Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Chaperones and Cardiac Misfolding Protein Diseases

Author(s): Elisabeth S. Christians, Soumyajit B. Mustafi and Ivor J. Benjamin

Volume 15, Issue 3, 2014

Page: [189 - 204] Pages: 16

DOI: 10.2174/1389203715666140331111518

Price: $65

Abstract

Cardiomyocytes are best known for their spontaneous beating activity, large cell size, and low regenerative capacity during adulthood. The mechanical activity of cardiomyocytes depends on a sophisticated contractile apparatus comprised of sarcomeres whose rhythmic contraction relies on Ca2+ transients with a high level of energy consumption. Hence the proper folding and assembly of the sarcomeric and other accessory proteins involved in those diverse functions (i.e., structural, mechanical, energy exchange and production) is critical for muscle mechanics. Chaperone proteins assist other polypeptides to reach their proper conformation, activity and/or location. Consequently, chaperone-like functions are important for the healthy heart but assume greater relevance during cardiac diseases when such chaperone proteins are recruited: 1) to protect cardiac cells against adverse effects during the pathological transition, and 2) to mitigate certain pathogenic mechanisms per se. Protein misfolding is observed as a consequence of inappropriate intracellular environment with acquired conditions (e.g., ischemia/reperfusion and redox imbalance) or because of mutations, which can modify primary to quaternary protein structures. In this review, we discuss the importance of cardiac chaperones while emphasizing the genetic origin (modification of gene/protein sequence) of cardiac protein misfolding and their consequences on the cardiomyocytes leading to organ dysfunction and failure.

Keywords: Aggregates, amyloid, cardiomyocyte, heat shock factor, heat shock proteins, homeostasis, mouse models, mutation.


Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy