Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Antiviral Activity of Natural Herbs and their Isolated Bioactive Compounds: A Review

Author(s): Sonia Singh*, Yogesh Murti and Bhupesh Semwal

Volume 27, Issue 14, 2024

Published on: 10 November, 2023

Page: [2013 - 2042] Pages: 30

DOI: 10.2174/0113862073267048231027070537

Price: $65

Abstract

Viruses are the cause of many human pathogenesis-related conditions. A serious hazard to public health has been created because of the increase in worldwide travel, fast urbanization, and infectious epidemics. At the same time, no preventative vaccines or antiviral treatments are currently available. Resources for developing new antiviral medications can be found in enhanced natural products and herbal medicines. These natural substances have aided the research on developing preventive vaccines and antiviral treatments. Based primarily on in vitro and in vivo searches, this review aims to explore the antiviral properties of plant extracts and some isolated plant natural products. Only a few antiviral medications have been given clinical approval, while numerous viruses continue to elude adequate immunization. Therefore, developing novel antiviral medicines is crucial, and natural substances make excellent sources for these new drugs. This review highlights various natural herbal drugs possessing antiviral properties.

Keywords: Antiviral, virus replication, vaccines, infection, natural herbal drugs, antiviral properties, plant extract.

Next »
Graphical Abstract
[1]
Tsuchiya, Y.; Shimizu, M.; Hiyama, Y.; Itoh, K.; Hashimoto, Y.; Nakayama, M.; Horie, T.; Morita, N. Antiviral activity of natural occurring flavonoids in vitro. Chem. Pharm. Bull. , 1985, 33(9), 3881-3886.
[http://dx.doi.org/10.1248/cpb.33.3881] [PMID: 4092287]
[2]
Andrighetti-Fröhner, C.R.; Sincero, T.C.M.; da Silva, A.C.; Savi, L.A.; Gaido, C.M.; Bettega, J.M.R.; Mancini, M.; de Almeida, M.T.R.; Barbosa, R.A.; Farias, M.R.; Barardi, C.R.M.; Simões, C.M.O. Antiviral evaluation of plants from Brazilian atlantic tropical forest. Fitoterapia, 2005, 76(3-4), 374-378.
[http://dx.doi.org/10.1016/j.fitote.2005.03.010] [PMID: 15890472]
[3]
Watkins, T.; Resch, W.; Irlbeck, D.; Swanstrom, R. Selection of high-level resistance to human immunodeficiency virus type 1 protease inhibitors. Antimicrob. Agents Chemother., 2003, 47(2), 759-769.
[http://dx.doi.org/10.1128/AAC.47.2.759-769.2003] [PMID: 12543689]
[4]
Siow, Y.L.; Gong, Y.; Au-Yeung, K.K.W.; Woo, C.W.H.; Choy, P.C. O, K. Emerging issues in traditional Chinese medicine. Can. J. Physiol. Pharmacol., 2005, 83(4), 321-334.
[http://dx.doi.org/10.1139/y05-029] [PMID: 15877107]
[5]
Webster, D.; Taschereau, P.; Lee, T.D.G.; Jurgens, T. Immunostimulant properties of Heracleum maximum Bartr. J. Ethnopharmacol., 2006, 106(3), 360-363.
[http://dx.doi.org/10.1016/j.jep.2006.01.018] [PMID: 16504434]
[6]
Dissanayake, K.G.; Perera, W.P. Premasinghe, N Immunomodulatory efficiency of Tinospora cordifolia against viral infections. World J. Pharmaceut. Med. Res., 2020, 6(5), 22-28.
[7]
Abad, M.J.; Guerra, J.A.; Bermejo, P.; Irurzun, A.; Carrasco, L. Search for antiviral activity in higher plant extracts. Phytother. Res., 2000, 14(8), 604-607.
[http://dx.doi.org/10.1002/1099-1573(200012)14:8<604:AID-PTR678>3.0.CO;2-L] [PMID: 11113996]
[8]
Martin, K.W.; Ernst, E. Antiviral agents from plants and herbs: A systematic review. Antivir. Ther., 2003, 8(2), 77-90.
[http://dx.doi.org/10.1177/135965350300800201] [PMID: 12741619]
[9]
Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol., 1983, 32(7), 1141-1148.
[http://dx.doi.org/10.1016/0006-2952(83)90262-9] [PMID: 6342623]
[10]
Dissanayake, KG.; Perera, BT.; Perera, WP. Potential of the pathogenic microorganisms mitigation using rhizome extract of Acorus calamus as a medicinal herb. World J. Pharma. Pharmaceut. Sci., 2020, 9(5), 85-95.
[11]
Dissanayake, K.C.; Fernando, W.S.; Perera, W.P. Investigation of the phytochemistry of Coriandrum sativum to combat against viral infections. Int. J. Innov. Pharmaceut. Sci. Res., 2020, 8(6), 1-10.
[12]
Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med., 2001, 249(S741), 61-74.
[http://dx.doi.org/10.1046/j.1365-2796.2001.00742.x] [PMID: 10971784]
[13]
Tolo, F.M.; Rukunga, G.M.; Muli, F.W.; Njagi, E.N.M.; Njue, W.; Kumon, K.; Mungai, G.M.; Muthaura, C.N.; Muli, J.M.; Keter, L.K.; Oishi, E.; Kofi-Tsekpo, M.W. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J. Ethnopharmacol., 2006, 104(1-2), 92-99.
[http://dx.doi.org/10.1016/j.jep.2005.08.053] [PMID: 16198524]
[14]
Merry, T.; Astrautsova, S. Alternative approaches to antiviral treatments: Focusing on glycosylation as a target for antiviral therapy. Biotechnol. Appl. Biochem., 2010, 56(3), 103-109.
[http://dx.doi.org/10.1042/BA20100010] [PMID: 20649513]
[15]
Nile, S.H.; Park, S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod., 2015, 70, 238-244.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.033]
[16]
Han, Y.; Song, C.; Koh, W.; Yon, G.; Kim, Y.; Ryu, S.; Kwon, H.; Lee, K. Anti-inflammatory effects of the Zingiber officinale roscoe constituent 12-dehydrogingerdione in lipopolysaccharide-stimulated Raw 264.7 cells. Phytother. Res., 2013, 27(8), 1200-1205.
[http://dx.doi.org/10.1002/ptr.4847] [PMID: 23027684]
[17]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[18]
Jolad, S.D.; Lantz, R.C.; Solyom, A.M.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry, 2004, 65(13), 1937-1954.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.008] [PMID: 15280001]
[19]
Jolad, S.D.; Lantz, R.C.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Commercially processed dry ginger (Zingiber officinale): Composition and effects on LPS-stimulated PGE2 production. Phytochemistry, 2005, 66(13), 1614-1635.
[http://dx.doi.org/10.1016/j.phytochem.2005.05.007] [PMID: 15996695]
[20]
Dolin, R. Common viral respiratory infections. Harrisons Principles Int. Med., 2001, 1, 1120-1124.
[21]
Chao, W.W.; Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med., 2010, 5(1), 17.
[http://dx.doi.org/10.1186/1749-8546-5-17] [PMID: 20465823]
[22]
Wiart, C.; Kumar, K.; Yusof, M.Y.; Hamimah, H.; Fauzi, Z.M.; Sulaiman, M. Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytother. Res., 2005, 19(12), 1069-1070.
[http://dx.doi.org/10.1002/ptr.1765] [PMID: 16372376]
[23]
Calabrese, C.; Berman, S.H.; Babish, J.G.; Ma, X.; Shinto, L.; Dorr, M.; Wells, K.; Wenner, C.A.; Standish, L.J. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother. Res., 2000, 14(5), 333-338.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<333:AID-PTR584>3.0.CO;2-D] [PMID: 10925397]
[24]
Liu, R.H.; Jacob, J.R.; Tennant, B. Andrographolide derivatives to treat viral infections. . United States patent US 8,445,533, 2013.
[25]
Lin, T.P.; Chen, S.Y.; Duh, P.D.; Chang, L.K.; Liu, Y.N. Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol. Pharm. Bull., 2008, 31(11), 2018-2023.
[http://dx.doi.org/10.1248/bpb.31.2018] [PMID: 18981566]
[26]
Tang, L.I.C.; Ling, A.P.K.; Koh, R.Y.; Chye, S.M.; Voon, K.G.L. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement. Altern. Med., 2012, 12(1), 3.
[http://dx.doi.org/10.1186/1472-6882-12-3] [PMID: 22244370]
[27]
Kumar, N. Pharmaceutical attributes of Vasa (Adhatoda vasica Linn.)-A review. World J. Pharm. Res., 2016, 5, 437-455.
[28]
Sharma, A.; Bhardwaj, G.; Cannoo, D.S. Overview of phytochemistry and pharmacology of Adhatoda vasica. Health Care , 2018, 7(8), 9.
[29]
Chavan, R.; Chowdhary, A. In vitro inhibitory activity of Justicia adhatoda extracts against influenza virus infection and hemagglutination. Int. J. Pharm. Sci. Rev. Res., 2014, 25(2), 231-236.
[30]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J. Mol. Struct., 2021, 1229, 129489.
[http://dx.doi.org/10.1016/j.molstruc.2020.129489] [PMID: 33100380]
[31]
Kar, P.; Kumar, V.; Vellingiri, B.; Sen, A.; Jaishee, N.; Anandraj, A.; Malhotra, H.; Bhattacharyya, S.; Mukhopadhyay, S.; Kinoshita, M.; Govindasamy, V.; Roy, A.; Naidoo, D.; Subramaniam, M.D. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: A computational investigation. J. Biomol. Struct. Dyn., 2022, 40(10), 4532-4542.
[http://dx.doi.org/10.1080/07391102.2020.1860133] [PMID: 33305988]
[32]
Mengist, H.M.; Dilnessa, T.; Jin, T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem., 2021, 9, 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[33]
Mehrbod, P.; Amini, E.; Tavassoti-Kheiri, M. Antiviral activity of garlic extract on influenza virus. Iran. J. Virol., 2009, 3(1), 19-23.
[http://dx.doi.org/10.21859/isv.3.1.19]
[34]
Harris, J. S, C.; S, P.; D, L. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol., 2001, 57(3), 282-286.
[http://dx.doi.org/10.1007/s002530100722] [PMID: 11759674]
[35]
Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of silymarin. Clin. Drug Investig., 2002, 22(1), 51-65.
[http://dx.doi.org/10.2165/00044011-200222010-00007]
[36]
Mohajer Shojai, T.; Ghalyanchi Langeroudi, A.; Karimi, V.; Barin, A.; Sadri, N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomed., 2016, 6(4), 458-267.
[PMID: 27516987]
[37]
Meléndez-Villanueva, M.A.; Morán-Santibañez, K.; Martínez-Sanmiguel, J.J.; Rangel-López, R.; Garza-Navarro, M.A.; Rodríguez-Padilla, C.; Zarate-Triviño, D.G.; Trejo-Ávila, L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 2019, 11(12), 1111.
[http://dx.doi.org/10.3390/v11121111] [PMID: 31801280]
[38]
Weber, N.; Andersen, D.; North, J.; Murray, B.; Lawson, L.; Hughes, B. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med., 1992, 58(5), 417-423.
[http://dx.doi.org/10.1055/s-2006-961504] [PMID: 1470664]
[39]
Guo, N.L.; Lu, D.P.; Woods, G.L.; Reed, E.; Zhou, G.Z.; Zhang, L.B.; Waldman, R.H. Demonstration of the anti-viral activity of garlic extract against human cytomegalovirus in vitro. Chin. Med. J. , 1993, 106(2), 93-96.
[PMID: 8389276]
[40]
Szychowski, K. Rybczyńska-Tkaczyk, K.; Gaweł-Bęben, K.; Świeca, M.; Karaś, M.; Jakubczyk, A.; Matysiak, M.; Binduga, U.; Gmiński, J. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Pol. J. Food Nutr. Sci., 2018, 68(1), 73-81.
[http://dx.doi.org/10.1515/pjfns-2017-0005]
[41]
Silprasit, K.; Seetaha, S.; Pongsanarakul, P.; Hannongbua, S.; Choowongkomon, K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J. Med. Plants Res., 2011, 5, 4194-4201.
[42]
Subbiah, V.; Nagaraja, P.; Narayan, P.; Nagendra, H.G. Evaluation of pharmacological properties of Caesalpinia bonducella seed and shell extract. Pharmacogn. J., 2019, 11(1), 150-154.
[http://dx.doi.org/10.5530/pj.2019.1.25]
[43]
Dhar, M.L.; Dhar, M.M.; Dhawan, B.N.; Mehrotra, B.N.; Ray, C. Screening of Indian plants for biological activity: I. Indian J. Exp. Biol., 1968, 6(4), 232-247.
[PMID: 5720682]
[44]
Rajapaksa, R.M.H.; Perera, B.T.; Nisansala, M.J.; Perera, W.P.R.T.; Dissanayake, K.G.C. Potential of inhibiting the receptor binding mechanism of SARS-COV-2 using phytochemical extracts of medicinal herb; molecular docking study. Global J. Eng. Sci. Res. Manag., 2020, 7(4)
[45]
Biondi, D.M.; Rocco, C.; Ruberto, G. New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity. J. Nat. Prod., 2003, 66(4), 477-480.
[http://dx.doi.org/10.1021/np020365s] [PMID: 12713396]
[46]
Obolentseva, G.V.; Litvinenko, V.I.; Ammosov, A.S.; Popova, T.P.; Sampiev, A.M. Pharmacological and therapeutic properties of licorice preparations (A review). Pharm. Chem. J., 1999, 33(8), 427-434.
[http://dx.doi.org/10.1007/BF02510095]
[47]
Badam, L. in vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (Sigma) on Japanese encephalitis virus. J. Commun. Dis., 1997, 29(2), 91-99.
[PMID: 9282507]
[48]
Utsunomiya, T.; Kobayashi, M.; Pollard, R.B.; Suzuki, F. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob. Agents Chemother., 1997, 41(3), 551-556.
[http://dx.doi.org/10.1128/AAC.41.3.551] [PMID: 9055991]
[49]
Moein, M.R.; Zomorodian, K.; Pakshir, K.; Yavari, F.; Motamedi, M.; Zarshenas, M.M. Trachyspermum ammi (L.) Sprague. J. Evid. Based Complementary Altern. Med., 2015, 20(1), 50-56.
[http://dx.doi.org/10.1177/2156587214553302] [PMID: 25305209]
[50]
Roy, S.; Chaurvedi, P.; Chowdhary, A. Evaluation of antiviral activity of essential oil of Trachyspermum Ammi against Japanese encephalitis virus. Pharmacognosy Res., 2015, 7(3), 263-267.
[http://dx.doi.org/10.4103/0974-8490.157977] [PMID: 26130938]
[51]
Dateo, G.P., Jr; Long, L., Jr Gymnemic acid, the antisaccharine principle of Gymnema sylvestre. Isolation and heterogeneity of gymnemic acid A1. J. Agric. Food Chem., 1973, 21(5), 899-903.
[http://dx.doi.org/10.1021/jf60189a030] [PMID: 4733385]
[52]
Subashini, M.S.; Rajendran, P. In vitro screening of anti HBV and anti HIV properties of Gymnema sylvestre R. Br leaves from Kolli Hills, Tamilnadu, India. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 542-547.
[53]
Ghosh, M.; Civra, A.; Rittà, M.; Cagno, V.; Mavuduru, S.G.; Awasthi, P.; Lembo, D.; Donalisio, M. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch. Virol., 2016, 161(12), 3509-3514.
[http://dx.doi.org/10.1007/s00705-016-3032-3] [PMID: 27581805]
[54]
Cagno, V.; Civra, A.; Kumar, R.; Pradhan, S.; Donalisio, M.; Sinha, B.N.; Ghosh, M.; Lembo, D. Ficus religiosa L. bark extracts inhibit human rhinovirus and respiratory syncytial virus infection in vitro. J. Ethnopharmacol., 2015, 176, 252-257.
[http://dx.doi.org/10.1016/j.jep.2015.10.042] [PMID: 26528588]
[55]
Badam, L.; Joshi, S.P.; Bedekar, S.S. ‘In vitro’ antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J. Commun. Dis., 1999, 31(2), 79-90.
[PMID: 10810594]
[56]
Alzohairy, MA Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Alternat. Med., 2016, 2016, 7382506.
[57]
Parida, M.M.; Upadhyay, C.; Pandya, G.; Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J. Ethnopharmacol., 2002, 79(2), 273-278.
[http://dx.doi.org/10.1016/S0378-8741(01)00395-6] [PMID: 11801392]
[58]
Mahmood, M.S.; Amir, H.W.; Abbas, R.Z.; Rafique, A.; Aslam, B. Evaluation of antiviral activity of Azadirachta indica (Neem) bark extract against Newcastle disease virus. Pak. Vet. J., 2018, 38(1), 25-28.
[http://dx.doi.org/10.29261/pakvetj/2018.005]
[59]
Ashfaq, U.A.; Jalil, A. ul Qamar, M.T. Antiviral phytochemicals identification from Azadirachta indica leaves against HCV NS3 protease: An in silico approach. Nat. Prod. Res., 2016, 30(16), 1866-1869.
[http://dx.doi.org/10.1080/14786419.2015.1075527] [PMID: 26274064]
[60]
Andi, B.; Kumaran, D.; Kreitler, D.F.; Soares, A.S.; Keereetaweep, J.; Jakoncic, J.; Lazo, E.O.; Shi, W.; Fuchs, M.R.; Sweet, R.M.; Shanklin, J.; Adams, P.D.; Schmidt, J.G.; Head, M.S.; McSweeney, S. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Sci. Rep., 2022, 12(1), 12197.
[http://dx.doi.org/10.1038/s41598-022-15930-z] [PMID: 35842458]
[61]
Cheng, H.Y.; Lin, C.C.; Lin, T.C. Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn. Antiviral Res., 2002, 55(3), 447-455.
[http://dx.doi.org/10.1016/S0166-3542(02)00077-3] [PMID: 12206882]
[62]
Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika virus and birth defects-reviewing the evidence for causality. N. Engl. J. Med., 2016, 374(20), 1981-1987.
[http://dx.doi.org/10.1056/NEJMsr1604338] [PMID: 27074377]
[63]
Polsky, B.; Segal, S.J.; Baron, P.A.; Gold, J.W.M.; Ueno, H.; Armstrong, D. Inactivation of human immunodeficiency virus in vitro by gossypol. Contraception, 1989, 39(6), 579-587.
[http://dx.doi.org/10.1016/0010-7824(89)90034-6] [PMID: 2473865]
[64]
Al-Snai, A.E. Iraqi medicinal plants with antifungal effect-A review. IOSR J. Pharm., 2019, 9(7), 16-56.
[65]
Yeh, S.F.; Hong, C.Y.; Huang, Y.L.; Liu, T.Y.; Choo, K.B.; Chou, C.K. Effect of an extract from Phyllanthus amarus on hepatitis B surface antigen gene expression in human hepatoma cells. Antiviral Res., 1993, 20(3), 185-192.
[http://dx.doi.org/10.1016/0166-3542(93)90019-F] [PMID: 8470882]
[66]
Venkateswaran, P.S.; Millman, I.; Blumberg, B.S. Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: In vitro and in vivo studies. Proc. Natl. Acad. Sci. , 1987, 84(1), 274-278.
[http://dx.doi.org/10.1073/pnas.84.1.274] [PMID: 3467354]
[67]
Ogata, T.; Higuchi, H.; Mochida, S.; Matsumoto, H.; Kato, A.; Endo, T.; Kaji, A.; Kaji, H. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res. Hum. Retroviruses, 1992, 8(11), 1937-1944.
[http://dx.doi.org/10.1089/aid.1992.8.1937] [PMID: 1283310]
[68]
Pant, M.; Ambwani, T.; Umapathi, V. Antiviral activity of Ashwagandha extract on infectious bursal disease virus replication. Indian J. Sci. Technol., 2012, 5(5), 1-2.
[http://dx.doi.org/10.17485/ijst/2012/v5i5.20]
[69]
Arseculeratne, S.N.; Gunatilaka, A.A.L.; Panabokke, R.G. Studies on medicinal plants of sri lanka. part 14: Toxicity of some traditional medicinal herbs. J. Ethnopharmacol., 1985, 13(3), 323-335.
[http://dx.doi.org/10.1016/0378-8741(85)90078-9] [PMID: 4058035]
[70]
Grover, A.; Agrawal, V.; Shandilya, A.; Bisaria, V.S.; Sundar, D. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: Mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinformatics, 2011, 12(13), 1-9.
[71]
Usha, P.R.; Naidu, M.U.R.; Raju, Y.S.N. Evaluation of the antiretroviral activity of a new polyherbal drug (Immu-25) in patients with HIV infection. Drugs R D., 2003, 4(2), 103-109.
[http://dx.doi.org/10.2165/00126839-200304020-00003] [PMID: 12718564]
[72]
Hanisa, H.; Mohdazmi, M.L.; Suhaila, M.; Hakim, M.N. Effects of Centella asiatica L., Curcuma longa L., and Strobilanthescrispus L. extracts on 3 kidney cell lines: In vitro cytotoxicity analysis. Int. J. Pharm. Pharm. Sci., 2014, 6, 388-392.
[73]
Chen, D.Y.; Shien, J.H.; Tiley, L.; Chiou, S.S.; Wang, S.Y.; Chang, T.J.; Lee, Y.J.; Chan, K.W.; Hsu, W.L. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem., 2010, 119(4), 1346-1351.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[74]
Zandi, K; Ramedani, E; Mohammadi, K; Tajbakhsh, S; Deilami, I; Rastian, Z; Fouladvand, M; Yousefi, F; Farshadpour, F Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line Nat. Prod. Commun., 2010, 5(12), 1934578X1000501220.
[75]
Divya, CS.; Pillai, MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[76]
Soltan, M.M.; Zaki, A.K. Antiviral screening of forty-two Egyptian medicinal plants. J. Ethnopharmacol., 2009, 126(1), 102-107.
[http://dx.doi.org/10.1016/j.jep.2009.08.001] [PMID: 19666102]
[77]
Brijesh, S.; Daswani, P.; Tetali, P.; Antia, N.; Birdi, T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage. BMC Complement. Altern. Med., 2009, 9(1), 47.
[http://dx.doi.org/10.1186/1472-6882-9-47] [PMID: 19930633]
[78]
Moradi, M.T.; Rafieian-Kopaei, M.; Karimi, A. A review study on the effect of Iranian herbal medicines against in vitro replication of herpes simplex virus. Avicenna J. Phytomed., 2016, 6(5), 506-515.
[PMID: 27761420]
[79]
Gonçalves, J.L.S.; Lopes, R.C.; Oliveira, D.B.; Costa, S.S.; Miranda, M.M.F.S.; Romanos, M.T.V.; Santos, N.S.O.; Wigg, M.D. In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. J. Ethnopharmacol., 2005, 99(3), 403-407.
[http://dx.doi.org/10.1016/j.jep.2005.01.032] [PMID: 15876501]
[80]
Lubbe, A.; Seibert, I.; Klimkait, T.; van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol., 2012, 141(3), 854-859.
[http://dx.doi.org/10.1016/j.jep.2012.03.024] [PMID: 22465592]
[81]
Hallock, Y.F.; Manfredi, K.P.; Dai, J.R.; Cardellina, J.H., II; Gulakowski, R.J.; McMahon, J.B.; Schäffer, M.; Stahl, M.; Gulden, K.P.; Bringmann, G.; François, G.; Boyd, M.R. Michellamines D-F, new HIV-inhibitory dimeric naphthylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. J. Nat. Prod., 1997, 60(7), 677-683.
[http://dx.doi.org/10.1021/np9700679] [PMID: 9249970]
[82]
Mukherjee, H.; Ojha, D.; Bag, P.; Chandel, H.S.; Bhattacharyya, S.; Chatterjee, T.K.; Mukherjee, P.K.; Chakraborti, S.; Chattopadhyay, D. Anti-herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid. Microbiol. Res., 2013, 168(4), 238-244.
[http://dx.doi.org/10.1016/j.micres.2012.11.002] [PMID: 23218996]
[83]
Montanha, J.; Amoros, M.; Boustie, J.; Girre, L. Anti-herpes virus activity of aporphine alkaloids. Planta Med., 1995, 61(5), 419-424.
[http://dx.doi.org/10.1055/s-2006-958128] [PMID: 7480202]
[84]
Park, J.Y.; Jeong, H.J.; Kim, Y.M.; Park, S.J.; Rho, M.C.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg. Med. Chem. Lett., 2011, 21(18), 5602-5604.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.130] [PMID: 21824777]
[85]
Chuanasa, T.; Phromjai, J.; Lipipun, V.; Likhitwitayawuid, K.; Suzuki, M.; Pramyothin, P.; Hattori, M.; Shiraki, K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res., 2008, 80(1), 62-70.
[http://dx.doi.org/10.1016/j.antiviral.2008.05.002] [PMID: 18565600]
[86]
Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F.W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R.K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res., 2017, 137, 76-81.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.011] [PMID: 27864075]
[87]
Zhen, H.; Fang, F.; Ye, D.; Shu, S.; Zhou, Y.; Dong, Y.; Nie, X.; Li, G. Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res., 2006, 72(1), 68-74.
[http://dx.doi.org/10.1016/j.antiviral.2006.03.017] [PMID: 16844239]
[88]
Yang, X.W.; Zhao, J.; Cui, Y.X.; Liu, X.H.; Ma, C.M.; Hattori, M.; Zhang, L.H. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J. Nat. Prod., 1999, 62(11), 1510-1513.
[http://dx.doi.org/10.1021/np990180u] [PMID: 10579862]
[89]
Jiang, W.L.; Luo, X.L.; Kuang, S.J. [Effects of Alternanthera philoxeroides Griseb against dengue virus in vitro] J. First Mil. Med. Univ., 2005, 25(4), 454-456.
[PMID: 15837655]
[90]
McCutcheon, A.R.; Roberts, T.E.; Gibbons, E.; Ellis, S.M.; Babiuk, L.A.; Hancock, R.E.W.; Towers, G.H.N. Antiviral screening of British Columbian medicinal plants. J. Ethnopharmacol., 1995, 49(2), 101-110.
[http://dx.doi.org/10.1016/0378-8741(95)90037-3] [PMID: 8847882]
[91]
Vlietinck, A.J.; Van Hoof, L.; Totté, J.; Lasure, A.; Berghe, D.V.; Rwangabo, P.C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol., 1995, 46(1), 31-47.
[http://dx.doi.org/10.1016/0378-8741(95)01226-4] [PMID: 7475121]
[92]
Maregesi, S.M.; Pieters, L.; Ngassapa, O.D.; Apers, S.; Vingerhoets, R.; Cos, P.; Berghe, D.A.V.; Vlietinck, A.J. Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. J. Ethnopharmacol., 2008, 119(1), 58-66.
[http://dx.doi.org/10.1016/j.jep.2008.05.033] [PMID: 18582554]
[93]
Beutler, J.A.; Cardellina, J.H. Ii; McMahon, J.B.; Boyd, M.R.; Cragg, G.M. Anti-HIV and cytotoxic alkaloids from Buchenavia capitata. J. Nat. Prod., 1992, 55(2), 207-213.
[http://dx.doi.org/10.1021/np50080a008] [PMID: 1624941]
[94]
Lin, L.T.; Chung, C.Y.; Hsu, W.C.; Chang, S.P.; Hung, T.C.; Shields, J.; Russell, R.S.; Lin, C.C.; Li, C.F.; Yen, M.H.; Tyrrell, D.L.J.; Lin, C.C.; Richardson, C.D. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J. Hepatol., 2015, 62(3), 541-548.
[http://dx.doi.org/10.1016/j.jhep.2014.10.040] [PMID: 25450204]
[95]
Wang, H.; Li, K.; Ma, L.; Wu, S.; Hu, J.; Yan, H.; Jiang, J.; Li, Y. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy. Virol. J., 2017, 14(1), 2.
[http://dx.doi.org/10.1186/s12985-016-0674-4] [PMID: 28081706]
[96]
Visintini Jaime, M.F.; Redko, F.; Muschietti, L.V.; Campos, R.H.; Martino, V.S.; Cavallaro, L.V. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol. J., 2013, 10(1), 245.
[http://dx.doi.org/10.1186/1743-422X-10-245] [PMID: 23890410]
[97]
Yang, Q.Y.; Tian, X.Y.; Fang, W.S. Bioactive coumarins from Boenninghausenia sessilicarpa. J. Asian Nat. Prod. Res., 2007, 9(1), 59-65.
[http://dx.doi.org/10.1080/10286020500382397] [PMID: 17365191]
[98]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-512.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[99]
Xu, J.J.; Wu, X.; Li, M.M.; Li, G.Q.; Yang, Y.T.; Luo, H.J.; Huang, W.H.; Chung, H.Y.; Ye, W.C.; Wang, G.C.; Li, Y.L. Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of citrus reticulata ‘Chachi’. J. Agric. Food Chem., 2014, 62(10), 2182-2189.
[http://dx.doi.org/10.1021/jf404310y] [PMID: 24377463]
[100]
Kuo, Y.C.; Kuo, Y.H.; Lin, Y.L.; Tsai, W.J. Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Res., 2006, 70(3), 112-120.
[http://dx.doi.org/10.1016/j.antiviral.2006.01.011] [PMID: 16540181]
[101]
Lee, J.S.; Kim, H.J.; Lee, Y.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med., 2003, 69(9), 859-861.
[http://dx.doi.org/10.1055/s-2003-43207] [PMID: 14598216]
[102]
Karamese, M.; Aydogdu, S.; Karamese, S.A.; Altoparlak, U.; Gundogdu, C. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pac. J. Cancer Prev., 2015, 16(10), 4199-4202.
[http://dx.doi.org/10.7314/APJCP.2015.16.10.4199] [PMID: 26028072]
[103]
Lam, SK.; Ng, TB. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine, 2009, 15(5), 444-450.
[104]
Callies, O.; Bedoya, L.M.; Beltrán, M.; Muñoz, A.; Calderón, P.O.; Osorio, A.A.; Jiménez, I.A.; Alcamí, J.; Bazzocchi, I.L. Isolation, structural modification, and HIV inhibition of pentacyclic lupane-type triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. J. Nat. Prod., 2015, 78(5), 1045-1055.
[http://dx.doi.org/10.1021/np501025r] [PMID: 25927586]
[105]
Xu, H.B.; Ma, Y.B.; Huang, X.Y.; Geng, C.A.; Wang, H.; Zhao, Y.; Yang, T.H.; Chen, X.L.; Yang, C.Y.; Zhang, X.M.; Chen, J.J. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of Cyperus rotundus. J. Ethnopharmacol., 2015, 171, 131-140.
[http://dx.doi.org/10.1016/j.jep.2015.05.040] [PMID: 26051832]
[106]
Rebensburg, S.; Helfer, M.; Schneider, M.; Koppensteiner, H.; Eberle, J.; Schindler, M.; Gürtler, L.; Brack-Werner, R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci. Rep., 2016, 6(1), 20394.
[http://dx.doi.org/10.1038/srep20394] [PMID: 26833261]
[107]
Lupini, C.; Cecchinato, M.; Scagliarini, A.; Graziani, R.; Catelli, E. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus. Res. Vet. Sci., 2009, 87(3), 482-487.
[http://dx.doi.org/10.1016/j.rvsc.2009.04.007] [PMID: 19435637]
[108]
Pengsuparp, T.; Serit, M.; Hughes, S.H.; Soejarto, D.D.; Pezzuto, J.M. Specific inhibition of human immunodeficiency virus type 1 reverse transcriptase mediated by soulattrolide, a coumarin isolated from the latex of calophyllum teysmannii. J. Nat. Prod., 1996, 59(9), 839-842.
[http://dx.doi.org/10.1021/np960399y] [PMID: 8864237]
[109]
Shen, Y.C.; Wang, L.T.; Khalil, A.T.; Chiang, L.C.; Cheng, P.W. Bioactive pyranoxanthones from the roots of Calophyllum blancoi. Chem. Pharm. Bull., 2005, 53(2), 244-247.
[http://dx.doi.org/10.1248/cpb.53.244] [PMID: 15684529]
[110]
Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L.; Qin, C.; Sugamura, K.; Hattori, T. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res., 2009, 82(1), 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[111]
Semple, S.J.; Pyke, S.M.; Reynolds, G.D.; Flower, R.L.P. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Res., 2001, 49(3), 169-178.
[http://dx.doi.org/10.1016/S0166-3542(01)00125-5] [PMID: 11428243]
[112]
Vidal, V.; Potterat, O.; Louvel, S.; Hamy, F.; Mojarrab, M.; Sanglier, J.J.; Klimkait, T.; Hamburger, M. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium. J. Nat. Prod., 2012, 75(3), 414-419.
[http://dx.doi.org/10.1021/np200855d] [PMID: 22148316]
[113]
Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral Hepat., 2012, 19(2), e81-e88.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01507.x] [PMID: 22239530]
[114]
Cheng, H.Y.; Lin, T.C.; Yang, C.M.; Wang, K.C.; Lin, L.T.; Lin, C.C. Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J. Antimicrob. Chemother., 2004, 53(4), 577-583.
[http://dx.doi.org/10.1093/jac/dkh136] [PMID: 14998984]
[115]
Gyuris, A.; Szlávik, L.; Minárovits, J.; Vasas, A.; Molnár, J.; Hohmann, J. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251. In Vivo, 2009, 23(3), 429-432.
[PMID: 19454510]
[116]
Karimi, A.; Mohammadi-Kamalabadi, M.; Rafieian-Kopaei, M.; Amjad, L.; Salimzadeh, L. Determination of antioxidant activity, phenolic contents and antiviral potential of methanol extract of <i>Euphorbia spinidens</i> Bornm (Euphorbiaceae). Trop. J. Pharm. Res., 2016, 15(4), 759-764.
[http://dx.doi.org/10.4314/tjpr.v15i4.13]
[117]
Yang, Z.; Liu, N.; Huang, B.; Wang, Y.; Hu, Y.; Zhu, Y. [Effect of anti-influenza virus of Arctigenin in vivo] Zhong Yao Cai, 2005, 28(11), 1012-1014.
[PMID: 16514891]
[118]
Tan, G.T.; Pezzuto, J.M.; Kinghorn, A.D.; Hughes, S.H. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J. Nat. Prod., 1991, 54(1), 143-154.
[http://dx.doi.org/10.1021/np50073a012] [PMID: 1710653]
[119]
Yarmolinsky, L.; Huleihel, M.; Zaccai, M.; Ben-Shabat, S. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia, 2012, 83(2), 362-367.
[http://dx.doi.org/10.1016/j.fitote.2011.11.014] [PMID: 22155188]
[120]
Wang, G.; Wang, H.; Song, Y.; Jia, C.; Wang, Z.; Xu, H. [Studies on anti-HSV effect of Ficus carica leaves] Zhong Yao Cai, 2004, 27(10), 754-756.
[PMID: 15850358]
[121]
Lazreg Aref, H.; Gaaliche, B.; Fekih, A.; Mars, M.; Aouni, M.; Pierre Chaumon, J.; Said, K. In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat. Prod. Res., 2011, 25(3), 310-319.
[http://dx.doi.org/10.1080/14786419.2010.528758] [PMID: 21294043]
[122]
Najjari, A.H.; Rajabi, Z.; Marandi, M.V.; Dehghan, G. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2. Vet. Res. Forum, 2015, 6(3), 227-231.
[123]
Ashraf, A.; Ashraf, M.M.; Rafiqe, A.; Aslam, B.; Galani, S.; Zafar, S.; Asad, F.; Asghar, R.D.; Akram, S.; Ahmed, H.; Shah, S.M.A.; Asif, R. In vivo antiviral potential of Glycyrrhiza glabra extract against Newcastle disease virus. Pak. J. Pharm. Sci., 2017, 30(Suppl. 2), 567-572.
[PMID: 28650322]
[124]
Lin, J.C. Mechanism of action of glycyrrhizic acid in inhibition of Epstein-Barr virus replication in vitro. Antiviral Res., 2003, 59(1), 41-47.
[http://dx.doi.org/10.1016/S0166-3542(03)00030-5] [PMID: 12834859]
[125]
Pu, J.Y.; He, L.; Wu, S.Y.; Zhang, P.; Huang, X. [Anti-virus research of triterpenoids in licorice] Chin. J. Virol., 2013, 29(6), 673-679.
[PMID: 24520776]
[126]
Liu, J.; Yang, F.; Ye, L.B.; Yang, X.J.; Timani, K.A.; Zheng, Y.; Wang, Y.H. Possible mode of action of antiherpetic activities of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro. J. Ethnopharmacol., 2004, 95(2-3), 265-272.
[http://dx.doi.org/10.1016/j.jep.2004.07.010] [PMID: 15507347]
[127]
Alfajaro, M.M.; Kim, H.J.; Park, J.G.; Ryu, E.H.; Kim, J.Y.; Jeong, Y.J.; Kim, D.S.; Hosmillo, M.; Son, K.Y.; Lee, J.H.; Kwon, H.J.; Ryu, Y.B.; Park, S.J.; Park, S.I.; Lee, W.S.; Cho, K.O. Anti-rotaviral effects of Glycyrrhiza uralensis extract in piglets with rotavirus diarrhea. Virol. J., 2012, 9(1), 310.
[http://dx.doi.org/10.1186/1743-422X-9-310] [PMID: 23244491]
[128]
Al-Snafi, A.E. Chemical constituents and pharmacological activities of Gossypium herbaceum and Gossypium hirsutum-A. IOSR J. Pharm., 2018, 8, 64-80.
[129]
Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.F.; Lau, C.P.; Ho, H.M.; Lee, M.Y.H.; Au, S.W.N.; Cheng, C.H.K.; Lau, C.B.S.; Tsui, S.K.W.; Wan, D.C.C.; Waye, M.M.Y.; Wong, K.B.; Wong, C.K.; Lam, C.W.K.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[130]
Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep., 2017, 7(1), 45723.
[http://dx.doi.org/10.1038/srep45723] [PMID: 28393840]
[131]
Huang, T.J.; Tsai, Y.C.; Chiang, S.Y.; Wang, G.J.; Kuo, Y.C.; Chang, Y.C.; Wu, Y.Y.; Wu, Y.C. Anti-viral effect of a compound isolated from Liriope platyphylla against hepatitis B virus in vitro. Virus Res., 2014, 192, 16-24.
[http://dx.doi.org/10.1016/j.virusres.2014.07.015] [PMID: 25150190]
[132]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[133]
Zhu, Q.C.; Wang, Y.; Liu, Y.P.; Zhang, R.Q.; Li, X.; Su, W.H.; Long, F.; Luo, X.D.; Peng, T. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. Eur. J. Pharm. Sci., 2011, 44(3), 392-398.
[http://dx.doi.org/10.1016/j.ejps.2011.08.030] [PMID: 21914477]
[134]
Kuo, Y.C.; Lin, L.C.; Tsai, W.J.; Chou, C.J.; Kung, S.H.; Ho, Y.H. Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in Vero cells by regulation of viral macromolecular synthesis. Antimicrob. Agents Chemother., 2002, 46(9), 2854-2864.
[http://dx.doi.org/10.1128/AAC.46.9.2854-2864.2002] [PMID: 12183238]
[135]
Szlávik, L.; Gyuris, Á.; Minárovits, J.; Forgo, P.; Molnár, J.; Hohmann, J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Med., 2004, 70(9), 871-873.
[http://dx.doi.org/10.1055/s-2004-827239] [PMID: 15386196]
[136]
Yarmolinsky, L.; Zaccai, M.; Ben-Shabat, S.; Mills, D.; Huleihel, M. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. N. Biotechnol., 2009, 26(6), 307-313.
[http://dx.doi.org/10.1016/j.nbt.2009.08.005] [PMID: 19703599]
[137]
Garozzo, A.; Timpanaro, R.; Stivala, A.; Bisignano, G.; Castro, A. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: Study on the mechanism of action. Antiviral Res., 2011, 89(1), 83-88.
[http://dx.doi.org/10.1016/j.antiviral.2010.11.010] [PMID: 21095205]
[138]
Bag, P.; Chattopadhyay, D.; Mukherjee, H.; Ojha, D.; Mandal, N.; Sarkar, M.C.; Chatterjee, T.; Das, G.; Chakraborti, S. Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: An ethnomedicine from Andaman Islands. Virol. J., 2012, 9(1), 98.
[http://dx.doi.org/10.1186/1743-422X-9-98] [PMID: 22624581]
[139]
Fang, C.Y.; Chen, S.J.; Wu, H.N.; Ping, Y.H.; Lin, C.Y.; Shiuan, D.; Chen, C.L.; Lee, Y.R.; Huang, K.J. Honokiol, a lignan biphenol derived from the magnolia tree, inhibits dengue virus type 2 infection. Viruses, 2015, 7(9), 4894-4910.
[http://dx.doi.org/10.3390/v7092852] [PMID: 26378567]
[140]
Astani, A.; Reichling, J.; Schnitzler, P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy, 2012, 58(1), 70-77.
[http://dx.doi.org/10.1159/000335590] [PMID: 22377592]
[141]
Parsania, M.; Rezaee, M.B.; Monavari, S.H.; Jaimand, K.; Mousavi-Jazayeri, S.M.; Razazian, M.; Nadjarha, M.H. Antiviral screening of four plant extracts against acyclovir resistant herpes simplex virus type-1. Pak. J. Pharm. Sci., 2017, 30(Suppl. 4), 1407-1411.
[PMID: 29043989]
[142]
Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Risler, A.; Kassab, T.; Elfalleh, W.; Aferchichi, A.; Varbanov, M. Advances on antiviral activity of Morus spp. plant extracts: Human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules, 2020, 25(8), 1876.
[http://dx.doi.org/10.3390/molecules25081876] [PMID: 32325742]
[143]
Ojha, D.; Das, R.; Sobia, P.; Dwivedi, V.; Ghosh, S.; Samanta, A.; Chattopadhyay, D. Pedilanthus tithymaloides inhibits HSV infection by modulating NF-κB signaling. PLoS One, 2015, 10(9), e0139338.
[http://dx.doi.org/10.1371/journal.pone.0139338] [PMID: 26405764]
[144]
Wei, W.; Li, X.; Wang, K.; Zheng, Z.; Zhou, M. Lignans with anti-hepatitis B virus activities from Phyllanthus niruri L. Phytother. Res., 2012, 26(7), 964-968.
[http://dx.doi.org/10.1002/ptr.3663] [PMID: 22131154]
[145]
Kang, E.H.; Kown, T.Y.; Oh, G.T.; Park, W.F.; Park, S.I.; Park, S.K.; Lee, Y.I. The flavonoid ellagic acid from a medicinal herb inhibits host immune tolerance induced by the hepatitis B virus-e antigen. Antiviral Res., 2006, 72(2), 100-106.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.006] [PMID: 16720052]
[146]
Jiang, Z.Y.; Liu, W.F.; Zhang, X.M.; Luo, J.; Ma, Y.B.; Chen, J.J. Anti-HBV active constituents from Piper longum. Bioorg. Med. Chem. Lett., 2013, 23(7), 2123-2127.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.118] [PMID: 23434420]
[147]
Semple, S.J.; Nobbs, S.F.; Pyke, S.M.; Reynolds, G.D.; Flower, R.L.P. Antiviral flavonoid from Pterocaulon sphacelatum, an Australian Aboriginal medicine. J. Ethnopharmacol., 1999, 68(1-3), 283-288.
[http://dx.doi.org/10.1016/S0378-8741(99)00050-1] [PMID: 10624889]
[148]
Lv, J.J.; Yu, S.; Wang, Y.F.; Wang, D.; Zhu, H.T.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Anti-hepatitis B virus norbisabolane sesquiterpenoids from Phyllanthus acidus and the establishment of their absolute configurations using theoretical calculations. J. Org. Chem., 2014, 79(12), 5432-5447.
[http://dx.doi.org/10.1021/jo5004604] [PMID: 24824117]
[149]
Lv, J.J.; Yu, S.; Xin, Y.; Cheng, R.R.; Zhu, H.T.; Wang, D.; Yang, C.R.; Xu, M.; Zhang, Y.J. Anti-viral and cytotoxic norbisabolane sesquiterpenoid glycosides from Phyllanthus emblica and their absolute configurations. Phytochemistry, 2015, 117, 123-134.
[http://dx.doi.org/10.1016/j.phytochem.2015.06.001] [PMID: 26074492]
[150]
Karimi, A.; Rafieian-Kopaei, M.; Moradi, M.T.; Alidadi, S. Anti–herpes simplex virus Type-1 activity and phenolic content of crude ethanol extract and four corresponding fractions of quercus brantii L Acorn. J. Evid. Based Complement. Altern. Med., 2017, 22(3), 455-461.
[http://dx.doi.org/10.1177/2156587216676421] [PMID: 27899436]
[151]
Oh, C.; Price, J.; Brindley, M.A.; Widrlechner, M.P.; Qu, L.; McCoy, J.A.; Murphy, P.; Hauck, C.; Maury, W. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol. J., 2011, 8(1), 188.
[http://dx.doi.org/10.1186/1743-422X-8-188] [PMID: 21513560]
[152]
Shin, H.B.; Choi, M.S.; Ryu, B.; Lee, N.R.; Kim, H.I.; Choi, H.E.; Chang, J.; Lee, K.T.; Jang, D.S.; Inn, K.S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J., 2013, 10(1), 303.
[http://dx.doi.org/10.1186/1743-422X-10-303] [PMID: 24103432]
[153]
Wahyuni, T.S.; Widyawaruyanti, A.; Lusida, M.I.; Fuad, A. Soetjipto; Fuchino, H.; Kawahara, N.; Hayashi, Y.; Aoki, C.; Hotta, H. Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia, 2014, 99, 276-283.
[http://dx.doi.org/10.1016/j.fitote.2014.10.011] [PMID: 25454460]
[154]
Esposito, F.; Carli, I.; Del Vecchio, C.; Xu, L.; Corona, A.; Grandi, N.; Piano, D.; Maccioni, E.; Distinto, S.; Parolin, C.; Tramontano, E. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine, 2016, 23(12), 1383-1391.
[http://dx.doi.org/10.1016/j.phymed.2016.08.001] [PMID: 27765358]
[155]
Lee, J.H.; Oh, M.; Seok, J.; Kim, S.; Lee, D.; Bae, G.; Bae, H.I.; Bae, S.; Hong, Y.M.; Kwon, S.O.; Lee, D.H.; Song, C.S.; Mun, J.; Chung, M.; Kim, K. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses, 2016, 8(6), 157.
[http://dx.doi.org/10.3390/v8060157] [PMID: 27275830]
[156]
Luo, W.; Su, X.; Gong, S.; Qin, Y.; Liu, W.; Li, J.; Yu, H.; Xu, Q. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci. Trends, 2009, 3(4), 124-126.
[PMID: 20103835]
[157]
Zuo, G.; Li, Z.; Chen, L.; Xu, X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Res., 2007, 76(1), 86-92.
[http://dx.doi.org/10.1016/j.antiviral.2007.06.001] [PMID: 17624450]
[158]
Li, T.; Peng, T. Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antiviral Res., 2013, 97(1), 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.006] [PMID: 23153834]
[159]
Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res. Pharm. Sci., 2014, 9(6), 463-469.
[PMID: 26339261]
[160]
Romero-Pérez, G.A.; Egashira, M.; Harada, Y.; Tsuruta, T.; Oda, Y.; Ueda, F.; Tsukahara, T.; Tsukamoto, Y.; Inoue, R. Orally administered Salacia reticulata extract reduces H1N1 influenza clinical symptoms in murine lung tissues putatively due to enhanced natural killer cell activity. Front. Immunol., 2016, 7, 115.
[http://dx.doi.org/10.3389/fimmu.2016.00115] [PMID: 27066007]
[161]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[162]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[163]
Tsai, Y.C.; Lee, C.L.; Yen, H.R.; Chang, Y.S.; Lin, Y.P.; Huang, S.H.; Lin, C.W. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 2020, 10(3), 366.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[164]
Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273, 197767.
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[165]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[166]
Takeshita, M.; Ishida, Y.; Akamatsu, E.; Ohmori, Y.; Sudoh, M.; Uto, H.; Tsubouchi, H.; Kataoka, H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J. Biol. Chem., 2009, 284(32), 21165-21176.
[http://dx.doi.org/10.1074/jbc.M109.004945] [PMID: 19531480]
[167]
Zhang, H.J.; Tan, G.T.; Hoang, V.D.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S. Natural anti-HIV agents. Part IV. Anti-HIV constituents from Vatica cinerea. J. Nat. Prod., 2003, 66(2), 263-268.
[http://dx.doi.org/10.1021/np020379y] [PMID: 12608862]
[168]
Khandelwal, V.; Choudhary, P.K. Immunomodulating potential of neolamarckia cadamba (Roxb.) Bark extract. J. Pure Appl. Microbiol., 2020, 14(1), 641-646.
[http://dx.doi.org/10.22207/JPAM.14.1.66]
[169]
Gurjar, M.K.; Jat, B.L.; Choudhary, P.; Kumar, V. Bioefficacy of newer insecticides and botanicals against red pumpkin beetle Raphidopalpa foveicollis (Lucas) on bottle gourd, Lagenaria siceraria (Molina). Stand. J. Entomol. Res., 2022, 46(3), 570-575.
[http://dx.doi.org/10.5958/0974-4576.2022.00099.8]
[170]
Gurjar, M.K.; Jat, B.L.; Choudhary, P.; Nayak, R.K. Screening of bottle gourd genotypes/varieties for resistance against red pumpkin beetle Raphidopalpa foveicollis (Lucas) in semi-arid region of Rajasthan. Indian J. Ecol., 2022, 49(5), 1773-1781.
[171]
Goel, A.; Bhatia, AK. Ocimum sanctum: In vitro antiviral potential against animal viruses. IJTK, 2022, 21(1), 120-125.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy