Generic placeholder image

Current Alzheimer Research


ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Perispinal Etanercept for Treatment of Alzheimers Disease

Author(s): Edward Tobinick

Volume 4, Issue 5, 2007

Page: [550 - 552] Pages: 3

DOI: 10.2174/156720507783018217

Price: $65


Background: Increasing basic science and clinical evidence implicates inflammatory processes and resulting glial activation in the pathogenesis of Alzheimers Disease. Excess TNF-alpha, a cytokine with pleotropic effects in the CNS, has been suggested to be involved in the pathogenesis of AD. In addition to its pro-inflammatory effects, TNF-alpha affects synaptic transmission; and glutamate, NMDA, and amyloid pathways. More specifically, TNF-alpha, produced by glia, has been shown to affect both synaptic strength and to mediate synaptic scaling, a homeostatic mechanism important to the control of neural networks. A recently published small, open-label pilot study suggested that inhibition of the inflammatory cytokine TNF-alpha utilizing the perispinal administration of etanercept may lead to sustained cognitive improvement for six months in patients with mild, moderate, and severe Alzheimer ’ s disease. Results: Continued open-label clinical experience with this new treatment modality, now for more than two years, suggests that weekly maintenance treatment with perispinal etanercept may have a sustained positive effect. In addition, rapid clinical improvement, within minutes of dosing, has been observed on a repeated basis in multiple patients. Discussion: It is hypothesized that perispinal administration of etanercept may enable rapid delivery to the CNS via the cerebrospinal venous system, resulting in improvement in synaptic mechanisms which have been dysregulated by excess TNF-alpha. TNF-alpha modulation in Alzheimers disease may also act by influencing glutamate, NMDA, amyloid and other inflammatory pathways. Methods of perispinal administration, as described in the pilot study, may prove useful for delivering other therapeutics, particularly large molecules, to the CNS. Further study in randomized, placebo-controlled clinical trials and in basic science studies is merited.

Keywords: TNF, etanercept, Alzheimer's, synaptic scaling, dementia, cytokines

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy