosis. Mol. Cell. Biochem., 2016, 417(1-2), 183-196.
[http://dx.doi.org/10.1007/s11010-016-2690-5]
[26]
Ning, Y.; Ding, J.; Sun, X.; Xie, Y.; Su, M.; Ma, C.; Pan, J.; Chen, J.; Jiang, H.; Qi, C.; Chen, J.; Jiang, H.; Qi, C.; Qi, C. HDAC9 deficiency promotes tumor progression by decreasing the CD8 + dendritic cell infiltration of the tumor microenvironment. J. Immunother. Cancer, 2020, 8(1), e000529.
[http://dx.doi.org/10.1136/jitc-2020-000529] [PMID: 32554611]
[27]
Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; Giannakopoulou, O.; Jiang, T.; Hamby, S.E.; Di Angelantonio, E.; Assimes, T.L.; Bottinger, E.P.; Chambers, J.C.; Clarke, R.; Palmer, C.N.A.; Cubbon, R.M.; Ellinor, P.; Ermel, R.; Evangelou, E.; Franks, P.W.; Grace, C.; Gu, D.; Hingorani, A.D.; Howson, J.M.M.; Ingelsson, E.; Kastrati, A.; Kessler, T.; Kyriakou, T.; Lehtimäki, T.; Lu, X.; Lu, Y.; März, W.; McPherson, R.; Metspalu, A.; Pujades-Rodriguez, M.; Ruusalepp, A.; Schadt, E.E.; Schmidt, A.F.; Sweeting, M.J.; Zalloua, P.A.; AlGhalayini, K.; Keavney, B.D.; Kooner, J.S.; Loos, R.J.F.; Patel, R.S.; Rutter, M.K.; Tomaszewski, M.; Tzoulaki, I.; Zeggini, E.; Erdmann, J.; Dedoussis, G.; Björkegren, J.L.M.; Schunkert, H.; Farrall, M.; Danesh, J.; Samani, N.J.; Watkins, H.; Deloukas, P. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet., 2017, 49(9), 1385-1391.
[http://dx.doi.org/10.1038/ng.3913] [PMID: 28714975]
[28]
Matsukura, M.; Ozaki, K.; Takahashi, A.; Onouchi, Y.; Morizono, T.; Komai, H.; Shigematsu, H.; Kudo, T.; Inoue, Y.; Kimura, H.; Hosaka, A.; Shigematsu, K.; Miyata, T.; Watanabe, T.; Tsunoda, T.; Kubo, M.; Tanaka, T. Genome-wide association study of peripheral arterial disease in a Japanese population. PLoS One, 2015, 10(10), e0139262.
[http://dx.doi.org/10.1371/journal.pone.0139262] [PMID: 26488411]
[29]
Klarin, D.; Lynch, J.; Aragam, K.; Chaffin, M.; Assimes, T.L.; Huang, J.; Lee, K.M.; Shao, Q.; Huffman, J.E.; Natarajan, P.; Arya, S.; Small, A.; Sun, Y.V.; Vujkovic, M.; Freiberg, M.S.; Wang, L.; Chen, J.; Saleheen, D.; Lee, J.S.; Miller, D.R.; Reaven, P.; Alba, P.R.; Patterson, O.V.; DuVall, S.L.; Boden, W.E.; Beckman, J.A.; Gaziano, J.M.; Concato, J.; Rader, D.J.; Cho, K.; Chang, K.M.; Wilson, P.W.F.; O’Donnell, C.J.; Kathiresan, S.; Tsao, P.S.; Damrauer, S.M. Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat. Med., 2019, 25(8), 1274-1279.
[http://dx.doi.org/10.1038/s41591-019-0492-5] [PMID: 31285632]
[30]
Malhotra, R.; Mauer, A.C.; Lino Cardenas, C.L.; Guo, X.; Yao, J.; Zhang, X.; Wunderer, F.; Smith, A.V.; Wong, Q.; Pechlivanis, S.; Hwang, S.J.; Wang, J.; Lu, L.; Nicholson, C.J.; Shelton, G.; Buswell, M.D.; Barnes, H.J.; Sigurslid, H.H.; Slocum, C.; Rourke, C.O.; Rhee, D.K.; Bagchi, A.; Nigwekar, S.U.; Buys, E.S.; Campbell, C.Y.; Harris, T.; Budoff, M.; Criqui, M.H.; Rotter, J.I.; Johnson, A.D.; Song, C.; Franceschini, N.; Debette, S.; Hoffmann, U.; Kälsch, H.; Nöthen, M.M.; Sigurdsson, S.; Freedman, B.I.; Bowden, D.W.; Jöckel, K.H.; Moebus, S.; Erbel, R.; Feitosa, M.F.; Gudnason, V.; Thanassoulis, G.; Zapol, W.M.; Lindsay, M.E.; Bloch, D.B.; Post, W.S.; O’Donnell, C.J. HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat. Genet., 2019, 51(11), 1580-1587.
[http://dx.doi.org/10.1038/s41588-019-0514-8] [PMID: 31659325]
[31]
Prestel, M.; Prell-Schicker, C.; Webb, T.; Malik, R.; Lindner, B.; Ziesch, N.; Rex-Haffner, M.; Röh, S.; Viturawong, T.; Lehm, M.; Mokry, M.; den Ruijter, H.; Haitjema, S.; Asare, Y.; Söllner, F.; Najafabadi, M.G.; Aherrahrou, R.; Civelek, M.; Samani, N.J.; Mann, M.; Haffner, C.; Dichgans, M. The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1. Stroke, 2019, 50(10), 2651-2660.
[http://dx.doi.org/10.1161/STROKEAHA.119.026112] [PMID: 31500558]
[32]
Fernández-Ruiz, I. HDAC9 linked to aortic calcification. Nat. Rev. Cardiol., 2020, 17(1), 6-7.
[http://dx.doi.org/10.1038/s41569-019-0308-9] [PMID: 31712770]
[33]
qingxu, G.; Yan, Z.; Jiannan, X.; Yunlong, L. Association between the gene polymorphisms of HDAC9 and the risk of atherosclerosis and ischemic stroke. Pathol. Oncol. Res., 2016, 22(1), 103-107.
[http://dx.doi.org/10.1007/s12253-015-9978-8] [PMID: 26347468]
[34]
Markus, H.S.; Mäkelä, K.M.; Bevan, S.; Raitoharju, E.; Oksala, N.; Bis, J.C.; O’Donnell, C.; Hainsworth, A.; Lehtimäki, T. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke, 2013, 44(5), 1220-1225.
[http://dx.doi.org/10.1161/STROKEAHA.111.000217] [PMID: 23449258]
[35]
Shroff, N.; Ander, B.P.; Zhan, X.; Stamova, B.; Liu, D.; Hull, H.; Hamade, F.R.; Dykstra-Aiello, C.; Ng, K.; Sharp, F.R.; Jickling, G.C. HDAC9 polymorphism alters blood gene expression in patients with large vessel atherosclerotic stroke. Transl. Stroke Res., 2019, 10(1), 19-25.
[http://dx.doi.org/10.1007/s12975-018-0619-x] [PMID: 29651704]
[36]
He, P.; Yu, H.; Jiang, L.; Chen, Z.; Wang, S.; Macrae, V.E.; Fu, X.; Zhu, D. Hdac9 inhibits medial artery calcification through down-regulation of Osterix. Vascul. Pharmacol., 2020, 132, 106775.
[http://dx.doi.org/10.1016/j.vph.2020.106775] [PMID: 32702412]
[37]
Chatterjee, T.K.; Idelman, G.; Blanco, V.; Piegore, M.G.; Weintraub, D.S.; Kumar, S.; Rajsheker, S.; Manka, D.; Rudich, S.M.; Tang, Y. Histone deacetylase 9i a negative regulator of adipogenic. J. Biol. Chem., 2011, 286, 27836-27847.
[http://dx.doi.org/10.1074/jbc.M111.262964] [PMID: 21680747]
[38]
Goo, B.; Ahmadieh, S.; Zarzour, A.; Yiew, N.K.H.; Kim, D.; Shi, H.; Greenway, J.; Cave, S.; Nguyen, J.; Aribindi, S.; Wendolowski, M.; Veerapaneni, P.; Ogbi, M.; Chen, W.; Lei, Y.; Lu, X.Y.; Kim, H.W.; Weintraub, N.L. LSex-Dependent Role of adipose tissue HDAC9 in diet-induced obesity and metabolic dysfunction. Cells, 2022, 11(17), 2698.
[http://dx.doi.org/10.3390/cells11172698] [PMID: 36078104]
[39]
Sugo, N.; Oshiro, H.; Takemura, M.; Kobayashi, T.; Kohno, Y.; Uesaka, N.; Song, W.J.; Yamamoto, N. Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur. J. Neurosci., 2010, 31(9)
[http://dx.doi.org/10.1111/j.1460-9568.2010.07218.x] [PMID: 20525066]
[40]
Milde, T.; Oehme, I.; Korshunov, A.; Kopp-Schneider, A.; Remke, M.; Northcott, P.; Deubzer, H.E.; Lodrini, M.; Taylor, M.D.; von Deimling, A.; Pfister, S.; Witt, O. HDAC5 and HDAC9 in medulloblastoma: Novel markers for risk stratification and role in tumor cell growth. Clin. Cancer Res., 2010, 16(12), 3240-3252.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0395] [PMID: 20413433]
[41]
Yang, R.; Wu, Y.; Wang, M.; Sun, Z.; Zou, J.; Zhang, Y.; Cui, H. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation. Oncotarget, 2015, 6(10), 7644-7656.
[http://dx.doi.org/10.18632/oncotarget.3223] [PMID: 25760078]
[42]
Zhang, Y.; Wu, D.; Xia, F.; Xian, H.; Zhu, X.; Cui, H.; Huang, Z. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma. Biochem. Biophys. Res. Commun., 2016, 473(2), 600-606.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.129] [PMID: 27033599]
[43]
Freese, K.; Seitz, T.; Dietrich, P.; Lee, S.M.L.; Thasler, W.E.; Bosserhoff, A.; Hellerbrand, C. Histone deacetylase expressions in hepatocellular carcinoma and functional effects of histone deacetylase inhibitors on liver cancer cells in vitro. Cancers (Basel), 2019, 11(10), 1587.
[http://dx.doi.org/10.3390/cancers11101587] [PMID: 31635225]
[44]
Kanki, K.; Watanabe, R.; Nguyen Thai, L.; Zhao, C.H.; Naito, K. Hdac9 is preferentially expressed in dedifferentiated hepatocellular carcinoma cells and is involved in an anchorage-independent growth. Cancers (Basel), 2020, 12(10), 2734.
[http://dx.doi.org/10.3390/cancers12102734] [PMID: 32977608]
[45]
Xu, L.; Wang, J.; Liu, B.; Fu, J.; Zhao, Y.; Yu, S.; Shen, L.; Yan, X.; Su, J. HDAC9 contributes to serous ovarian cancer progression through regulating epithelial–mesenchymal transition. Biomedicines, 2022, 10(2), 374.
[http://dx.doi.org/10.3390/biomedicines10020374] [PMID: 35203583]
[46]
Li, H.; Li, X.; Lin, H.; Gong, J. High HDAC9 is associated with poor prognosis and promotes malignant progression in pancreatic ductal adenocarcinoma. Mol. Med. Rep., 2019, 21(2), 822-832.
[http://dx.doi.org/10.3892/mmr.2019.10869] [PMID: 31974610]
[47]
Xiong, K.; Zhang, H.; Du, Y.; Tian, J.; Ding, S. Identification of HDAC9 as a viable therapeutic target for the treatment of gastric cancer. Exp. Mol. Med., 2019, 51(8), 1-15.
[http://dx.doi.org/10.1038/s12276-019-0301-8] [PMID: 31451695]
[48]
Lapierre, M.; Linares, A.; Dalvai, M.; Duraffourd, C.; Bonnet, S.; Boulahtouf, A.; Rodriguez, C.; Jalaguier, S.; Assou, S.; Orsetti, B.; Balaguer, P.; Maudelonde, T.; Blache, P.; Bystricky, K.; Boulle, N.; Cavaillès, V. Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget, 2016, 7(15), 19693-19708.
[http://dx.doi.org/10.18632/oncotarget.7564] [PMID: 26930713]
[49]
Huang, Y.; Jian, W.; Zhao, J.; Wang, G. Overexpression of HDAC9 is associated with poor prognosis and tumor progression of breast cancer in Chinese females. OncoTargets Ther., 2018, 11, 2177-2184.
[http://dx.doi.org/10.2147/OTT.S164583] [PMID: 29713186]
[50]
Salgado, E.; Bian, X.; Feng, A.; Shim, H.; Liang, Z. HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206. Biochem. Biophys. Res. Commun., 2018, 503(2), 1087-1091.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.120] [PMID: 29936177]
[51]
Lian, B.; Pei, Y.C.; Jiang, Y.Z.; Xue, M.Z.; Li, D.Q.; Li, X.G.; Zheng, Y.Z.; Liu, X.Y.; Qiao, F.; Sun, W.L.; Ling, H.; He, M.; Yao, L.; Hu, X.; Shao, Z.M. Truncated HDAC9 identified by integrated genome-wide screen as the key modulator for paclitaxel resistance in triple-negative breast cancer. Theranostics, 2020, 10(24), 11092-11109.
[http://dx.doi.org/10.7150/thno.44997] [PMID: 33042272]
[52]
Liang, Z.; Feng, A.; Shim, H. RETRACTED ARTICLE: MicroRNA-30c-regulated HDAC9 mediates chemoresistance of breast cancer. Cancer Chemother. Pharmacol., 2020, 85(2), 413-423.
[http://dx.doi.org/10.1007/s00280-019-04024-9] [PMID: 31907648]
[53]
de Zoeten, E.F.; Wang, L.; Sai, H.; Dillmann, W.H.; Hancock, W.W. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology, 2010, 138(2), 583-594.
[http://dx.doi.org/10.1053/j.gastro.2009.10.037] [PMID: 19879272]
[54]
Lenoir, O.; Flosseau, K.; Ma, F.X.; Blondeau, B.; Mai, A.; Bassel-Duby, R.; Ravassard, P.; Olson, E.N.; Haumaitre, C.; Scharfmann, R. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes, 2011, 60(11), 2861-2871.
[http://dx.doi.org/10.2337/db11-0440] [PMID: 21953612]
[55]
Macpherson, P.C.D.; Farshi, P.; Goldman, D. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development, 2015, 142(23), dev.125674.
[http://dx.doi.org/10.1242/dev.125674] [PMID: 26483211]
[56]
Dichgans, M.; Malik, R.; König, I.R.; Rosand, J.; Clarke, R.; Gretarsdottir, S.; Thorleifsson, G.; Mitchell, B.D.; Assimes, T.L.; Levi, C.; O’Donnell, C.J.; Fornage, M.; Thorsteinsdottir, U.; Psaty, B.M.; Hengstenberg, C.; Seshadri, S.; Erdmann, J.; Bis, J.C.; Peters, A.; Boncoraglio, G.B.; März, W.; Meschia, J.F.; Kathiresan, S.; Ikram, M.A.; McPherson, R.; Stefansson, K.; Sudlow, C.; Reilly, M.P.; Thompson, J.R.; Sharma, P.; Hopewell, J.C.; Chambers, J.C.; Watkins, H.; Rothwell, P.M.; Roberts, R.; Markus, H.S.; Samani, N.J.; Farrall, M.; Schunkert, H.; Gschwendtner, A.; Bevan, S.; Chen, Y-C.; DeStefano, A.L.; Parati, E.A.; Quertermous, T.; Ziegler, A.; Boerwinkle, E.; Holm, H.; Fischer, M.; Kessler, T.; Willenborg, C.; Laaksonen, R.; Voight, B.F.; Stewart, A.F.R.; Rader, D.J.; Hall, A.S.; Kooner, J.S. Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants. Stroke, 2014, 45(1), 24-36.
[http://dx.doi.org/10.1161/STROKEAHA.113.002707] [PMID: 24262325]
[57]
Lu, S.; Li, H.; Li, K.; Fan, X.D. HDAC9 promotes brain ischemic injury by provoking IκBα/NF-κB and MAPKs signaling pathways. Biochem. Biophys. Res. Commun., 2018, 503(3), 1322-1329.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.043] [PMID: 30031609]
[58]
Akinyemi, R.; Tiwari, H.K.; Arnett, D.K.; Ovbiagele, B.; Irvin, M.R.; Wahab, K.; Sarfo, F.; Srinivasasainagendra, V.; Adeoye, A.; Perry, R.T.; Akpalu, A.; Jenkins, C.; Arulogun, O.; Gebregziabher, M.; Owolabi, L.; Obiako, R.; Sanya, E.; Komolafe, M.; Fawale, M.; Adebayo, P.; Osaigbovo, G.; Sunmonu, T.; Olowoyo, P.; Chukwuonye, I.; Obiabo, Y.; Onoja, A.; Akinyemi, J.; Ogbole, G.; Melikam, S.; Saulson, R.; Owolabi, M. APOL1, CDKN2A/CDKN2B, and HDAC9 polymorphisms and small vessel ischemic stroke. Acta Neurol. Scand., 2018, 137(1), 133-141.
[http://dx.doi.org/10.1111/ane.12847] [PMID: 28975602]
[59]
Zhou, X.; Guan, T.; Li, S.; Jiao, Z.; Lu, X.; Huang, X.; Ji, Y.; Ji, Q. The association between HDAC9 gene polymorphisms and stroke risk in the Chinese population: A meta-analysis. Sci. Rep., 2017, 7(1), 41538.
[http://dx.doi.org/10.1038/srep41538] [PMID: 28145521]
[60]
Hu, S.; Cho, E.H.; Lee, J.Y. Histone deacetylase 9: Its role in the pathogenesis of diabetes and other chronic diseases. Diabetes Metab. J., 2020, 44(2), 234-244.
[http://dx.doi.org/10.4093/dmj.2019.0243] [PMID: 32347025]
[61]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[62]
Lu, Y.; Tan, L.; Wang, X. Circular HDAC9/microRNA-138/sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci. Bull., 2019, 35(5), 877-888.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[63]
Asare, Y.; Campbell-James, T.A.; Bokov, Y.; Yu, L.L.; Prestel, M.; El Bounkari, O.; Roth, S.; Megens, R.T.A.; Straub, T.; Thomas, K.; Yan, G.; Schneider, M.; Ziesch, N.; Tiedt, S.; Silvestre-Roig, C.; Braster, Q.; Huang, Y.; Schneider, M.; Malik, R.; Haffner, C.; Liesz, A.; Soehnlein, O.; Bernhagen, J.; Dichgans, M. Histone deacetylase 9 activates IKK to regulate atherosclerotic plaque vulnerability. Circ. Res., 2020, 127(6), 811-823.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316743] [PMID: 32546048]
[64]
Azghandi, S.; Prell, C.; van der Laan, S.W.; Schneider, M.; Malik, R.; Berer, K.; Gerdes, N.; Pasterkamp, G.; Weber, C.; Haffner, C.; Dichgans, M. Deficiency of the stroke relevant HDAC9 gene attenuates atherosclerosis in accord with allele-specific effects at 7p21.1. Stroke, 2015, 46(1), 197-202.
[http://dx.doi.org/10.1161/STROKEAHA.114.007213] [PMID: 25388417]
[65]
Das, S.; Natarajan, R. HDAC9: An inflammatory link in atherosclerosis. Circ. Res., 2020, 127(6), 824-826.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317723] [PMID: 32853095]
[66]
Cao, Q.; Rong, S.; Repa, J.J.; Clair, R.S.; Parks, J.S.; Mishra, N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1871-1879.
[http://dx.doi.org/10.1161/ATVBAHA.114.303393] [PMID: 25035344]
[67]
Zhang, C.L.; McKinsey, T.A.; Chang, S.; Antos, C.L.; Hill, J.A.; Olson, E.N. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 2002, 110(4), 479-488.
[http://dx.doi.org/10.1016/S0092-8674(02)00861-9] [PMID: 12202037]
[68]
Wong, R.H.F.; Chang, I.; Hudak, C.S.S.; Hyun, S.; Kwan, H.Y.; Sul, H.S. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell, 2009, 136(6), 1056-1072.
[http://dx.doi.org/10.1016/j.cell.2008.12.040] [PMID: 19303849]
[69]
Chatterjee, T.K.; Basford, J.E.; Yiew, K.H.; Stepp, D.W.; Hui, D.Y.; Weintraub, N.L. Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease. Adipocyte, 2014, 3(4), 333-338.
[http://dx.doi.org/10.4161/adip.28814] [PMID: 26317058]
[70]
Džamić, A.M.; Matejić, J.S. Plant products in the prevention of diabetes mellitus. Mini Rev. Med. Chem., 2022, 22(10), 1395-1419.
[http://dx.doi.org/10.2174/1389557521666211116122232] [PMID: 34784862]
[71]
Sivakumar, P.M.; Zarrabi, A.; Dehghani, P.; Rad, M.E.; Zarepour, A. An insight into the polymeric nanoparticle’s applications in diabetes diagnosis and treatment. Mini Rev. Med. Chem., 2023, 23(2), 192-216.
[http://dx.doi.org/10.2174/1389557521666211116123002] [PMID: 34784864]
[72]
Chen, J.; Zhang, Z.; Wang, N.; Guo, M.; Chi, X.; Pan, Y.; Jiang, J.; Niu, J.; Ksimu, S.; Li, J.Z.; Chen, X.; Wang, Q. Role of HDAC9-FoxO1 axis in the transcriptional Program associated with hepatic gluconeogenesis. Sci. Rep., 2017, 7(1), 6102.
[http://dx.doi.org/10.1038/s41598-017-06328-3] [PMID: 28733598]
[73]
Zou, Y.; Gong, N.; Cui, Y.; Wang, X.; Cui, A.; Chen, Q.; Jiao, T.; Dong, X.; Yang, H.; Zhang, S.; Fang, F.; Chang, Y. Forkhead box P1 (FOXP1) transcription factor regulates hepatic glucose homeostasis. J. Biol. Chem., 2015, 290(51), 30607-30615.
[http://dx.doi.org/10.1074/jbc.M115.681627] [PMID: 26504089]
[74]
Chen, J.; Wang, N.; Dong, M.; Guo, M.; Zhao, Y.; Zhuo, Z.; Zhang, C.; Chi, X.; Pan, Y.; Jiang, J.; Tang, H.; Niu, J.; Yang, D.; Li, Z.; Han, X.; Wang, Q.; Chen, X. The metabolic regulator histone deacetylase 9 contributes to glucose homeostasis abnormality induced by hepatitis C virus infection. Diabetes, 2015, 64(12), 4088-4098.
[http://dx.doi.org/10.2337/db15-0197] [PMID: 26420860]
[75]
Li, C.J.; Cheng, P.; Liang, M.K.; Chen, Y.S.; Lu, Q.; Wang, J.Y.; Xia, Z.Y.; Zhou, H.D.; Cao, X.; Xie, H.; Liao, E.Y.; Luo, X.H. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Invest., 2015, 125(4), 1509-1522.
[http://dx.doi.org/10.1172/JCI77716] [PMID: 25751060]
[76]
Khamis, A.; Boutry, R.; Canouil, M.; Mathew, S.; Lobbens, S.; Crouch, H.; Andrew, T.; Abderrahmani, A.; Tamanini, F.; Froguel, P. Histone deacetylase 9 promoter hypomethylation associated with adipocyte dysfunction is a statin-related metabolic effect. Clin. Epigenetics, 2020, 12(1), 68.
[http://dx.doi.org/10.1186/s13148-020-00858-w] [PMID: 32410704]
[77]
Zhang, Y.; Yang, Y.; Yang, F.; Liu, X.; Zhan, P.; Wu, J.; Wang, X.; Wang, Z.; Tang, W.; Sun, Y.; Zhang, Y.; Xu, Q.; Shang, J.; Zhen, J.; Liu, M.; Yi, F. HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice. Nat. Commun., 2023, 14(1), 3007.
[http://dx.doi.org/10.1038/s41467-023-38771-4] [PMID: 37230975]
[78]
Liu, Y. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int., 2006, 69(2), 213-217.
[http://dx.doi.org/10.1038/sj.ki.5000054] [PMID: 16408108]
[79]
Li, H.; Peng, X.; Wang, Y.; Cao, S.; Xiong, L.; Fan, J.; Wang, Y.; Zhuang, S.; Yu, X.; Mao, H. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2 /M arrest and renal fibrosis. Autophagy, 2016, 12(9), 1472-1486.
[http://dx.doi.org/10.1080/15548627.2016.1190071] [PMID: 27304991]
[80]
Sako, K.; Furuichi, K.; Makiishi, S.; Yamamura, Y.; Okumura, T.; Le, H.T.; Kitajima, S.; Toyama, T.; Hara, A.; Iwata, Y.; Sakai, N.; Shimizu, M.; Niimura, F.; Matsusaka, T.; Kaneko, S.; Wada, T. Cyclin-dependent kinase 4-related tubular epithelial cell proliferation is regulated by Paired box gene 2 in kidney ischemia-reperfusion injury. Kidney Int., 2022, 102(1), 45-57.
[http://dx.doi.org/10.1016/j.kint.2022.03.022] [PMID: 35483529]
[81]
Humphreys, B.D.; Valerius, M.T.; Kobayashi, A.; Mugford, J.W.; Soeung, S.; Duffield, J.S.; McMahon, A.P.; Bonventre, J.V. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2008, 2(3), 284-291.
[http://dx.doi.org/10.1016/j.stem.2008.01.014] [PMID: 18371453]
[82]
Li, H.; Duann, P.; Li, Z.; Zhou, X.; Ma, J.; Rovin, B.H.; Lin, P.H. The cell membrane repair protein MG53 modulates transcription factor NF-κB signaling to control kidney fibrosis. Kidney Int., 2022, 101(1), 119-130.
[http://dx.doi.org/10.1016/j.kint.2021.09.027] [PMID: 34757120]
[83]
Puche, J.E.; Saiman, Y.; Friedman, S.L. Hepatic stellate cells and liver fibrosis. Compr. Physiol., 2013, 3(4), 1473-1492.
[http://dx.doi.org/10.1002/cphy.c120035] [PMID: 24265236]
[84]
Yang, Y.; Bae, M.; Park, Y.K.; Lee, Y.; Pham, T.X.; Rudraiah, S.; Manautou, J.; Koo, S.I.; Lee, J.Y. Histone deacetylase 9 plays a role in the antifibrogenic effect of astaxanthin in hepatic stellate cells. J. Nutr. Biochem., 2017, 40, 172-177.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.003] [PMID: 27915160]
[85]
Claveria-Cabello, A.; Colyn, L.; Arechederra, M.; Urman, J.M.; Berasain, C.; Avila, M.A.; Fernandez-Barrena, M.G. Epigenetics in liver fibrosis: Could HDACs be a therapeutic target? Cells, 2020, 9(10), 2321.
[http://dx.doi.org/10.3390/cells9102321] [PMID: 33086678]
[86]
Moran-Salvador, E.; Mann, J. Epigenetics and liver fibrosis. Cell. Mol. Gastroenterol. Hepatol., 2017, 4(1), 125-134.
