Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Polymersomes as Next Generation Nanocarriers for Drug Delivery: Recent Advances, Patents, Synthesis and Characterization

Author(s): Surya Goel*, Ruchi Singh and Megha Tonk

Volume 20, Issue 6, 2024

Published on: 07 November, 2023

Page: [753 - 768] Pages: 16

DOI: 10.2174/0115734137271094231101062844

Price: $65

Abstract

Background: Polymersomes (PS), self-assembled nanostructures formed by amphiphilic block copolymers, have garnered significant attention in recent years due to their unique properties and versatile applications in the fields of drug delivery and biomedicine. They are being prepared for a wide range of complex medicinal compounds, including nucleic acids, proteins, and enzymes. Polymersomes have lately been used as vehicles for delivering varied therapeutic substances and regulating ROS (reactive oxygen species). Due to their immunogenic features, polymersomes could play a critical role in enhancing subunit vaccine and drug delivery against COVID-19 infection.

Objective: The prime purpose of this manuscript is to furnish an extensive overview of polymersomes, highlighting their recent advances, fabrication methods, characterization techniques, and pharmaceutical applications.

Methods: The article has been amassed using several online and offline manuscripts from reputed journals, books, and other resources. Besides this, various user-friendly interfaces, like Pubmed, Google Scholar, etc, have been utilized to gather the latest data about polymersomes. This domain encompasses recent advancements in the realm of innovations about the delivery of drugs through polymeric vesicles. This field involves innovations or developments in nanocarrier systems as they are efficaciously employed to deliver the desired moiety to the targeted site.

Results: PS have been discovered to exhibit remarkable promise in addressing various challenges associated with inadequate bioavailability, targeted drug delivery, dosing frequency, and diminished toxic effects. Over the past decade, such nanovesicles have been effectively employed as a complementary approach to address the issues arising from poorly soluble medications. However, this domain still requires further focus on novel breakthroughs.

Conclusion: Polymersomes demonstrate unparalleled potential as innovative carriers, exhibiting remarkable versatility and exceptional biocompatibility. This concise review underscores their extraordinary prospects in diverse fields, accentuating their distinctive attributes and opening new avenues for groundbreaking applications.

Keywords: Polymersomes, bioavailability, solubility, drug delivery, polymers, nanocarrier.

Graphical Abstract
[1]
Wong, C.K.; Stenzel, M.H.; Thordarson, P. Non-spherical polymersomes: Formation and characterization. Chem. Soc. Rev., 2019, 48(15), 4019-4035.
[http://dx.doi.org/10.1039/C8CS00856F] [PMID: 31187792]
[2]
Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev., 2018, 47(23), 8572-8610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
[3]
Gouveia, M.G.; Wesseler, J.P.; Ramaekers, J.; Weder, C.; Scholten, P.B.V.; Bruns, N. Polymersome-based protein drug delivery – quo vadis? Chem. Soc. Rev., 2023, 52(2), 728-778.
[http://dx.doi.org/10.1039/D2CS00106C] [PMID: 36537575]
[4]
Chen, P.; Deng, C.; Meng, F.; Zhang, J.; Cheng, R.; Zhong, Z. Chimaeric polymersomes based on poly(ethylene glycol)- b -poly(l -leucine)- b -poly(l -glutamic acid) for efficient delivery of doxorubicin hydrochloride into drug-resistant cancer cells. J. Control. Release, 2015, 213, e87-e88.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.145]
[5]
Pippa, N.; Pispas, S.; Demetzos, C. Polymer self-assembled nanostructures as innovative drug nanocarrier platforms. Curr. Pharm. Des., 2016, 22(19), 2788-2795.
[http://dx.doi.org/10.2174/1381612822666160217141232] [PMID: 26898736]
[6]
Tuguntaev, R.G.; Okeke, C.I.; Xu, J.; Li, C.; Wang, P.C.; Liang, X.J. Nanoscale polymersomes as anti-cancer drug carriers applied for pharmaceutical delivery. Curr. Pharm. Des., 2016, 22(19), 2857-2865.
[http://dx.doi.org/10.2174/1381612822666160217142319] [PMID: 26898733]
[7]
Scheerstra, J.F.; Wauters, A.C.; Tel, J.; Abdelmohsen, L.K.E.A.; van Hest, J.C.M. Polymersomes as a potential platform for cancer immunotherapy. Mater. Today Adv., 2022, 13, 100203.
[http://dx.doi.org/10.1016/j.mtadv.2021.100203]
[8]
Lee, J.S.; Feijen, J. Polymersomes for drug delivery: Design, formation and characterization. J. Control. Release, 2012, 161(2), 473-483.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.005] [PMID: 22020381]
[9]
Meng, F.; Zhong, Z.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules, 2009, 10(2), 197-209.
