Abstract
Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclindependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI- 779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.
Keywords: mTOR, leukemia, phosphatidylinositol 3' kinase, AKT, CCI-779, RAD001, AP23573
Current Molecular Medicine
Title: Mammalian Target of Rapamycin as a Therapeutic Target in Leukemia
Volume: 5 Issue: 7
Author(s): Francis J. Giles and Maher Albitar
Affiliation:
Keywords: mTOR, leukemia, phosphatidylinositol 3' kinase, AKT, CCI-779, RAD001, AP23573
Abstract: Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclindependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI- 779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.
Export Options
About this article
Cite this article as:
Giles J. Francis and Albitar Maher, Mammalian Target of Rapamycin as a Therapeutic Target in Leukemia, Current Molecular Medicine 2005; 5 (7) . https://dx.doi.org/10.2174/156652405774641034
DOI https://dx.doi.org/10.2174/156652405774641034 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Bladder Cancer: A Simple Model Becomes Complex
Current Genomics The Role of Cellular Senescence During Vascular Calcification: A Key Paradigm in Aging Research
Current Aging Science Arsenic-exposed Keratinocytes Exhibit Differential microRNAs Expression Profile; Potential Implication of miR-21, miR-200a and miR-141 in Melanoma Pathway
Clinical Cancer Drugs FoxO Proteins: Regulation and Molecular Targets in Liver Cancer
Current Medicinal Chemistry Therapeutically Targeting MicroRNAs in Liver Cancer
Current Pharmaceutical Design New Molecular Targets of Anticancer Therapy – Current Status and Perspectives
Current Medicinal Chemistry Novel Therapeutic Approaches to Regulate Human Dihydrofolate Reductase Activity and Expression
Current Enzyme Inhibition Editorial (Personalized Medicine in the Age of Pharmacoproteomics: A Close up on India and Need for Social Science Engagement for Responsible Innovation in Post-Proteomic Biology)
Current Pharmacogenomics and Personalized Medicine Application and Interpretation of Genome-Wide Association (GWA) Studies for Informing Pharmacogenomic Research - Examples from the Field of Age-Related Macular Degeneration
Current Molecular Medicine Episomal Vectors for Gene Therapy
Current Gene Therapy Genetic Surgery - A Right Strategy to Attack Cancer
Current Gene Therapy Novel Methods of Genetic Modification of Human Pluripotent Stem Cells
Recent Patents on Regenerative Medicine Molecular and Genetic Profiling of Prostate Cancer: Implications for Future Therapy
Current Cancer Therapy Reviews Emerging Anabolic Treatments in Osteoporosis
Current Drug Safety Molecular Genetics of Familial Exudative Vitreoretinopathy and Norrie Disease
Current Genomics The NK-1 Receptor is Involved in the Antitumoural Action of L-733,060 and in the Mitogenic Action of Substance P on Human Pancreatic Cancer Cell Lines
Letters in Drug Design & Discovery Overview of Genomic Insights into Chicken Growth Traits Based on Genome- Wide Association Study and microRNA Regulation
Current Genomics The Synergistic Cytotoxic and Apoptotic Effect of Resveratrol and Naringenin on Y79 Retinoblastoma Cell Line
Anti-Cancer Agents in Medicinal Chemistry Neoplastic Conditions in the Context of HIV-1 Infection
Current HIV Research Cell Cycle Regulatory Kinase Modulators: Interim Progress and Issues
Current Topics in Medicinal Chemistry