Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Molecular Correlations of GSDMD with Pyroptosis in Alzheimer's Disease

Author(s): Tangtang Song, Yan Chen, Chen Li, Yinhui Yao, Shuai Ma, Yazhen Shang* and Jianjun Cheng

Volume 27, Issue 14, 2024

Published on: 06 March, 2024

Page: [2125 - 2139] Pages: 15

DOI: 10.2174/0113862073285497240226061936

Abstract

Aim: An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD).

Methods: The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 μmol/L) of β-amyloid 1-42 (Aβ1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression.

Results: A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aβ1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression.

Conclusion: The association between GSDMD and AD has been observed, and it has been found that Aβ1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aβ1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.

Keywords: Alzheimer's disease, bioinformatics, gasdermin D, β-amyloid 1-42, oligodendrocytes, pyroptosis.

Graphical Abstract
[1]
Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[2]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[3]
Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol., 2019, 167, 231-255.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[4]
Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med., 2023, 29(9), 2187-2199.
[http://dx.doi.org/10.1038/s41591-023-02505-2] [PMID: 37667136]
[5]
Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther., 2023, 8(1), 248.
[http://dx.doi.org/10.1038/s41392-023-01484-7] [PMID: 37386015]
[6]
Tatulian, S.A. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today, 2022, 27(4), 1027-1043.
[http://dx.doi.org/10.1016/j.drudis.2022.01.016] [PMID: 35121174]
[7]
Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol., 2022, 21(8), 726-734.
[http://dx.doi.org/10.1016/S1474-4422(22)00168-5] [PMID: 35643092]
[8]
Yadollahikhales, G.; Rojas, J.C. Anti-amyloid immunotherapies for Alzheimer’s disease: A 2023 clinical update. Neurotherapeutics, 2023, 20(4), 914-931.
[http://dx.doi.org/10.1007/s13311-023-01405-0] [PMID: 37490245]
[9]
Wang, S.S.; Zhang, Z.; Zhu, T.B.; Chu, S.F.; He, W.B.; Chen, N.H. Myelin injury in the central nervous system and Alzheimer’s disease. Brain Res. Bull., 2018, 140, 162-168.
[http://dx.doi.org/10.1016/j.brainresbull.2018.05.003] [PMID: 29730417]
[10]
Papuć, E.; Rejdak, K. The role of myelin damage in Alzheimer’s disease pathology. Arch. Med. Sci., 2020, 16(2), 345-341.
[http://dx.doi.org/10.5114/aoms.2018.76863] [PMID: 32190145]
[11]
Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22.
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[12]
Hirschfeld, L.R.; Risacher, S.L.; Nho, K.; Saykin, A.J. Myelin repair in Alzheimer’s disease: A review of biological pathways and potential therapeutics. Transl. Neurodegener., 2022, 11(1), 47.
[http://dx.doi.org/10.1186/s40035-022-00321-1] [PMID: 36284351]
[13]
Wood, H. Myelin damage links brain ageing to amyloid-β deposition. Nat. Rev. Neurol., 2023, 19(8), 457.
[http://dx.doi.org/10.1038/s41582-023-00843-w] [PMID: 37336944]
[14]
Chen, J.F.; Liu, K.; Hu, B.; Li, R.R.; Xin, W.; Chen, H.; Wang, F.; Chen, L.; Li, R.X.; Ren, S.Y.; Xiao, L.; Chan, J.R.; Mei, F. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron, 2021, 109(14), 2292-2307.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.05.012] [PMID: 34102111]
[15]
Jantaratnotai, N.; Ryu, J.K.; Kim, S.U.; McLarnon, J.G. Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 2003, 14(11), 1429-1433.
[http://dx.doi.org/10.1097/00001756-200308060-00005] [PMID: 12960758]
[16]
Schmued, L.C.; Raymick, J.; Paule, M.G.; Dumas, M.; Sarkar, S. Characterization of myelin pathology in the hippocampal complex of a transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2013, 10(1), 30-37.
[http://dx.doi.org/10.2174/1567205011310010005] [PMID: 23157338]
[17]
Depp, C.; Sun, T.; Sasmita, A.O.; Spieth, L.; Berghoff, S.A.; Nazarenko, T.; Overhoff, K.; Steixner-Kumar, A.A.; Subramanian, S.; Arinrad, S.; Ruhwedel, T.; Möbius, W.; Göbbels, S.; Saher, G.; Werner, H.B.; Damkou, A.; Zampar, S.; Wirths, O.; Thalmann, M.; Simons, M.; Saito, T.; Saido, T.; Krueger-Burg, D.; Kawaguchi, R.; Willem, M.; Haass, C.; Geschwind, D.; Ehrenreich, H.; Stassart, R.; Nave, K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature, 2023, 618(7964), 349-357.
[http://dx.doi.org/10.1038/s41586-023-06120-6] [PMID: 37258678]
[18]
Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[19]
Elbaz, B.; Popko, B. Molecular control of oligodendrocyte development. Trends Neurosci., 2019, 42(4), 263-277.
[http://dx.doi.org/10.1016/j.tins.2019.01.002] [PMID: 30770136]
[20]
Bolino, A. Myelin biology. Neurotherapeutics, 2021, 18(4), 2169-2184.
[http://dx.doi.org/10.1007/s13311-021-01083-w]
[21]
Nave, K.A.; Werner, H.B. Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 503-533.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013101] [PMID: 25288117]
[22]
Xin, W.; Chan, J.R. Myelin plasticity: Sculpting circuits in learning and memory. Nat. Rev. Neurosci., 2020, 21(12), 682-694.
[http://dx.doi.org/10.1038/s41583-020-00379-8] [PMID: 33046886]
[23]
Bamm, V.V.; Ahmed, M.A.M.; Ladizhansky, V.; Harauz, G. Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. J. Neurosci. Res., 2007, 85(2), 272-284.
[http://dx.doi.org/10.1002/jnr.21129] [PMID: 17131428]
[24]
Smith, G.S.T.; Paez, P.M.; Spreuer, V.; Campagnoni, C.W.; Boggs, J.M.; Campagnoni, A.T.; Harauz, G. Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J. Neurosci. Res., 2011, 89(4), 467-480.
[http://dx.doi.org/10.1002/jnr.22570] [PMID: 21312222]
[25]
Zhan, H.; Cheng, L.; Wang, X.; Jin, H.; Liu, Y.; Li, H.; Liu, D.; Zhang, X.; Zheng, W.; Hao, H.; Li, Y. Myelin basic protein and index for neuro-Behçet’s disease. Clin. Immunol., 2023, 250, 109286.
[http://dx.doi.org/10.1016/j.clim.2023.109286] [PMID: 36907539]
[26]
Liu, B.; Xin, W.; Tan, J.R.; Zhu, R.P.; Li, T.; Wang, D.; Kan, S.S.; Xiong, D.K.; Li, H.H.; Zhang, M.M.; Sun, H.H.; Wagstaff, W.; Zhou, C.; Wang, Z.J.; Zhang, Y.G.; He, T.C. Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc. Natl. Acad. Sci. , 2019, 116(44), 22347-22352.
[http://dx.doi.org/10.1073/pnas.1910292116] [PMID: 31611410]
[27]
Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192.
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[28]
Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665.
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[29]
Rao, Z.; Zhu, Y.; Yang, P.; Chen, Z.; Xia, Y.; Qiao, C.; Liu, W.; Deng, H.; Li, J.; Ning, P.; Wang, Z. Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12(9), 4310-4329.
[http://dx.doi.org/10.7150/thno.71086] [PMID: 35673561]
[30]
Wei, Y.; Yang, L.; Pandeya, A.; Cui, J.; Zhang, Y.; Li, Z. Pyroptosis-induced inflammation and tissue damage. J. Mol. Biol., 2022, 434(4), 167301.
[http://dx.doi.org/10.1016/j.jmb.2021.167301] [PMID: 34653436]
[31]
Barnett, K.C.; Li, S.; Liang, K.; Ting, J.P.Y.A. 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell, 2023, 186(11), 2288-2312.
[http://dx.doi.org/10.1016/j.cell.2023.04.025] [PMID: 37236155]
[32]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasomeis involved in the innate immune response to amyloid-beta. Nat. Immun., 2008, 200(9), 857-865.
[http://dx.doi.org/10.1038/ni.1636]
[33]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[34]
Lee, S.W.; de Rivero Vaccari, J.P.; Truettner, J.S.; Dietrich, W.D.; Keane, R.W. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J. Neuroinflammation, 2019, 16(1), 27.