[http://dx.doi.org/10.1021/bm801127d] [PMID: 19123775]
[10]
Zhang, X.; Zhang, P. Polymersomes in Nanomedicine - A Review. Curr. Nanosci., 2017, 13(2), 124-129.
[http://dx.doi.org/10.2174/1573413712666161018144519]
[11]
Li, S.; Byrne, B.; Welsh, J.; Palmer, A.F. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol. Prog., 2007, 23(1), 278-285.
[PMID: 17269699]
[12]
Christian, N.A.; Milone, M.C.; Ranka, S.S.; Li, G.; Frail, P.R.; Davis, K.P.; Bates, F.S.; Therien, M.J.; Ghoroghchian, P.P.; June, C.H.; Hammer, D.A. Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug. Chem., 2007, 18(1), 31-40.
[http://dx.doi.org/10.1021/bc0601267] [PMID: 17226955]
[13]
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2(4), 249-255.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[14]
Levine, DH.; Ghoroghchian, PP.; Freudenberg, J.; Zhang, G.; Therien, MJ.; Greene, MI.; Hammer, DA.; Murali, R. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods, 2008, 46(1), 25-32.
[15]
Simón-Gracia, L.; Hunt, H.; Scodeller, P.D.; Gaitzsch, J.; Braun, G.B.; Willmore, A.M.A.; Ruoslahti, E.; Battaglia, G.; Teesalu, T. Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol. Cancer Ther., 2016, 15(4), 670-679.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0713-T] [PMID: 26880267]
[16]
Oroojalian, F.; Babaei, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Encapsulation of thermo-responsive gel in ph-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J. Control. Release, 2018, 288, 45-61.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.039] [PMID: 30171978]
[17]
Nosrati, H.; Adinehvand, R.; Manjili, H.K.; Rostamizadeh, K.; Danafar, H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG–PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm. Dev. Technol., 2018, 24(1), 89-98.
[PMID: 29307260]
[18]
Aibani, N.; Khan, T.N.; Callan, B. Liposome mimicking polymersomes; A comparative study of the merits of polymersomes in terms of formulation and stability. Int. J. Pharm. X, 2020, 2, 100040.
[http://dx.doi.org/10.1016/j.ijpx.2019.100040] [PMID: 31956860]
[19]
Zavvar, T.; Babaei, M.; Abnous, K.; Taghdisi, S.M.; Nekooei, S.; Ramezani, M.; Alibolandi, M. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int. J. Pharm., 2020, 578, 119091.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119091] [PMID: 32007591]
[20]
Xu, H.; Cui, W.; Zong, Z.; Tan, Y.; Xu, C.; Cao, J.; Lai, T.; Tang, Q.; Wang, Z.; Sui, X.; Wang, C. A facile method for anti-cancer drug encapsulation into polymersomes with a core-satellite structure. Drug Deliv., 2022, 29(1), 2414-2427.
[http://dx.doi.org/10.1080/10717544.2022.2103209] [PMID: 35904177]
[21]
Han, E.; Kim, D.; Cho, Y.; Lee, S.; Kim, J.; Kim, H. Development of polymersomes co-delivering doxorubicin and melittin to overcome multidrug resistance. Molecules, 2023, 28(3), 1087.
[http://dx.doi.org/10.3390/molecules28031087] [PMID: 36770754]
[22]
Zheng, Y.; Liu, Y.; Wu, Z.; Peng, C.; Wang, Z.; Yan, J.; Yan, Y.; Li, Z.; Liu, C.; Xue, J.; Tan, H.; Fu, Q.; Ding, M. Photoallosteric polymersomes toward on-demand drug delivery and multimodal cancer immunotherapy. Adv. Mater., 2023, 35(24), 2210986.
[http://dx.doi.org/10.1002/adma.202210986]
[23]
Martin, A.; Lalanne, P.; Weber-Vax, A.; Mutschler, A.; Lecommandoux, S. Controlling polymersome size through microfluidic-assisted self-assembly: Enabling ‘ready to use’ formulations for biological applications. Int. J. Pharm., 2023, 642, 123157.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123157] [PMID: 37348574]
[24]
Kiani-Dehkordi, B.; Vatanara, A.; Amini, M.; Hamidi, M.; Dibaei, M.; Norouzi, P.; Rezaei, S.; Khoshnazar, A.; Rouini, M.R. Preparation of polymersomes from synthesized hyaluronic acid-graft-poly(ε-caprolactone) copolymers for drug delivery to the brain. Mater. Today Chem., 2023, 30, 101504.
[http://dx.doi.org/10.1016/j.mtchem.2023.101504]
[25]
Petit, J.; Thomi, L.; Schultze, J.; Makowski, M.; Negwer, I.; Koynov, K.; Herminghaus, S.; Wurm, F.R.; Bäumchen, O.; Landfester, K. A modular approach for multifunctional polymersomes with controlled adhesive properties. Soft Matter, 2018, 14(6), 894-900.
[http://dx.doi.org/10.1039/C7SM01885A] [PMID: 29303200]
[26]
Ahmed, M. Nanomaterial Synthesis. Polymer Science and Nanotechnology; Elsevier, 2020, pp. 361-399.
[http://dx.doi.org/10.1016/B978-0-12-816806-6.00016-9]
[27]
Cook, A.B.; Clemons, T.D. Bottom-up versus top-down strategies for morphology control in polymer-based biomedical materials. Adv. NanoBiomed Res., 2022, 2(1), 2100087.
[http://dx.doi.org/10.1002/anbr.202100087]
[28]
Agha, A.; Waheed, W.; Stiharu, I.; Nerguizian, V.; Destgeer, G.; Abu-Nada, E.; Alazzam, A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Discover Nano, 2023, 18(1), 18.
[http://dx.doi.org/10.1186/s11671-023-03792-x] [PMID: 36800044]
[29]
Ianiro, A.; Wu, H.; van Rijt, M.M.J.; Vena, M.P.; Keizer, A.D.A.; Esteves, A.C.C.; Tuinier, R.; Friedrich, H.; Sommerdijk, N.A.J.M.; Patterson, J.P. Liquid–liquid phase separation during amphiphilic self-assembly. Nat. Chem., 2019, 11(4), 320-328.
[http://dx.doi.org/10.1038/s41557-019-0210-4] [PMID: 30778139]
[30]
Araste, F.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J. Control. Release, 2021, 330, 502-528.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.027] [PMID: 33358973]
[31]
Vlakh, E.; Ananyan, A.; Zashikhina, N.; Hubina, A.; Pogodaev, A.; Volokitina, M.; Sharoyko, V.; Tennikova, T. Preparation, characterization, and biological evaluation of poly(glutamic acid)-b-polyphenylalanine polymersomes. Polymers, 2016, 8(6), 212.
[http://dx.doi.org/10.3390/polym8060212] [PMID: 30979309]
[32]
Hasannia, M.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Synthesis of block copolymers used in polymersome fabrication: Application in drug delivery. J. Control. Release, 2022, 341, 95-117.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.010] [PMID: 34774891]
[33]
Kuperkar, K.; Patel, D.; Atanase, L.I.; Bahadur, P. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles. Polymers, 2022, 14(21), 4702.
[http://dx.doi.org/10.3390/polym14214702] [PMID: 36365696]
[34]
Tao, X.; Chen, H.; Trépout, S.; Cen, J.; Ling, J.; Li, M.H. Polymersomes with aggregation-induced emission based on amphiphilic block copolypeptoids. Chem. Commun., 2019, 55(90), 13530-13533.
[http://dx.doi.org/10.1039/C9CC07501A] [PMID: 31647088]
[35]
Chen, S.; Cornel, E.J.; Du, J.Z. Controlling membrane phase separation of polymersomes for programmed drug release. Chin. J. Polym. Sci., 2022, 40(9), 1006-1015.
[http://dx.doi.org/10.1007/s10118-022-2683-7]
[36]
Bobde, S.S. 16 - Polymersomes for targeting to brain tumors. Kumar, L.; Pathak, Y.Y. In: Nanocarriers for Drug-Targeting Brain Tumors; Micro and Nano Technologies; Elsevier, 2022; pp. 451-481.
[http://dx.doi.org/10.1016/B978-0-323-90773-6.00013-0]
[37]
Hu, Y.; Qiu, L. Polymersomes: Preparation and characterization. In: Methods in Molecular Biology; Weissig, v.; Elbayoumi, T., Ed.; Springer: New York, NY, 2019; Vol. 2000, pp. 247-265.
[http://dx.doi.org/10.1007/978-1-4939-9516-5_17]
[38]
Meerovich, I.; Dash, A.K. Polymersomes for drug delivery and other biomedical applications. In: Materials for Biomedical Engineering; Elsevier, 2019; pp. 269-309.
[http://dx.doi.org/10.1016/B978-0-12-818433-2.00008-X]
[39]
Apolinário, A.; Magoń, M.; Pessoa, A., Jr; Rangel-Yagui, C. Challenges for the self-assembly of poly(ethylene glycol)–poly(lactic acid) (peg-pla) into polymersomes: Beyond the theoretical paradigms. Nanomaterials, 2018, 8(6), 373.
[http://dx.doi.org/10.3390/nano8060373] [PMID: 29861449]
[40]
Fetsch, C.; Gaitzsch, J.; Messager, L.; Battaglia, G.; Luxenhofer, R. Self-assembly of amphiphilic block copolypeptoids – micelles, worms and polymersomes. Sci. Rep., 2016, 6(1), 33491.
[http://dx.doi.org/10.1038/srep33491] [PMID: 27666081]
[41]
Zhang, X.; Contini, C.; Constantinou, A.P.; Doutch, J.J.; Georgiou, T.K. How does the hydrophobic content of methacrylate ABA triblock copolymers affect polymersome formation? J. Polym. Sci., 2021, 59(15), 1724-1731.
[http://dx.doi.org/10.1002/pol.20210371]
[42]
Mohammadi, M.; Ramezani, M.; Abnous, K.; Alibolandi, M. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int. J. Pharm., 2017, 519(1-2), 287-303.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.037] [PMID: 28115259]
[43]
Köthe, T.; Martin, S.; Reich, G.; Fricker, G. Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers. Int. J. Pharm., 2020, 579, 119087.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119087] [PMID: 32213299]
[44]
Uhl, P.; Pantze, S.; Storck, P.; Parmentier, J.; Witzigmann, D.; Hofhaus, G.; Huwyler, J.; Mier, W.; Fricker, G. Oral delivery of vancomycin by tetraether lipid liposomes. Eur. J. Pharm. Sci., 2017, 108, 111-118.
[http://dx.doi.org/10.1016/j.ejps.2017.07.013] [PMID: 28716758]
[45]
Kumar, A.; Kaur, R.; Kumar, V.; Kumar, S.; Gehlot, R.; Aggarwal, P. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications. Trends Food Sci. Technol., 2022, 128, 22-37.
[http://dx.doi.org/10.1016/j.tifs.2022.07.016]
[46]
Sánchez-López, E.; Ettcheto, M.; Egea, M.A.; Espina, M.; Cano, A.; Calpena, A.C.; Camins, A.; Carmona, N.; Silva, A.M.; Souto, E.B.; García, M.L. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. J. Nanobiotechnology, 2018, 16(1), 32.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[47]
Kim, M.R.; Feng, T.; Zhang, Q.; Chan, H.Y.E.; Chau, Y. Co-encapsulation and co-delivery of peptide drugs via polymeric nanoparticles. Polymers, 2019, 11(2), 288.
[http://dx.doi.org/10.3390/polym11020288] [PMID: 30960272]
[48]
Puri, V.; Chaudhary, K.R.; Singh, A.; Singh, C. Inhalation potential of N-acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: In vitro lung deposition and efficacy studies. Curr. Res. Pharmacol. Drug Discov., 2022, 3, 100084.
[http://dx.doi.org/10.1016/j.crphar.2022.100084]
[49]
Vega-Vásquez, P.; Mosier, N.S.; Irudayaraj, J. Nanoscale drug delivery systems: From medicine to agriculture. Front. Bioeng. Biotechnol., 2020, 8, 79.
[http://dx.doi.org/10.3389/fbioe.2020.00079] [PMID: 32133353]
[50]
Ding, S.; Serra, C.A.; Vandamme, T.F.; Yu, W.; Anton, N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J. Control. Release, 2019, 295, 31-49.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.037] [PMID: 30579983]
[51]
Danafar, H. Preparation and characterization of PCL-PEG-PCL polymersomes for delivery of clavulanic acid. Cogent Med., 2016, 3(1), 1235245.
[http://dx.doi.org/10.1080/2331205X.2016.1235245]
[52]
Singh, K.; Biharee, A.; Vyas, A.; Thareja, S.; Jain, A.K. Recent advancement of polymersomes as drug delivery carrier. Curr. Pharm. Des., 2022, 28(20), 1621-1631.
[http://dx.doi.org/10.2174/1381612828666220412103552] [PMID: 35418282]
[53]
Sharma, A.K.; Prasher, P.; Aljabali, A.A.; Mishra, V.; Gandhi, H.; Kumar, S.; Mutalik, S.; Chellappan, D.K.; Tambuwala, M.M.; Dua, K.; Kapoor, D.N. Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv. Transl. Res., 2020, 10(5), 1171-1190.
[http://dx.doi.org/10.1007/s13346-020-00789-2] [PMID: 32504410]
[54]
Rideau, E.; Wurm, F.R.; Landfester, K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym. Chem., 2018, 9(44), 5385-5394.
[http://dx.doi.org/10.1039/C8PY00992A]
[55]
Martin, L.; Gurnani, P.; Zhang, J.; Hartlieb, M.; Cameron, N.R.; Eissa, A.M.; Perrier, S. Polydimethylsiloxane-based giant glycosylated polymersomes with tunable bacterial affinity. Biomacromolecules, 2019, 20(3), 1297-1307.
[http://dx.doi.org/10.1021/acs.biomac.8b01709] [PMID: 30694656]
[56]
Caire da Silva, L.; Cao, S.; Landfester, K. Bursting and reassembly of giant double emulsion drops form polymer vesicles. ACS Macro Lett., 2021, 10(4), 401-405.
[http://dx.doi.org/10.1021/acsmacrolett.0c00849] [PMID: 35549224]
[57]
Deng, Y.; Chen, H.; Tao, X.; Trépout, S.; Ling, J.; Li, M.H. Synthesis and self-assembly of poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) and their oxidation-sensitive polymersomes. Chin. Chem. Lett., 2020, 31(7), 1931-1935.
[http://dx.doi.org/10.1016/j.cclet.2019.12.026]
[58]
Iqbal, S.; Blenner, M.; Alexander-Bryant, A.; Larsen, J. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: From design to therapeutic applications. Biomacromolecules, 2020, 21(4), 1327-1350.
[http://dx.doi.org/10.1021/acs.biomac.9b01754] [PMID: 32078290]
[59]
Pearce, S.; Perez-Mercader, J. PISA: construction of self-organized and self-assembled functional vesicular structures. Polym. Chem., 2021, 12(1), 29-49.
[http://dx.doi.org/10.1039/D0PY00564A]
[60]
Sobotta, F.H.; Kuchenbrod, M.T.; Gruschwitz, F.V.; Festag, G.; Bellstedt, P.; Hoeppener, S.; Brendel, J.C. Tuneable time delay in the burst release from oxidation-sensitive polymersomes made by PISA. Angew. Chem. Int. Ed., 2021, 60(46), 24716-24723.
[http://dx.doi.org/10.1002/anie.202108928] [PMID: 34542227]
[61]
Albertsen, A.N.; Szymański, J.K.; Pérez-Mercader, J. Emergent properties of giant vesicles formed by a polymerization-induced self-assembly (PISA) reaction. Sci. Rep., 2017, 7(1), 41534.
[http://dx.doi.org/10.1038/srep41534] [PMID: 28128307]
[62]
Varlas, S.; Blackman, L.D.; Findlay, H.E.; Reading, E.; Booth, P.J.; Gibson, M.I.; O’Reilly, R.K. Photoinitiated polymerization-induced self-assembly in the presence of surfactants enables membrane protein incorporation into vesicles. Macromolecules, 2018, 51(16), 6190-6201.
[http://dx.doi.org/10.1021/acs.macromol.8b00994]
[63]
Cornel, E.J.; Jiang, J.; Chen, S.; Du, J. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques. CCS Chemistry, 2021, 3(4), 2104-2125.
[http://dx.doi.org/10.31635/ccschem.020.202000470]
[64]
Changalvaie, B.; Han, S.; Moaseri, E.; Scaletti, F.; Truong, L.; Caplan, R.; Cao, A.; Bouchard, R.; Truskett, T.M.; Sokolov, K.V.; Johnston, K.P. Indocyanine green j aggregates in polymersomes for near-infrared photoacoustic imaging. ACS Appl. Mater. Interfaces, 2019, 11(50), 46437-46450.
[http://dx.doi.org/10.1021/acsami.9b14519] [PMID: 31804795]
[65]
Pachioni-Vasconcelos, J.A.; Apolinário, A.C.; Lopes, A.M.; Pessoa, A., Jr; Barbosa, L.R.S.; Rangel-Yagui, C.O. Compartmentalization of therapeutic proteins into semi-crystalline PEG-PCL polymersomes. Soft Mater., 2021, 19(2), 222-230.
[http://dx.doi.org/10.1080/1539445X.2020.1812643]
[66]
Varlas, S.; Foster, J.C.; Georgiou, P.G.; Keogh, R.; Husband, J.T.; Williams, D.S.; O’Reilly, R.K. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale, 2019, 11(26), 12643-12654.
[http://dx.doi.org/10.1039/C9NR02507C] [PMID: 31237603]
[67]
Kunzler, C.; Handschuh-Wang, S.; Roesener, M.; Schönherr, H. Giant biodegradable poly(ethylene glycol)- block -Poly(ε-caprolactone) polymersomes by electroformation. Macromol. Biosci., 2020, 20(6), 2000014.
[http://dx.doi.org/10.1002/mabi.202000014] [PMID: 32363777]
[68]
Abdelmohsen, L.K.E.A.; Rikken, R.S.M.; Christianen, P.C.M.; van Hest, J.C.M.; Wilson, D.A.; Daniela, A.W. Shape characterization of polymersome morphologies via light scattering techniques. Polymer, 2016, 107, 445-449.
[http://dx.doi.org/10.1016/j.polymer.2016.06.067]
[69]
Hu, Y.; Qiu, L. Polymersomes: Preparation and characetrisation. Pharm. Nanotechnol., 2000, 2019, 247-265.
[70]
Kowal, J.; Zhang, X.; Dinu, I.A.; Palivan, C.G.; Meier, W. Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett., 2014, 3(1), 59-63.
[http://dx.doi.org/10.1021/mz400590c]
[71]
Prakash Jain, J.; Yenet Ayen, W.; Kumar, N. Self assembling polymers as polymersomes for drug delivery. Curr. Pharm. Des., 2011, 17(1), 65-79.
[http://dx.doi.org/10.2174/138161211795049822] [PMID: 21342115]
[72]
Battaglia, G.; LoPresti, C.; Massignani, M.; Warren, N.J.; Madsen, J.; Forster, S.; Vasilev, C.; Hobbs, J.K.; Armes, S.P.; Chirasatitsin, S.; Engler, A.J. Wet nanoscale imaging and testing of polymersomes. Small, 2011, 7(14), 2010-2015.
[http://dx.doi.org/10.1002/smll.201100511] [PMID: 21695783]
[73]
Till, U.; Gaucher-Delmas, M.; Saint-Aguet, P.; Hamon, G.; Marty, J.D.; Chassenieux, C.; Payré, B.; Goudounèche, D.; Mingotaud, A.F.; Violleau, F. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: Comparison with classical techniques. Anal. Bioanal. Chem., 2014, 406(30), 7841-7853.
[http://dx.doi.org/10.1007/s00216-014-7891-8] [PMID: 24951132]
[74]
van der Pol, E.; Coumans, F.A.W.; Grootemaat, A.E.; Gardiner, C.; Sargent, I.L.; Harrison, P.; Sturk, A.; van Leeuwen, T.G.; Nieuwland, R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost., 2014, 12(7), 1182-1192.
[http://dx.doi.org/10.1111/jth.12602] [PMID: 24818656]
[75]
Ruozi, B.; Belletti, D.; Tombesi, A.; Tosi, G.; Bondioli, L.; Forni, F.; Vandelli, M.A. AFM, ESEM, TEM, and CLSM in liposomal characterization: A comparative study. Int. J. Nanomedicine, 2011, 6, 557-563.
[http://dx.doi.org/10.2147/IJN.S14615] [PMID: 21468358]
[76]
Sinks, L.E.; Robbins, G.P.; Roussakis, E.; Troxler, T.; Hammer, D.A.; Vinogradov, S.A. Two-photon microscopy of oxygen: Polymersomes as probe carrier vehicles. J. Phys. Chem. B, 2010, 114(45), 14373-14382.
[http://dx.doi.org/10.1021/jp100353v] [PMID: 20462225]
[77]
Lo, C.H.; Zeng, J. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioeng. Transl. Med., 2023, 8(1), e10350.
[http://dx.doi.org/10.1002/btm2.10350] [PMID: 36684106]
[78]
Scarpa, E.; Bailey, J.L.; Janeczek, A.A.; Stumpf, P.S.; Johnston, A.H.; Oreffo, R.O.C.; Woo, Y.L.; Cheong, Y.C.; Evans, N.D.; Newman, T.A. Quantification of intracellular payload release from polymersome nanoparticles. Sci. Rep., 2016, 6(1), 29460.
[http://dx.doi.org/10.1038/srep29460] [PMID: 27404770]
[79]
Bartenstein, J.E.; Robertson, J.; Battaglia, G.; Briscoe, W.H. Stability of polymersomes prepared by size exclusion chromatography and extrusion. Colloids Surf. A Physicochem. Eng. Asp., 2016, 506, 739-746.
[http://dx.doi.org/10.1016/j.colsurfa.2016.07.032]
[80]
Kotha, R.; Kara, D.D.; Roychowdhury, R.; Tanvi, K.; Rathnanand, M. Polymersomes based versatile nanoplatforms for controlled drug delivery and imaging. Adv. Pharm. Bull., 2023, 13(2), 218-232.
[http://dx.doi.org/10.34172/apb.2023.028] [PMID: 37342386]
[81]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[82]
Ko, M.S.; Yun, J.Y.; Baek, I.J.; Jang, J.E.; Hwang, J.J.; Lee, S.E.; Heo, S.H.; Bader, D.A.; Lee, C.H.; Han, J.; Moon, J.S.; Lee, J.M.; Hong, E.G.; Lee, I.K.; Kim, S.W.; Park, J.Y.; Hartig, S.M.; Kang, U.J.; Moore, D.D.; Koh, E.H.; Lee, K. Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice. Autophagy, 2021, 17(5), 1205-1221.
[http://dx.doi.org/10.1080/15548627.2020.1753002] [PMID: 32400277]
[83]
Pera-Titus, M.; Leclercq, L.; Clacens, J.M.; De Campo, F.; Nardello-Rataj, V. Pickering interfacial catalysis for biphasic systems: From emulsion design to green reactions. Angew. Chem. Int. Ed., 2015, 54(7), 2006-2021.
[http://dx.doi.org/10.1002/anie.201402069] [PMID: 25644631]
[84]
Doktorova, M.; Harries, D.; Khelashvili, G. Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys. Chem. Chem. Phys., 2017, 19(25), 16806-16818.
[http://dx.doi.org/10.1039/C7CP01921A] [PMID: 28627570]
[85]
Tsitovich, P.B.; Cox, J.M.; Benedict, J.B.; Morrow, J.R. Six-coordinate iron(II) and cobalt(II) para SHIFT agents for measuring temperature by magnetic resonance spectroscopy. Inorg. Chem., 2016, 55(2), 700-716.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02144] [PMID: 26716610]
[86]
Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev., 2019, 119(2), 957-1057.
[http://dx.doi.org/10.1021/acs.chemrev.8b00363] [PMID: 30350585]
[87]
Fukushima, K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater. Sci.,, 2016, 4(1), 9-24.
[http://dx.doi.org/10.1039/C5BM00123D] [PMID: 26323327]
[88]
Li, W.P.; Su, C.H.; Chang, Y.C.; Lin, Y.J.; Yeh, C.S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano, 2016, 10(2), 2017-2027.
[http://dx.doi.org/10.1021/acsnano.5b06175] [PMID: 26720714]
[89]
Shen, Z.Y.; Liu, C.; Wu, M.F.; Shi, H.F.; Zhou, Y.F.; Zhuang, W.; Xia, G.L. Spiral computed tomography evaluation of rabbit VX2 hepatic tumors treated with 20 kHz ultrasound and microbubbles. Oncol. Lett., 2017, 14(3), 3124-3130.
[http://dx.doi.org/10.3892/ol.2017.6557] [PMID: 28928850]
[90]
Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev., 2017, 115, 115-154.
[http://dx.doi.org/10.1016/j.addr.2017.07.021] [PMID: 28778715]
[91]
Bojarová, P.; Křen, V. Sugared biomaterial binding lectins: Achievements and perspectives. Biomater. Sci., 2016, 4(8), 1142-1160.
[http://dx.doi.org/10.1039/C6BM00088F] [PMID: 27075026]
[92]
Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Coreshell nanoparticle-enhanced Raman spectroscopy. Chem. Rev., 2017, 117(7), 5002-5069.
[http://dx.doi.org/10.1021/acs.chemrev.6b00596] [PMID: 28271881]
[93]
Hossain, M.S.; Mohamed, F.; Shafri, M.A. Poly(trimethylene carbonate-co-caprolactone): An emerging drug delivery nanosystem in pharmaceutics. Biomater. Biomech. Bioeng., 2020, 5(1), 65-86.
[94]
Qiu, L.; Zhu, M.; Huang, Y.; Gong, K.; Chen, J. Mechanisms of cellular uptake with hyaluronic acid—octadecylamine micelles as drug delivery nanocarriers. RSC Advances, 2016, 6(46), 39896-39902.
[http://dx.doi.org/10.1039/C5RA27532F]
[95]
Walvekar, P.; Gannimani, R.; Salih, M.; Makhathini, S.; Mocktar, C.; Govender, T. Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids Surf. B Biointerfaces, 2019, 182, 110388.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110388] [PMID: 31369955]
[96]
Rottet, S.; Iqbal, S.; Beales, P.A.; Lin, A.; Lee, J.; Rug, M.; Scott, C.; Callaghan, R. Characterisation of hybrid polymersome vesicles containing the efflux pumps NaAtm1 or P-Glycoprotein. Polymers, 2020, 12(5), 1049.
[http://dx.doi.org/10.3390/polym12051049] [PMID: 32375237]
[97]
Ridolfo, R.; Williams, D.S.; van Hest, J.C.M.; Hest, V. Influence of surface charge on the formulation of elongated PEG- b -PDLLA nanoparticles. Polym. Chem., 2020, 11(16), 2775-2780.
[http://dx.doi.org/10.1039/D0PY00280A]
[98]
Danafar, H. Synthesis and characterization of mpeg-PCL copolymers as a polymersomes for delivery of enalapril as a model hydrophilic drug. IJPS, 2018, 14(2), 25-38.
[99]
Miranda, B.N.; Fotoran, W.L.; Wunderlich, G.; Carrilho, E.; Oliveira, A.M.D. A critical analysis of polymersome therapeutics: From laboratory to large-scale production. Curr. Trends Biomed. Eng. Biosci., 2018, 14, 4.
[100]
Kansız, S.; Elçin, Y.M. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv. Colloid Interface Sci., 2023, 317, 102930.
[http://dx.doi.org/10.1016/j.cis.2023.102930] [PMID: 37290380]
[101]
Habeeb, M.; You, H.W.; Aher, K.B.; Bhavar, G.B.; Khot, V.S.; Mishra, S. Strategies of nanomedicine for targeting the signaling pathways of Colorectal cancer. J. Drug Deliv. Sci. Technol., 2023, 84, 104487.
[http://dx.doi.org/10.1016/j.jddst.2023.104487]
[102]
Guinart, A.; Korpidou, M.; Doellerer, D.; Pacella, G.; Stuart, M.C.A.; Dinu, I.A.; Portale, G.; Palivan, C.; Feringa, B.L. Synthetic molecular motor activates drug delivery from polymersomes. Proc. Natl. Acad. Sci., 2023, 120(27), e2301279120.
[http://dx.doi.org/10.1073/pnas.2301279120] [PMID: 37364098]
[103]
Virlley, S.; Shukla, S.; Arora, S.; Shukla, D.; Nagdiya, D.; Bajaj, T.; Kujur, S.; Garima; Kumar, A.; Bhatti, J.S.; Singh, A.; Singh, C. Recent advances in microwave-assisted nanocarrier based drug delivery system: Trends and technologies. J. Drug Deliv. Sci. Technol., 2023, 87, 104842.
[http://dx.doi.org/10.1016/j.jddst.2023.104842]
[104]
Ratsaby, B. Inhibitor polymersomes for therapeutic administration. WO Patent 2009/003110A3 2008.
[105]
Hammer, D.A.; Therien, M.J.; Ghoroghchian, P.P. Polymersomes incorporating highly emissive probes. US Patent 7,682,603B2 2010.
[106]
Ratsaby, O.B.; D’Amato, R.; Yoshimura, T. Metap-2 inhibitor polymersomes for therapeutic administration. US Patent 8,790,634B2 2014.
[107]
Adamson, D.H.; Stredney, M.; Prudhomme, R.K.; Yildiz, M.E. Coflow mcrofluidic device for polymersome formation. US Patent 8,968,873B2, 2015.
[108]
Ghoroghchian, P.P.; Yewle, J.N. Compositions and methods for improved encapsulation of functional proteins in polymeric vesicles. US Patent US2020/0009231A1, 2020.
[109]
Gorochan, P.P.; Yeule, G.N. Compositions and methods for delivering gene editing tools using polymer vesicles. JP Patent 6993966B2, 2022.
[110]
Klermund, L.; Castiglione, K. Polymersomes as nanoreactors for preparative biocatalytic applications: current challenges and future perspectives. Bioprocess Biosyst. Eng., 2018, 41(9), 1233-1246.
[http://dx.doi.org/10.1007/s00449-018-1953-9] [PMID: 29777296]
[111]
Singh, V.; Md, S.; Alhakamy, N.A.; Kesharwani, P. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur. Polym. J., 2022, 162, 110883.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110883]
[112]
Lefley, J.; Waldron, C.; Becer, C.R. Macromolecular design and preparation of polymersomes. Polym. Chem., 2020, 11(45), 7124-7136.
[http://dx.doi.org/10.1039/D0PY01247E]
[113]
Miller, A.J.; Pearce, A.K.; Foster, J.C.; O’Reilly, R.K. Probing and tuning the permeability of polymersomes. ACS Cent. Sci., 2021, 7(1), 30-38.
[http://dx.doi.org/10.1021/acscentsci.0c01196] [PMID: 33532567]
[114]
Moncalvo, F.; Martinez Espinoza, M.I.; Cellesi, F. Nanosized delivery systems for therapeutic proteins: Clinically validated technologies and advanced development strategies. Front. Bioeng. Biotechnol., 2020, 8, 89.
[http://dx.doi.org/10.3389/fbioe.2020.00089] [PMID: 32117952]
[115]
Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14(4), 883.
[http://dx.doi.org/10.3390/pharmaceutics14040883] [PMID: 35456717]
[116]
Wang, S.; Liu, Y.; Xu, M.; Hu, F.; Yu, Q.; Wang, L. Polymersomes as virus-surrogate particles for evaluating the performance of air filter materials. Giant, 2022, 10, 100104.
[http://dx.doi.org/10.1016/j.giant.2022.100104] [PMID: 35600793]
[117]
Al-Hatamleh, M.A.I.; Hatmal, M.M.; Alshaer, W.; Rahman, E.N.S.E.A.; Mohd-Zahid, M.H.; Alhaj-Qasem, D.M.; Yean, C.Y.; Alias, I.Z.; Jaafar, J.; Ferji, K.; Six, J.L.; Uskoković, V.; Yabu, H.; Mohamud, R. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur. J. Pharmacol., 2021, 896, 173930.
[http://dx.doi.org/10.1016/j.ejphar.2021.173930] [PMID: 33545157]
[118]
Pallavi, P.; Harini, K.; Gowtham, P.; Girigoswami, K.; Girigoswami, A. Fabrication of polymersomes: A macromolecular architecture in nanotherapeutics. Chemistry, 2022, 4(3), 1028-1043.
[http://dx.doi.org/10.3390/chemistry4030070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy