Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Thymus atlanticus (Ball) Roussine Aqueous Extract Exerts Lipid-lowering and Anti-atherosclerotic Effects in Hyperlipidemic Guinea Pigs

Author(s): Hamza Elbouny*, Brahim Ouahzizi, Oussama Bekkouch, Amal Bennani, Souliman Amrani, Mhamed Ramchoun, Khalid Sellam and Chakib Alem

Volume 23, Issue 4, 2023

Published on: 30 November, 2023

Page: [256 - 262] Pages: 7

DOI: 10.2174/011871529X270863231123063744

Price: $65

Abstract

Background: Thymus atlanticus (Ball) Roussine (T. atlanticus) is traditionally used in the Moroccan high Atlas Mountains to treat several disorders, including cardiovascular disease. In the present study, the lipid-lowering and anti-atherosclerotic activities of the traditionally used aqueous extract of T. atlanticus were evaluated on guinea pigs subjected to chronic hyperlipidemia.

Methods: Animals were given a diet containing 2% cholesterol and 20% lard for 12 weeks. Moreover, thyme extract was given daily at 400 mg/kg. At the end of the experiment, lipid levels and paraoxonase arylesterase activity were measured, and aorta histology was studied.

Results: Our findings revealed that there was an important elevation of blood lipids in the HFD group along with a significant decrease in paraoxonase arylesterase activity (-40.06%). Moreover, the consumption of fat altered the histology of aorta by thickening the intima media and forming atherosclerotic lesions and foam cells in these tissues. However, the administration of thyme extract attenuated HFD-caused alterations by decreasing blood lipids, elevating paraoxonase activity (+24.04%), and limiting the progression of atherosclerotic lesions.

Conclusion: We conclude that the supplementation with the aqueous extract of T. atlanticus could potentially protect against hyperlipidemia and consequently, the development of atherosclerosis.

Keywords: Atherosclerosis, guinea pig, hyperlipidemia, paraoxonase activity, Thymus atlanticus, blood lipids.

Graphical Abstract
[1]
Davari, M.; Maracy, M.R.; Khorasani, E. Socioeconomic status, cardiac risk factors, and cardiovascular disease: A novel approach to determination of this association. ARYA Atheroscler., 2019, 15(6), 260-266.
[http://dx.doi.org/10.22122/arya.v15i6.1595] [PMID: 32206069]
[2]
Hill, M.F.; Bordoni, B. Hyperlipidemia; StatPearls, 2021.
[3]
Thompson, P.D.; Panza, G.; Zaleski, A.; Taylor, B. Statin-associated side effects. J. Am. Coll. Cardiol., 2016, 67(20), 2395-2410.
[http://dx.doi.org/10.1016/j.jacc.2016.02.071] [PMID: 27199064]
[4]
Rauf, A.; Akram, M.; Anwar, H.; Daniyal, M.; Munir, N.; Bawazeer, S.; Bawazeer, S.; Rebezov, M.; Bouyahya, A.; Shariati, M.A.; Thiruvengadam, M.; Sarsembenova, O.; Mabkhot, Y.N.; Islam, M.N.; Emran, T.B.; Hodak, S.; Zengin, G.; Khan, H. Therapeutic potential of herbal medicine for the management of hyperlipidemia: Latest updates. Environ. Sci. Pollut. Res. Int., 2022, 29(27), 40281-40301.
[http://dx.doi.org/10.1007/s11356-022-19733-7] [PMID: 35320475]
[5]
El-Tantawy, W.H.; Temraz, A. Natural products for controlling hyperlipidemia: Review. Arch. Physiol. Biochem., 2019, 125(2), 128-135.
[http://dx.doi.org/10.1080/13813455.2018.1441315] [PMID: 29457523]
[6]
Issa, N.M.; Noya, D.A.E.; Salama, R.M. Evaluation of Thymus vulgaris (Thyme) role in the protection and treatment of the parotid gland of Triton WR-1339 induced hyperlipidemia in adult male albino rats. Egypt. J. Histol., 2021, 44, 732-747.
[7]
Shokri, B.; Nejadhabibvash, F.; Farokhi, F.; Rezaee, M.B. Effect of feeding Thymus daenensis Celak. essential oil on the serum lipid profiles, urea and liver enzymes in hypercholesterolemic male Wistar rats. Majallah-i Danishgah-i Ulum-i Pizishki-i Gurgan, 2019, 21, 18-25.
[8]
Khouya, T.; Ramchoun, M.; Hmidani, A.; Bouhlali, E.T.; Amrani, S.; Alem, C. Phytochemical analysis and bioactivity evaluation of Moroccan Thymus atlanticus (Ball) fractions. Sci. Am., 2021, 11, e00716.
[http://dx.doi.org/10.1016/j.sciaf.2021.e00716]
[9]
Ramchoun, M.; Khouya, T.; Harnafi, H.; Alem, C.; Benlyas, M.; Simmet, T.; Ouguerram, K.; Amrani, S. Effect of polyphenol, flavonoid, and saponin fractions from Thymus atlanticus on acute and chronic hyperlipidemia in mice. Fut. J. Pharmaceut. Sci., 2020, 6(1), 69.
[http://dx.doi.org/10.1186/s43094-020-00097-z]
[10]
Ramchoun, M.; Khouya, T.; Harnafi, H.; Amrani, S.; Alem, C.; Benlyas, M.; Kasbi Chadli, F.; Nazih, E.H.; Nguyen, P.; Ouguerram, K. Effect of aqueous extract and polyphenol fraction derived from Thymus atlanticus leaves on acute hyperlipidemia in the syrian golden hamsters. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/3282596] [PMID: 32308705]
[11]
Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Benlyas, M.; Kasbi Chadli, F.; Ouguerram, K.; Alem, C. Effect of supplementation with polyphenol extract of Thymus atlanticus on paraoxonase‐1 activity, insulin resistance, and lipid profile in high‐fat diet‐fed hamsters. J. Food Biochem., 2022, 46(9), e14225.
[http://dx.doi.org/10.1111/jfbc.14225] [PMID: 35575425]
[12]
Ramchoun, M.; Khouya, T.; Alibrahim, E.; Abdelbassat, H.; Sellam, K.; Amrani, S. Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet. Arch. Physiol. Biochem., 2020, 1-8.
[http://dx.doi.org/10.1080/13813455.2020.1854308] [PMID: 33320714]
[13]
Hmidani, A.; Bouhlali, E.T.; Khouya, T.; Ramchoun, M.; Filalizegzouti, Y.; Benlyas, M.; Alem, C. Effect of extraction methods on antioxidant and anticoagulant activities of Thymus atlanticus aerial part. Sci. Am., 2019, 5, e00143.
[http://dx.doi.org/10.1016/j.sciaf.2019.e00143]
[14]
Hmidani, A.; Bouhlali, E.D.T.; Khouya, T.; Ramchoun, M.; Filali-Zegzouti, Y.; Alem, C.; Benlyas, M. Antioxidant, anti-inflammatory and anticoagulant activities of three Thymus species grown in southeastern Morocco. Future J. Pharm. Sci., 2019, 5(1), 4.
[http://dx.doi.org/10.1186/s43094-019-0005-x]
[15]
Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Filali Zegzouti, Y.; Alem, C. Anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts from Moroccan thyme varieties. Asian Pac. J. Trop. Biomed., 2015, 5(8), 636-644.
[http://dx.doi.org/10.1016/j.apjtb.2015.05.011]
[16]
Hamza, E.; Brahı̇m, O.; Khalı̇d, S.; Chakı̇b, A. In vitro investigations of biological activities of Thymus willdenowii and Thymus atlanticus polyphenol-rich extracts. Int. J. Second. Metab., 2023, 10(1), 48-58.
[http://dx.doi.org/10.21448/ijsm.1110715]
[17]
Zhao, G.; Sun, S.; Zhang, T.; Li, J. Hypolipidemic and antioxidant efficacy of giant embryo brown rice in high-fat-fed guinea pigs. Indian J. Anim. Health, 2020, 59(2), 169-177.
[http://dx.doi.org/10.36062/ijah.59.2.2020.169-177]
[18]
Korokin, M.; Gudyrev, O.; Gureev, V.; Korokina, L.; Peresypkina, A.; Pokrovskaia, T.; Lazareva, G.; Soldatov, V.; Zatolokina, M.; Pokrovskii, M. Studies to elucidate the effects of furostanol glycosides from Dioscorea deltoidea cell culture in a rat model of endothelial dysfunction. Molecules, 2019, 25(1), 169.
[http://dx.doi.org/10.3390/molecules25010169] [PMID: 31906178]
[19]
Kott, K.A.; Morel-Kopp, M.C.; Vernon, S.T.; Takagi, Y.; Di Bartolo, B.A.; Peter, K.; Yang, J.Y.; Grieve, S.M.; Ward, C.; Figtree, G.A. Association of global coagulation profiles with cardiovascular risk factors and atherosclerosis: A sex disaggregated analysis from the BioHEART‐CT study. J. Am. Heart Assoc., 2021, 10(20), e020604.
[http://dx.doi.org/10.1161/JAHA.120.020604] [PMID: 34622670]
[20]
Varghese, J.F.; Patel, R.; Yadav, U.C.S. Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis. Curr. Cardiol. Rev., 2018, 14(1), 4-14.
[http://dx.doi.org/10.2174/1573403X13666171009112250] [PMID: 28990536]
[21]
Posthuma, J.J.; Posma, J.J.N.; van Oerle, R.; Leenders, P.; van Gorp, R.H.; Jaminon, A.M.G.; Mackman, N.; Heitmeier, S.; Schurgers, L.J.; ten Cate, H.; Spronk, H.M.H. Targeting coagulation factor Xa promotes regression of advanced atherosclerosis in apolipoprotein-E deficient mice. Sci. Rep., 2019, 9(1), 3909.
[http://dx.doi.org/10.1038/s41598-019-40602-w] [PMID: 30846818]
[22]
Klaebel, J.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Efficacy of fibroblast growth factor 21 in non‐alcoholic fatty liver disease in guinea pigs. Basic Clin. Pharmacol. Toxicol., 2022, 130(3), 385-393.
[http://dx.doi.org/10.1111/bcpt.13705] [PMID: 35014168]
[23]
Yang, S.; Liu, L.; Meng, L.; Hu, X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem. Biol. Interact., 2019, 297, 1-7.
[http://dx.doi.org/10.1016/j.cbi.2018.10.006] [PMID: 30342015]
[24]
Estrada-Luna, D.; Martínez-Hinojosa, E.; Cancino-Diaz, J.C.; Belefant-Miller, H.; López-Rodríguez, G.; Betanzos-Cabrera, G. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet. Eur. J. Nutr., 2018, 57(1), 383-389.
[http://dx.doi.org/10.1007/s00394-017-1394-2] [PMID: 28243786]
[25]
Rondanelli, M.; Giacosa, A.; Opizzi, A.; Faliva, M.A.; Sala, P.; Perna, S.; Riva, A.; Morazzoni, P.; Bombardelli, E. Beneficial effects of artichoke leaf extract supplementation on increasing HDL-cholesterol in subjects with primary mild hypercholesterolaemia: A double-blind, randomized, placebo-controlled trial. Int. J. Food Sci. Nutr., 2013, 64(1), 7-15.
[http://dx.doi.org/10.3109/09637486.2012.700920] [PMID: 22746542]
[26]
Zhu, Y.; Huang, X.; Zhang, Y.; Wang, Y.; Liu, Y.; Sun, R.; Xia, M. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J. Clin. Endocrinol. Metab., 2014, 99(2), 561-569.
[http://dx.doi.org/10.1210/jc.2013-2845] [PMID: 24285687]
[27]
Elbouny, H.; Ouahzizi, B.; Sellam, K.; Alem, C. Antioxidant potential of thymus willdenowii Boiss & Reut. aqueous extract and effect of its supplementation on hyperlipidemia and Paraoxonase-1 Arylesterase activity in high-fat diet-fed rats. Curr. Drug Ther., 2023, 18, 1-1.
[http://dx.doi.org/10.2174/1574885518666230724163758]
[28]
Mousavi, S.; Hadi, F.; Azarbani, F. In vitro evaluation of antioxidant capacity of thymus kotschyanus hydro-alcoholic extracts and its effect on serum paraoxonase 1 activity in diabetic and healthy persons. Iranian Journal of Diabetes and Metabolism, 2021, 20, 157-166.
[29]
Elbouny, H.; Ouahzizi, B.; Sellam, K.; Alem, C. Hypolipidemic effect of Thymus munbyanus subsp. ciliatus Greuter & Burdet.: Guinea pig as a model for tyloxapol-induced hyperlipidemia. Journal of Biologically Active Products from Nature, 2022, 12(6), 507-513.
[http://dx.doi.org/10.1080/22311866.2022.2162580]
[30]
Kotur-Stevuljević, J.; Vekić, J.; Stefanović, A.; Zeljković, A.; Ninić, A.; Ivanišević, J.; Miljković, M.; Sopić, M.; Munjas, J.; Mihajlović, M.; Spasić, S.; Jelić,-Ivanović, Z.; Spasojević-Kalimanovska, V. Paraoxonase 1 and atherosclerosis-related diseases. Biofactors, 2020, 46(2), 193-205.
[http://dx.doi.org/10.1002/biof.1549] [PMID: 31400246]
[31]
Shunmoogam, N.; Naidoo, P.; Chilton, R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag., 2018, 14, 137-143.
[http://dx.doi.org/10.2147/VHRM.S165173] [PMID: 29950852]
[32]
Andre, C.; Larondelle, Y.; Evers, D. Dietary antioxidants and oxidative stress from a human and plant perspective: A review. Curr. Nutr. Food Sci., 2010, 6(1), 2-12.
[http://dx.doi.org/10.2174/157340110790909563]
[33]
Bacchetti, T.; Turco, I.; Urbano, A.; Morresi, C.; Ferretti, G. Relationship of fruit and vegetable intake to dietary antioxidant capacity and markers of oxidative stress: A sex-related study. Nutrition, 2019, 61, 164-172.
[http://dx.doi.org/10.1016/j.nut.2018.10.034] [PMID: 30716560]
[34]
Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp. Eye Res., 2019, 181, 356-366.
[http://dx.doi.org/10.1016/j.exer.2018.11.023] [PMID: 30503749]
[35]
Ibrahim, K.A.; Eleyan, M.; Khwanes, S.A.; Mohamed, R.A.; Abd El-Rahman, H.A. Quercetin ameliorates the hepatic apoptosis of foetal rats induced by in utero exposure to fenitrothion via the transcriptional regulation of paraoxonase-1 and apoptosis-related genes. Biomarkers, 2021, 26(2), 152-162.
[http://dx.doi.org/10.1080/1354750X.2021.1875505] [PMID: 33439051]
[36]
Amengual-Cladera, E.; Nadal-Casellas, A.; Gómez-Pérez, Y.; Gomila, I.; Prieto, R.M.; Proenza, A.M.; Lladó, I. Phytotherapy in a rat model of hyperoxaluria: The antioxidant effects of quercetin involve serum paraoxonase 1 activation. Exp. Biol. Med. (Maywood), 2011, 236(10), 1133-1138.
[http://dx.doi.org/10.1258/ebm.2011.011090] [PMID: 21893570]
[37]
Arab, Z.N.; Khayatan, D.; Razavi, S.M.; Zare, K.; Kheradkhah, E.; Momtaz, S.; Ferretti, G.; Bacchetti, T.; Sathyapalan, T.; Emami, S.A.; Abdolghaffari, A.H.; Sahebkar, A. Phytochemicals as modulators of paraoxonase-1 in health and diseases. Antioxidants, 2022, 11(7), 1273.
[http://dx.doi.org/10.3390/antiox11071273] [PMID: 35883764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy