Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

General Research Article

One-step Synthesis of Deep Eutectic Solvents and Dissolution of Kraft Lignin

Author(s): Omar Merino Pérez, Ricardo Cerón-Camacho and Rafael Martínez-Palou*

Volume 10, Issue 2, 2023

Published on: 08 December, 2023

Page: [230 - 236] Pages: 7

DOI: 10.2174/0122133356264245231120053530

Abstract

Lignin is a very abundant biopolymer with great potential to produce other high-value polymers with aromatic groups. Its valorization has been limited principally by its poor solubility in conventional organic solvents, which makes it difficult to deconstruct or transform it into other products with higher added value. In this work, we describe a one-pot procedure to prepare various Deep Eutectic Solvents and study their ability to dissolve Kraft lignin with the aid of microwave dielectric heating efficiently.

Background: Lignin is a widely available aromatic biopolymer that is largely discarded or used as a low-value fuel when separated in paper production processes, so researchers are engaged in the development of lignin dissolution processes that allow its easy deconstruction and transformation into other products with higher added value.

Objective: The main objective of this work is to find deep eutectic solvents capable of dissolving significant quantities of lignin with the aid of microwaves as a heating source.

Method: The present work developed a simple, fast, and efficient method to dissolve lignin using Deep Eutectic Solvent/acetonitrile as solvents and irradiation by dielectric microwave heating.

Results: Most of the DESs studied achieved significant dissolution of purchased lignin with common organic solvents by employing microwave irradiation as the heating method.

Conclusion: Some DESs studied in this work are good alternatives as solvents for lignin solvent option of simple preparation from renewable precursors from biomass, such as glycerol, choline chloride, and urea, of low toxicity and cost for this application. The effectiveness of these systems appears to be based on molecular recognition by hydrogen bonding interactions involving the three species that make up the eutectic and the hydroxyl groups of the lignin. These solvents can be recovered and recycled.

Keywords: Microwave, lignin, deep eutectic solvent, dissolution, biopolymers, one-pot procedure.

Graphical Abstract
[1]
Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev., 2016, 116(4), 2275-2306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00345] [PMID: 26654678]
[2]
Calvo-Flores, F.G.; Dobado, J.A. Lignin as renewable raw material. ChemSusChem, 2010, 3(11), 1227-1235.
[http://dx.doi.org/10.1002/cssc.201000157] [PMID: 20839280]
[3]
Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev., 2018, 47(3), 852-908.
[http://dx.doi.org/10.1039/C7CS00566K] [PMID: 29318245]
[4]
Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; Langan, P.; Naskar, A.K.; Saddler, J.N.; Tschaplinski, T.J.; Tuskan, G.A.; Wyman, C.E. Lignin valorization: Improving lignin processing in the biorefinery. Science, 2014, 344(6185), 1246843.
[http://dx.doi.org/10.1126/science.1246843] [PMID: 24833396]
[5]
Chakar, F.S.; Ragauskas, A.J. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod., 2004, 20(2), 131-141.
[http://dx.doi.org/10.1016/j.indcrop.2004.04.016]
[6]
Melro, E.; Alves, L.; Antunes, F.E.; Medronho, B. A brief overview on lignin dissolution. J. Mol. Liq., 2018, 265, 578-584.
[http://dx.doi.org/10.1016/j.molliq.2018.06.021]
[7]
Meng, Z.; Zheng, X.; Tang, K.; Liu, J.; Qin, S. Dissolution of natural polymers in ionic liquids: A review. e-Polymers., 2012, 12, 1-29.
[http://dx.doi.org/10.1515/epoly.2012.12.1.317]
[8]
Pu, Y.; Jiang, N.; Ragauskas, A.J. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol., 2007, 27(1), 23-33.
[http://dx.doi.org/10.1080/02773810701282330]
[9]
Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem., 2006, 8(4), 325-327.
[http://dx.doi.org/10.1039/b601395c]
[10]
Fort, D.A.; Remsing, R.C.; Swatloski, R.P.; Moyna, P.; Moyna, G.; Rogers, R.D. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem., 2007, 9, 63-69.
[http://dx.doi.org/10.1039/B607614A]
[11]
Honglu, X.; Tiejun, S. Wood liquefaction by ionic liquids. Holzforschung, 2006, 60(5), 509-512.
[http://dx.doi.org/10.1515/HF.2006.084]
[12]
Merino, O.; Fundora-Galano, G.; Luque, R.; Martínez-Palou, R. Understanding microwave-assisted lignin solubilization in protic ionic liquids with multiaromatic imidazolium cations. ACS Sustain. Chem. Eng., 2018, 6(3), 4122-4129.
[http://dx.doi.org/10.1021/acssuschemeng.7b04535]
[13]
Merino, O.; Cerón-Camacho, R.; Luque, R.; Martínez-Palou, R. Microwave-assisted lignin solubilization in protic ionic compounds containing 2,3,4,5-tetraphenyl-1h-imidazolium and inorganic anions. Waste Biomass Valoriz., 2020, 11(12), 6585-6593.
[http://dx.doi.org/10.1007/s12649-019-00916-2]
[14]
Chatel, G.; Rogers, R.D. Review: Oxidation of Lignin Using Ionic Liquids - An innovative strategy to produce renewable chemicals. ACS Sustain. Chem. Eng., 2014, 2(3), 322-339.
[http://dx.doi.org/10.1021/sc4004086]
[15]
De Gregorio, G.F.; Prado, R.; Vriamont, C.; Erdocia, X.; Labidi, J. Oxidative depolimerization of lignin using a novel polyoxometalateprotic ionic liquid system. ACS Sustain. Chem. Eng., 2016, 4, 6031-6036.
[http://dx.doi.org/10.1021/acssuschemeng.6b01339]
[16]
Prabhune, A.; Dey, R. Green and sustainable solvents of the future: Deep eutectic solvents. J. Mol. Liq., 2023, 379, 121676.
[http://dx.doi.org/10.1016/j.molliq.2023.121676]
[17]
Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents – Solvents for the 21st Century. ACS Sustain. Chem. Eng., 2014, 2(5), 1063-1071.
[http://dx.doi.org/10.1021/sc500096j]
[18]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[19]
Capper, G. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun., 2003, 70-71.
[http://dx.doi.org/10.1039/b210714g]
[20]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
[21]
Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data, 2006, 51(4), 1280-1282.
[http://dx.doi.org/10.1021/je060038c]
[22]
Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry, 2007, 13(22), 6495-6501.
[http://dx.doi.org/10.1002/chem.200601738] [PMID: 17477454]
[23]
Morrison, H.G.; Sun, C.C.; Neervannan, S. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm., 2009, 378(1-2), 136-139.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.039] [PMID: 19477257]
[24]
Haerens, K.; Matthijs, E.; Chmielarz, A.; Van der Bruggen, B. The use of ionic liquids based on choline chloride for metal deposition: A green alternative? J. Environ. Manage., 2009, 90(11), 3245-3252.
[http://dx.doi.org/10.1016/j.jenvman.2009.04.013] [PMID: 19523749]
[25]
Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data, 2010, 55(11), 4632-4637.
[http://dx.doi.org/10.1021/je100104v]
[26]
Zhang, K.; Ren, S.; Yang, X.; Hou, Y.; Wu, W.; Bao, Y. Efficient absorption of low-concentration SO 2 in simulated flue gas by functional deep eutectic solvents based on imidazole and its derivatives. Chem. Eng. J., 2017, 327, 128-134.
[http://dx.doi.org/10.1016/j.cej.2017.06.081]
[27]
Al Nashef, I.M.; Al Zahrani, S.M. Process for the destruction of halogenated hydrocarbons and their homologous/analogous in deep eutectic solvents at ambient conditions. U.S. Patent No. 7,812,211, 2010.
[28]
Al Nashef, I.M.; Al Zahrani, S.M. Method for the preparation of reactive hydrogen peroxide in deep eutectic solvents. U.S. Patent No. 7,763,768, 2010.
[29]
Ciocirlan, O.; Iulian, O.; Croitoru, O. Effect of temperature on the physico-chemical properties of three ionic liquids containing choline chloride. Rev. Chim., 2010, 61, 721-723.
[30]
Hall, M.; Bansal, P.; Lee, J.H.; Realff, M.J.; Bommarius, A.S. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour. Technol., 2011, 102(3), 2910-2915.
[http://dx.doi.org/10.1016/j.biortech.2010.11.010] [PMID: 21111611]
[31]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[32]
Fischer, V. Properties and applications of deep eutectic solvents and low-melting mixtures. Ph.D. Dissertation, University of Regensburg, Regensburg, Germany., 2015.
[33]
Haq, I.; Mazumder, P.; Kalamdhad, A.S. Recent advances in removal of lignin from paper industry wastewater and its industrial applications - A review. Bioresour. Technol., 2020, 312, 123636.
[http://dx.doi.org/10.1016/j.biortech.2020.123636] [PMID: 32527619]
[34]
Ge, Y.; Li, Z. Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review. ACS Sustain. Chem. Eng., 2018, 6(5), 7181-7192.
[http://dx.doi.org/10.1021/acssuschemeng.8b01345]
[35]
Rico-García, D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Hernández-Olmos, S.L.; Guerrero-Ramírez, G.L.; Vilas-Vilela, J.L. Lignin-based hydrogels: Synthesis and applications. Polymers, 2020, 12(1), 81.
[http://dx.doi.org/10.3390/polym12010081] [PMID: 31947714]
[36]
Xia, Q.; Chen, C.; Yao, Y.; Li, J.; He, S.; Zhou, Y.; Li, T.; Pan, X.; Yao, Y.; Hu, L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain., 2021, 4(7), 627-635.
[http://dx.doi.org/10.1038/s41893-021-00702-w]
[37]
Tang, B.; Row, K.H. Recent developments in deep eutectic solvents in chemical sciences. Monatsh. Chem., 2013, 144(10), 1427-1454.
[http://dx.doi.org/10.1007/s00706-013-1050-3]
[38]
Chen, Z.; Bai, X.;A,L.; Wan, C. High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals. ACS Sustain. Chem. Eng., 2018, 6(9), 12205-12216.
[http://dx.doi.org/10.1021/acssuschemeng.8b02541]
[39]
Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem., 2016, 18(19), 5133-5141.
[http://dx.doi.org/10.1039/C6GC01007E]
[40]
Chen, Z.; Reznicek, W.D.; Wan, C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour. Technol., 2018, 263, 40-48.
[http://dx.doi.org/10.1016/j.biortech.2018.04.058] [PMID: 29729540]
[41]
Kim, K.H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem., 2018, 20(4), 809-815.
[http://dx.doi.org/10.1039/C7GC03029K]
[42]
Procentese, A.; Johnson, E.; Orr, V.; Garruto Campanile, A.; Wood, J.A.; Marzocchella, A.; Rehmann, L. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. Technol., 2015, 192, 31-36.
[http://dx.doi.org/10.1016/j.biortech.2015.05.053] [PMID: 26005926]
[43]
Shen, X.J.; Wen, J.L.; Mei, Q.Q.; Chen, X.; Sun, D.; Yuan, T.Q.; Sun, R.C. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem., 2019, 21(2), 275-283.
[http://dx.doi.org/10.1039/C8GC03064B]
[44]
Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem., 2018, 20(12), 2711-2721.
[http://dx.doi.org/10.1039/C8GC00900G]
[45]
Yu, H.; Xue, Z.; Shi, R.; Zhou, F.; Mu, T. Lignin dissolution and lignocellulose pretreatment by carboxylic acid based deep eutectic solvents. Ind. Crops Prod., 2022, 184, 115049.
[http://dx.doi.org/10.1016/j.indcrop.2022.115049]
[46]
Chen, Z.; Wan, C. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour. Technol., 2018, 250, 532-537.
[http://dx.doi.org/10.1016/j.biortech.2017.11.066] [PMID: 29197776]
[47]
Microwave reactor: Monowave.. Available from: https://www.anton-paar.com/mx-es/productos/detalles/sintesis-asistida-pormicroondas-monowave-400200/ (Accessed: 05/23/2023).
[48]
Likhanova, N.V.; Guzmán-Lucero, D.; Flores, E.A.; García, P.; Domínguez-Aguilar, M.A.; Palomeque, J.; Martínez-Palou, R. Ionic liquids screening for desulfurization of natural gasoline by liquid–liquid extraction. Mol. Divers., 2010, 14(4), 777-787.
[http://dx.doi.org/10.1007/s11030-009-9217-x] [PMID: 20091120]
[49]
Jiang, M.; Zhao, M.; Zhou, Z.; Huang, T.; Chen, X.; Wang, Y. Isolation of cellulose with ionic liquid from steam exploded rice straw. Ind. Crops Prod., 2011, 33(3), 734-738.
[http://dx.doi.org/10.1016/j.indcrop.2011.01.015]
[50]
Yu, K.; Ding, W.L.; Lu, Y.; Wang, Y.; Liu, Y.; Liu, G.; Huo, F.; He, H. Ionic liquids screening for lignin dissolution: COSMO-RS simulations and experimental characterization. J. Mol. Liq., 2022, 348, 118007.
[http://dx.doi.org/10.1016/j.molliq.2021.118007]
[51]
Martínez-Palou, R. Química en Microondas; CEM-Publishing: Matthews, USA, 2006.
[52]
Horikoshi, S.; Schiffmann, R.; Fukushima, J.; Serpone, N. Microwave Chemical and Materials Processing. A tutorial; Springer, 2018.
[http://dx.doi.org/10.1007/978-981-10-6466-1]
[53]
Sulthan, R.; Reghunadhan, A.; Sambhudevan, S. A new era of chitin synthesis and dissolution using deep eutectic solvents- comparison with ionic liquids. J. Mol. Liq., 2023, 380, 121794.
[http://dx.doi.org/10.1016/j.molliq.2023.121794]
[54]
Thi, S.; Lee, K.M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresour. Technol., 2019, 282, 525-529.
[http://dx.doi.org/10.1016/j.biortech.2019.03.065] [PMID: 30898410]

© 2024 Bentham Science Publishers | Privacy Policy