[http://dx.doi.org/10.1186/s12974-019-1423-6] [PMID: 30736791]
[35]
Rui, W.; Xiao, H.; Fan, Y.; Ma, Z.; Xiao, M.; Li, S.; Shi, J. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimer’s disease. J. Neuroinflammation, 2021, 18(1), 280.
[http://dx.doi.org/10.1186/s12974-021-02329-2] [PMID: 34856990]
[36]
Shen, H.; Han, C.; Yang, Y.; Guo, L.; Sheng, Y.; Wang, J.; Li, W.; Zhai, L.; Wang, G.; Guan, Q. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer’s disease. Brain Behav., 2021, 11(4), e02063.
[http://dx.doi.org/10.1002/brb3.2063] [PMID: 33587329]
[37]
Xue, W.; Cui, D.; Qiu, Y. Research progress of pyroptosis in Alzheimer’s disease. Front. Mol. Neurosci., 2022, 15, 872471.
[http://dx.doi.org/10.3389/fnmol.2022.872471] [PMID: 35782390]
[38]
Wu, K.; Wang, W.; Cheng, Q.; Li, H.; Yan, W.; Zhou, F.; Zhang, R. Pyroptosis in neurodegenerative diseases: From bench to bedside. Cell Biol. Toxicol., 2023, 39(6), 2467-2499.
[http://dx.doi.org/10.1007/s10565-023-09820-x] [PMID: 37491594]
[39]
Li, Y.; Xu, P.; Shan, J.; Sun, W.; Ji, X.; Chi, T.; Liu, P.; Zou, L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed. Pharmacother., 2020, 121(121), 109618.
[http://dx.doi.org/10.1016/j.biopha.2019.109618] [PMID: 31731189]
[40]
Ju, Y.; Zhao, L.; Li, S.; Zhao, Q. The role of pyroptosis in Alzheimer’s disease. J. Integr. Neurosci., 2023, 22(5), 129.
[http://dx.doi.org/10.31083/j.jin2205129] [PMID: 37735117]
[41]
Tan, M-S.; Tan, L.; Jiang, T.; Zhu, X-C.; Wang, H-F.; Jia, C-D.; Yu, J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis., 2014, 5(8), e1382.
[http://dx.doi.org/10.1038/cddis.2014.348] [PMID: 25144717]
[42]
Zhao, Y.; Tian, Y.; Feng, T. Sodium houttuyfonate ameliorates β-amyloid1-42-induced memory impairment and neuroinflammation through inhibiting the NLRP3/GSDMD pathway in Alzheimer’s disease. Mediators Inflamm., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/8817698] [PMID: 34188608]
[43]
Han, C.; Yang, Y.; Guan, Q.; Zhang, X.; Shen, H.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Guo, L.; Jiao, Q. New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis. J. Cell. Mol. Med., 2020, 24(14), 8078-8090.
[http://dx.doi.org/10.1111/jcmm.15439] [PMID: 32521573]
[44]
Moonen, S.; Koper, M.J.; Van Schoor, E.; Schaeverbeke, J.M.; Vandenberghe, R.; von Arnim, C.A.F.; Tousseyn, T.; De Strooper, B.; Thal, D.R. Pyroptosis in Alzheimer’s disease: Cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol., 2023, 145(2), 175-195.
[http://dx.doi.org/10.1007/s00401-022-02528-y] [PMID: 36481964]
[45]
Bai, Y.; Liu, D.; Zhang, H.; Wang, Y.; Wang, D.; Cai, H.; Wen, H.; Yuan, G.; An, H.; Wang, Y.; Shi, T.; Wang, Z. N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimer’s disease with neuroprotective effects. Bioorg. Chem., 2021, 115, 105255.
[http://dx.doi.org/10.1016/j.bioorg.2021.105255] [PMID: 34435574]
[46]
Chen, H.; Zhao, J.; Hu, J.; Xiao, X.; Shi, W.; Yao, Y.; Wang, Y. Identification of diagnostic biomarkers, immune infiltration characteristics, and potential compounds in rheumatoid arthritis. BioMed Res. Int., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/1926661] [PMID: 35434133]
[47]
Yao, Y.; Zhao, J.; Zhou, X.; Hu, J.; Wang, Y. Potential role of a three-gene signature in predicting diagnosis in patients with myocardial infarction. Bioengineered, 2021, 12(1), 2734-2749.
[http://dx.doi.org/10.1080/21655979.2021.1938498] [PMID: 34130601]
[48]
O’Connor, L.M.; O’Connor, B.A.; Zeng, J.; Lo, C.H. Data mining of microarray datasets in translational neuroscience. Brain Sci., 2023, 13(9), 1318.
[http://dx.doi.org/10.3390/brainsci13091318] [PMID: 37759919]
[49]
Wang, Z.; Lachmann, A.; Ma’ayan, A. Mining data and metadata from the gene expression omnibus. Biophys. Rev., 2019, 11(1), 103-110.
[http://dx.doi.org/10.1007/s12551-018-0490-8] [PMID: 30594974]
[50]
O’Connor, L.M.; O’Connor, B.A.; Lim, S.B.; Zeng, J.; Lo, C.H. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J. Pharm. Anal., 2023, 13(8), 836-850.
[http://dx.doi.org/10.1016/j.jpha.2023.06.011] [PMID: 37719197]
[51]
Narayanan, M.; Huynh, J.L.; Wang, K.; Yang, X.; Yoo, S.; McElwee, J.; Zhang, B.; Zhang, C.; Lamb, J.R.; Xie, T.; Suver, C.; Molony, C.; Melquist, S.; Johnson, A.D.; Fan, G.; Stone, D.J.; Schadt, E.E.; Casaccia, P.; Emilsson, V.; Zhu, J. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol., 2014, 10(7), 743.
[http://dx.doi.org/10.15252/msb.20145304] [PMID: 25080494]
[52]
Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Walker, D.G.; Caselli, R.J.; Kukull, W.A.; McKeel, D.; Morris, J.C.; Hulette, C.; Schmechel, D.; Alexander, G.E.; Reiman, E.M.; Rogers, J.; Stephan, D.A. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genomics, 2007, 28(3), 311-322.
[http://dx.doi.org/10.1152/physiolgenomics.00208.2006] [PMID: 17077275]
[53]
Berchtold, N.C.; Coleman, P.D.; Cribbs, D.H.; Rogers, J.; Gillen, D.L.; Cotman, C.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging, 2013, 34(6), 1653-1661.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.024] [PMID: 23273601]
[54]
Hübner, S.; Sunny, D.E.; Pöhlke, C.; Ruhnau, J.; Vogelgesang, A.; Reich, B.; Heckmann, M. Protective effects of fetal zone steroids are comparable to estradiol in hyperoxia–induced cell death of immature glia. Endocrinology, 2017, 158(5), 1419-1435.
[http://dx.doi.org/10.1210/en.2016-1763] [PMID: 28323976]
[55]
Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671.
[http://dx.doi.org/10.1038/nature15541] [PMID: 26375259]
[56]
He, W.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res., 2015, 25(12), 1285-1298.
[http://dx.doi.org/10.1038/cr.2015.139] [PMID: 26611636]
[57]
Li, S.; Sun, Y.; Song, M.; Song, Y.; Fang, Y.; Zhang, Q.; Li, X.; Song, N.; Ding, J.; Lu, M.; Hu, G. NLRP3/caspase-1/GSDMD–mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight, 2021, 6(23), e146852.
[http://dx.doi.org/10.1172/jci.insight.146852] [PMID: 34877938]
[58]
Li, Z.; Ji, S.; Jiang, M.L.; Xu, Y.; Zhang, C.J. The regulation and modification of GSDMD signaling in diseases. Front. Immunol., 2022, 13, 893912.
[http://dx.doi.org/10.3389/fimmu.2022.893912] [PMID: 35774778]
[59]
Shao, R.; Lou, X.; Xue, J.; Ning, D.; Chen, G.; Jiang, L. Review: The role of GSDMD in sepsis. Inflamm. Res., 2022, 71(10-11), 1191-1202.
[http://dx.doi.org/10.1007/s00011-022-01624-9] [PMID: 35969260]
[60]
Hong, W.; Hu, C.; Wang, C.; Zhu, B.; Tian, M.; Qin, H. Effects of amyloid β (Aβ)42 and Gasdermin D on the progression of Alzheimer’s disease in vitro and in vivo through the regulation of astrocyte pyroptosis. Aging , 2023, 15(21), 12209-12224.
[http://dx.doi.org/10.18632/aging.205174] [PMID: 37921870]
[61]
Weindel, C.G.; Martinez, E.L.; Zhao, X.; Mabry, C.J.; Bell, S.L.; Vail, K.J.; Coleman, A.K.; VanPortfliet, J.J.; Zhao, B.; Wagner, A.R.; Azam, S.; Scott, H.M.; Li, P.; West, A.P.; Karpac, J.; Patrick, K.L.; Watson, R.O. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell, 2022, 185(17), 3214-3231.e23.
[http://dx.doi.org/10.1016/j.cell.2022.06.038] [PMID: 35907404]
[62]
Kepp, K.P.; Robakis, N.K.; Høilund-Carlsen, P.F.; Sensi, S.L.; Vissel, B. The amyloid cascade hypothesis: An updated critical review. Brain, 2023, 146(10), 3969-3990.
[http://dx.doi.org/10.1093/brain/awad159] [PMID: 37183523]
[63]
Fedele, E. Anti-amyloid therapies for Alzheimer’s disease and the amyloid cascade hypothesis. Int. J. Mol. Sci., 2023, 24(19), 14499.
[http://dx.doi.org/10.3390/ijms241914499] [PMID: 37833948]
[64]
Itoh, S.G.; Yagi-Utsumi, M.; Kato, K.; Okumura, H. Key residue for aggregation of Amyloid-β peptides. ACS Chem. Neurosci., 2022, 13(22), 3139-3151.
[http://dx.doi.org/10.1021/acschemneuro.2c00358] [PMID: 36302506]
[65]
Siddiqi, M.K.; Malik, S.; Majid, N.; Alam, P.; Khan, R.H. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. Adv. Protein Chem. Struct. Biol., 2019, 118, 333-369.
[http://dx.doi.org/10.1016/bs.apcsb.2019.06.001] [PMID: 31928731]
[66]
Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schiossmacher, M.; Whaley, J.; Swindlehurst, C.; McCormack, R.; Wolfert, R.; Selkoe, D.; Lieberburg, I.; Schenk, D. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature, 1992, 359(6393), 325-327.
[http://dx.doi.org/10.1038/359325a0] [PMID: 1406936]
[67]
Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron, 1994, 13(1), 45-53.
[http://dx.doi.org/10.1016/0896-6273(94)90458-8] [PMID: 8043280]
[68]
Shulman, D.; Dubnov, S.; Zorbaz, T.; Madrer, N.; Paldor, I.; Bennett, D.A.; Seshadri, S.; Mufson, E.J.; Greenberg, D.S.; Loewenstein, Y.; Soreq, H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer’s disease. Alzheimers Dement., 2023, 19(11), 5159-5172.
[http://dx.doi.org/10.1002/alz.13095] [PMID: 37158312]
[69]
Zheng, M.; Liu, Z.; Mana, L.; Qin, G.; Huang, S.; Gong, Z.; Tian, M.; He, Y.; Wang, P. Shenzhiling oral liquid protects the myelin sheath against Alzheimer’s disease through the PI3K/Akt-mTOR pathway. J. Ethnopharmacol., 2021, 278, 114264.
[http://dx.doi.org/10.1016/j.jep.2021.114264] [PMID: 34082015]
[70]
Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem., 2018, 120(3), 159-167.
[http://dx.doi.org/10.1016/j.acthis.2018.02.005] [PMID: 29496266]
[71]
Benov, L. Improved formazan dissolution for bacterial MTT assay. Microbiol. Spectr., 2021, 9(3), e01637-e21.
[http://dx.doi.org/10.1128/spectrum.01637-21] [PMID: 34937171]
[72]
Parhamifar, L.; Andersen, H.; Moghimi, S.M. Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol. Biol., 2019, 1943, 291-299.
[http://dx.doi.org/10.1007/978-1-4939-9092-4_18] [PMID: 30838623]
[73]
Chen, X.; He, W.T.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res., 2016, 26(9), 1007-1020.
[http://dx.doi.org/10.1038/cr.2016.100]
[74]
Martens, S.; Bridelance, J.; Roelandt, R.; Vandenabeele, P.; Takahashi, N. MLKL in cancer: More than a necroptosis regulator. Cell Death Differ., 2021, 28(6), 1757-1772.
[http://dx.doi.org/10.1038/s41418-021-00785-0] [PMID: 33953348]
[75]
Zhan, C.; Huang, M.; Yang, X.; Hou, J. MLKL: Functions beyond serving as the executioner of necroptosis. Theranostics, 2021, 11(10), 4759-4769.
[http://dx.doi.org/10.7150/thno.54072] [PMID: 33754026]
[76]
Frank, D.; Vince, J.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ., 2019, 26(1), 99-114.
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[77]
Wang, K.; Sun, Q.; Zhong, X.; Zeng, M.; Zeng, H.; Shi, X.; Li, Z.; Wang, Y.; Zhao, Q.; Shao, F.; Ding, J. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 2020, 180(5), 941-955.e20.
[http://dx.doi.org/10.1016/j.cell.2020.02.002] [PMID: 32109412]
[78]
Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610), 111-116.
[http://dx.doi.org/10.1038/nature18590] [PMID: 27281216]
[79]
Asimakidou, E.; Reynolds, R.; Barron, A.M.; Lo, C.H. Autolysosomal acidification impairment as a mediator for TNFR1 induced neuronal necroptosis in Alzheimer’s disease. Neural Regen. Res., 2024, 19(9), 1869-1870.
[http://dx.doi.org/10.4103/1673-5374.390979] [PMID: 38227498]
[80]
Rühl, S.; Shkarina, K.; Demarco, B.; Heilig, R.; Santos, J.C.; Broz, P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science, 2018, 362(6417), 956-960.
[http://dx.doi.org/10.1126/science.aar7607] [PMID: 30467171]

© 2024 Bentham Science Publishers | Privacy Policy