[http://dx.doi.org/10.1016/j.jcmgh.2017.04.007] [PMID: 28593184]
[87]
Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[88]
Rippe, R.A.; Brenner, D.A. From quiescence to activation: Gene regulation in hepatic stellate cells. Gastroenterology, 2004, 127(4), 1260-1262.
[http://dx.doi.org/10.1053/j.gastro.2004.08.028] [PMID: 15481004]
[89]
Li, X.; Wu, X.Q.; Xu, T.; Li, X.F.; Yang, Y.; Li, W.X.; Huang, C.; Meng, X.M.; Li, J. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicol. Appl. Pharmacol., 2016, 306, 58-68.
[http://dx.doi.org/10.1016/j.taap.2016.07.003] [PMID: 27396813]
[90]
Barcena-Varela, M.; Colyn, L.; Fernandez-Barrena, M.G. Epigenetic mechanisms in hepatic stellate cell activation during liver fibrosis and carcinogenesis. Int. J. Mol. Sci., 2019, 20(10), 2507.
[http://dx.doi.org/10.3390/ijms20102507] [PMID: 31117267]
[91]
Xu, J.; Kisseleva, T. Bone marrow-derived fibrocytes contribute to liver fibrosis. Exp. Biol. Med. (Maywood), 2015, 240(6), 691-700.
[http://dx.doi.org/10.1177/1535370215584933] [PMID: 25966982]
[92]
Friedman, S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev., 2008, 88(1), 125-172.
[http://dx.doi.org/10.1152/physrev.00013.2007] [PMID: 18195085]
[93]
Mannaerts, I.; Eysackers, N.; Onyema, O.O.; Van Beneden, K.; Valente, S.; Mai, A.; Odenthal, M.; van Grunsven, L.A. Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29. PLoS One, 2013, 8(1), e55786.
[http://dx.doi.org/10.1371/journal.pone.0055786] [PMID: 23383282]
[94]
Li, Y.; Li, J.; Yu, H.; Liu, Y.; Song, H.; Tian, X.; Liu, D.; Yan, C.; Han, Y. HOXA5-miR-574-5p axis promotes adipogenesis and alleviates insulin resistance. Mol. Ther. Nucleic Acids, 2022, 27, 200-210.
[http://dx.doi.org/10.1016/j.omtn.2021.08.031] [PMID: 34976438]
[95]
Jannat Ali Pour, N.; Meshkani, R.; Toolabi, K.; Mohassel Azadi, S.; Zand, S.; Emamgholipour, S. Adipose tissue mRNA expression of HDAC1, HDAC3 and HDAC9 in obese women in relation to obesity indices and insulin resistance. Mol. Biol. Rep., 2020, 47(5), 3459-3468.
[http://dx.doi.org/10.1007/s11033-020-05431-5] [PMID: 32277440]
[96]
Chatterjee, T.K.; Idelman, G.; Blanco, V.; Blomkalns, A.L.; Piegore, M.G., Jr; Weintraub, D.S.; Kumar, S.; Rajsheker, S.; Manka, D.; Rudich, S.M.; Tang, Y.; Hui, D.Y.; Bassel-Duby, R.; Olson, E.N.; Lingrel, J.B.; Ho, S.M.; Weintraub, N.L. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J. Biol. Chem., 2011, 286(31), 27836-27847.
[http://dx.doi.org/10.1074/jbc.M111.262964] [PMID: 21680747]
[97]
Chatterjee, T.K.; Basford, J.E.; Knoll, E.; Tong, W.S.; Blanco, V.; Blomkalns, A.L.; Rudich, S.; Lentsch, A.B.; Hui, D.Y.; Weintraub, N.L. HDAC9 knockout mice are protected from adipose tissue dysfunction and systemic metabolic disease during high-fat feeding. Diabetes, 2014, 63(1), 176-187.
[http://dx.doi.org/10.2337/db13-1148] [PMID: 24101673]
[98]
Gross, D.N.; van den Heuvel, A.P.J.; Birnbaum, M.J. The role of FoxO in the regulation of metabolism. Oncogene, 2008, 27(16), 2320-2336.
[http://dx.doi.org/10.1038/onc.2008.25] [PMID: 18391974]
[99]
Zhang, L.; Qi, M.; Chen, J.; Zhao, J.; Li, L.; Hu, J.; Jin, Y.; Liu, W. Impaired autophagy triggered by HDAC9 in mesenchymal stem cells accelerates bone mass loss. Stem Cell Res. Ther., 2020, 11(1), 269.
[http://dx.doi.org/10.1186/s13287-020-01785-6] [PMID: 32620134]
[100]
Wang, B.; Gong, S.; Han, L.; Shao, W.; Li, Z.; Xu, J.; Lv, X.; Xiao, B.; Feng, Y. Knockdown of HDAC9 inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells partially by suppressing the MAPK signaling pathway. Clin. Interv. Aging, 2022, 17, 777-787.
[http://dx.doi.org/10.2147/CIA.S361008] [PMID: 35592642]
[101]
Jin, Z.; Wei, W.; Huynh, H.; Wan, Y. HDAC9 inhibits osteoclastogenesis via mutual suppression of PPARγ/RANKL signaling. Mol. Endocrinol., 2015, 29(5), 730-738.
[http://dx.doi.org/10.1210/me.2014-1365] [PMID: 25793404]
[102]
Sun, M.; Zhou, X.; Chen, L.; Huang, S.; Leung, V.; Wu, N.; Pan, H.; Zhen, W.; Lu, W.; Peng, S. The regulatory roles of microRNAs in bone remodeling and perspectives as biomarkers in osteoporosis. BioMed Res. Int., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/1652417] [PMID: 27073801]
[103]
Yan, K.; Cao, Q.; Reilly, C.M.; Young, N.L.; Garcia, B.A.; Mishra, N. Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J. Biol. Chem., 2011, 286(33), 28833-28843.
[http://dx.doi.org/10.1074/jbc.M111.233932] [PMID: 21708950]
[104]
Xiao, Y.; Li, B.; Zhou, Z.; Hancock, W.W.; Zhang, H.; Greene, M.I. Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr. Opin. Immunol., 2010, 22(5), 583-591.
[http://dx.doi.org/10.1016/j.coi.2010.08.013] [PMID: 20869864]
[105]
Sanford, J.A.; Zhang, L.J.; Williams, M.R.; Gangoiti, J.A.; Huang, C.M.; Gallo, R.L. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci. Immunol., 2016, 1(4), eaah4609.
[http://dx.doi.org/10.1126/sciimmunol.aah4609] [PMID: 28783689]
[106]
Sanford, J.A.; O’Neill, A.M.; Zouboulis, C.C.; Gallo, R.L. Short-chain fatty acids from cutibacterium acnes activate both a canonical and epigenetic inflammatory response in human sebocytes. J. Immunol., 2019, 202(6), 1767-1776.
[http://dx.doi.org/10.4049/jimmunol.1800893] [PMID: 30737272]
[107]
Wakabayashi, K.; Okamura, M.; Tsutsumi, S.; Nishikawa, N.S.; Tanaka, T.; Sakakibara, I.; Kitakami, J.; Ihara, S.; Hashimoto, Y.; Hamakubo, T.; Kodama, T.; Aburatani, H.; Sakai, J. The peroxisome proliferator-activated receptor γ/retinoid X receptor α heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol. Cell. Biol., 2009, 29(13), 3544-3555.
[http://dx.doi.org/10.1128/MCB.01856-08] [PMID: 19414603]
[108]
Tao, R.; de Zoeten, E.F.; Özkaynak, E.; Chen, C.; Wang, L.; Porrett, P.M.; Li, B.; Turka, L.A.; Olson, E.N.; Greene, M.I.; Wells, A.D.; Hancock, W.W. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med., 2007, 13(11), 1299-1307.
[http://dx.doi.org/10.1038/nm1652] [PMID: 17922010]
[109]
Tasneem, S.; Alam, M.M.; Amir, M.; Akhter, M.; Parvez, S.; Verma, G.; Nainwal, L.M.; Equbal, A.; Anwer, T.; Shaquiquzzaman, M. Heterocyclic moieties as HDAC inhibitors: Role in cancer therapeutics. Mini Rev. Med. Chem., 2022, 22(12), 1648-1706.
[http://dx.doi.org/10.2174/1389557519666211221144013] [PMID: 34939540]
[110]
Moinul, M.; Khatun, S.; Amin, S.A.; Jha, T.; Gayen, S. Recent trends in fragment-based anticancer drug design strategies against different targets: A mini-review. Biochem. Pharmacol., 2022, 206, 115301.
[http://dx.doi.org/10.1016/j.bcp.2022.115301] [PMID: 36265594]
[111]
Amin, S.A.; Khatun, S.; Gayen, S.; Das, S.; Jha, T. Are inhibitors of histone deacetylase 8 (HDAC8) effective in hematological cancers especially acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)? Eur. J. Med. Chem., 2023, 258, 115594.
[http://dx.doi.org/10.1016/j.ejmech.2023.115594] [PMID: 37429084]
[112]
Sardar, S. Jyotisha; Amin, S.A.; Khatun, S.; Qureshi, I.A.; Patil, U.K.; Jha, T.; Gayen, S. Identification of structural fingerprints among natural inhibitors of HDAC1 to accelerate nature-inspired drug discovery in cancer epigenetics. J. Biomol. Struct. Dyn., 2023, 1-5, 1-15.
[http://dx.doi.org/10.1080/07391102.2023.2227710]
[113]
Zheng, Y.; Yin, L.; Chen, H.; Yang, S.; Pan, C.; Lu, S.; Miao, M.; Jiao, B. miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett., 2012, 586(16), 2396-2403.
[http://dx.doi.org/10.1016/j.febslet.2012.05.054] [PMID: 22684007]
[114]
Zheng, Y.; Chen, H.; Yin, M.; Ye, X.; Chen, G.; Zhou, X.; Yin, L.; Zhang, C.; Ding, B. MiR-376a and histone deacetylation 9 form a regu-latory circuitry in hepatocellular carcinoma. Cell. Physiol. Biochem., 2015, 35(2), 729-739.
[http://dx.doi.org/10.1159/000369733] [PMID: 25613642]
[115]
Sekizawa, H.; Amaike, K.; Itoh, Y.; Suzuki, T.; Itami, K.; Yamaguchi, J. Late-stage C-H coupling enables rapid identification of HDAC inhibitors: Synthesis and evaluation of NCH-31 analogues. ACS Med. Chem. Lett., 2014, 5(5), 582-586.
[http://dx.doi.org/10.1021/ml500024s] [PMID: 24900884]
[116]
Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731.
[http://dx.doi.org/10.1016/j.bmc.2014.05.001] [PMID: 24864038]
[117]
Auzzas, L.; Larsson, A.; Matera, R.; Baraldi, A.; Deschênes-Simard, B.; Giannini, G.; Cabri, W.; Battistuzzi, G.; Gallo, G.; Ciacci, A.; Vesci, L.; Pisano, C.; Hanessian, S. Non-natural macrocyclic inhibitors of histone deacetylases: Design, synthesis, and activity. J. Med. Chem., 2010, 53(23), 8387-8399.
[http://dx.doi.org/10.1021/jm101092u] [PMID: 21073160]
[118]
Andrianov, V.; Gailite, V.; Lola, D.; Loza, E.; Semenikhina, V.; Kalvinsh, I.; Finn, P.; Petersen, K.D.; Ritchie, J.W.A.; Khan, N.; Tumber, A.; Collins, L.S.; Vadlamudi, S.M.; Björkling, F.; Sehested, M. Novel amide derivatives as inhibitors of histone deacetylase: Design, synthesis and SAR. Eur. J. Med. Chem., 2009, 44(3), 1067-1085.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.020] [PMID: 18672316]
[119]
Pan, Z.; Li, X.; Wang, Y.; Jiang, Q.; Jiang, L.; Zhang, M.; Zhang, N.; Wu, F.; Liu, B.; He, G. Discovery of thieno [2, 3-d] pyrimidine-based hydroxamic acid derivatives as bromodomain-containing protein 4/histone deacetylase dual inhibitors induce autophagic cell death in colorectal carcinoma cells. J. Med. Chem., 2020, 63(7), 3678-3700.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02178] [PMID: 32153186]
[120]
Yang, Z.; Shen, M.; Tang, M.; Zhang, W.; Cui, X.; Zhang, Z.; Pei, H.; Li, Y.; Hu, M.; Bai, P.; Chen, L. Discovery of 1,2,4-oxadiazole-Containing hydroxamic acid derivatives as histone deacetylase inhibitors potential application in cancer therapy. Eur. J. Med. Chem., 2019, 178, 116-130.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.089] [PMID: 31177073]
[121]
Chao, S.W.; Chen, L.C.; Yu, C.C.; Liu, C.Y.; Lin, T.E.; Guh, J.H.; Wang, C.Y.; Chen, C.Y.; Hsu, K.C.; Huang, W.J. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities. Eur. J. Med. Chem., 2018, 143, 792-805.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.092] [PMID: 29223096]
[122]
Chen, Y.; Wang, X.; Xiang, W.; He, L.; Tang, M.; Wang, F.; Wang, T.; Yang, Z.; Yi, Y.; Wang, H.; Niu, T.; Zheng, L.; Lei, L.; Li, X.; Song, H.; Chen, L. Development of purine-based hydroxamic acid derivatives: Potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2016, 59(11), 5488-5504.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00579] [PMID: 27186676]
[123]
Luckhurst, C.A.; Aziz, O.; Beaumont, V.; Bürli, R.W.; Breccia, P.; Maillard, M.C.; Haughan, A.F.; Lamers, M.; Leonard, P.; Matthews, K.L.; Raphy, G.; Stott, A.J.; Munoz-Sanjuan, I.; Thomas, B.; Wall, M.; Wishart, G.; Yates, D.; Dominguez, C. Development and characterization of a CNS-penetrant benzhydryl hydroxamic acid class IIa histone deacetylase inhibitor. Bioorg. Med. Chem. Lett., 2019, 29(1), 83-88.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.009] [PMID: 30463802]
[124]
Lee, H.Y.; Tsai, A.C.; Chen, M.C.; Shen, P.J.; Cheng, Y.C.; Kuo, C.C.; Pan, S.L.; Liu, Y.M.; Liu, J.F.; Yeh, T.K.; Wang, J.C.; Chang, C.Y.; Chang, J.Y.; Liou, J.P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem., 2014, 57(10), 4009-4022.
[http://dx.doi.org/10.1021/jm401899x] [PMID: 24766560]
[125]
Li, X.; Tu, Z.; Li, H.; Liu, C.; Li, Z.; Sun, Q.; Yao, Y.; Liu, J.; Jiang, S. Biological evaluation of new largazole analogues: Alteration of macrocyclic scaffold with click chemistry. ACS Med. Chem. Lett., 2013, 4(1), 132-136.
[http://dx.doi.org/10.1021/ml300371t] [PMID: 24900575]
[126]
Fass, D.M.; Shah, R.; Ghosh, B.; Hennig, K.; Norton, S.; Zhao, W-N.; Reis, S.A.; Klein, P.S.; Mazitschek, R.; Maglathlin, R.L.; Lewis, T.A.; Haggarty, S.J. Short-chain HDAC inhibitors differentially affect vertebrate development and neuronal chromatin. ACS Med. Chem. Lett., 2011, 2(1), 39-42.
[http://dx.doi.org/10.1021/ml1001954] [PMID: 21874153]
[127]
Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J. Med. Chem., 2016, 59(4), 1455-1470.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01342] [PMID: 26443078]
[128]
Lee, H.Y.; Nepali, K.; Huang, F.I.; Chang, C.Y.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Yang, C.R.; Liou, J.P. N-Hydroxycarbonylbenylamino)quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem., 2018, 61(3), 905-917.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01404] [PMID: 29304284]
[129]
Mehndiratta, S.; Lin, M.H.; Wu, Y.W.; Chen, C.H.; Wu, T.Y.; Chuang, K.H.; Chao, M.W.; Chen, Y.Y.; Pan, S.L.; Chen, M.C.; Liou, J.P. N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression. Eur. J. Med. Chem., 2020, 185, 111725.
[http://dx.doi.org/10.1016/j.ejmech.2019.111725] [PMID: 31655430]
[130]
Yao, Y.; Tu, Z.; Liao, C.; Wang, Z.; Li, S.; Yao, H.; Li, Z.; Jiang, S. Discovery of novel class I histone deacetylase inhibitors with promising in vitro and in vivo antitumor activities. J. Med. Chem., 2015, 58(19), 7672-7680.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01044] [PMID: 26331334]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy