Review Article

现代代谢性疾病脂质分析的质谱方法进展

卷 26, 期 1, 2019

页: [60 - 103] 页: 44

弟呕挨: 10.2174/0929867324666171003121127

价格: $65

摘要

背景:肥胖、胰岛素抵抗、糖尿病和代谢综合征与脂质改变有关,它们影响长期心血管疾病的风险。一个可靠的分析仪器来检测类脂的成分或结构的变化,以及能够将特定类脂组的变化与特定疾病及其进展联系起来的工具,一直是缺乏的。脂质体是一个新的医学领域,在研究和鉴定脂质和脂质代谢产物的基础上存在于人体。脂质沉积的主要目的是寻找不同疾病的新的生物标志物,主要是文明疾病。 目的:综述质谱在代谢性疾病脂质分析中的应用。 方法:在广泛查阅同类文献的基础上,对脂质的质谱分析进行了综述。 结果:脂质组约含有170万种,在脂肪链长度、环数、附加功能组等方面完全不同。其中一些是如此复杂,以至于他们的复杂分析对分析师来说是一个挑战。它们的定性和定量分析主要基于质谱法。 结论:质谱技术是复杂生物样品中脂质谱分析的良好工具,结合多元统计分析可以识别潜在的诊断生物标志物。

关键词: 综合技术,脂肪酸,气相色谱,液相色谱,代谢疾病,质谱成像,磷脂,鸟枪脂质。

[1]
Redinger, R.N. The pathophysiology of obesity and its clinical manifestations. Gastroenterol. Hepatol. (N. Y.), 2007, 3(11), 856-863.
[2]
Pietiläinen, K.H.; Sysi-Aho, M.; Rissanen, A.; Seppänen-Laakso, T.; Yki-Järvinen, H.; Kaprio, J.; Orešič, M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects--a monozygotic twin study. PLoS One, 2007, 2(2), e218.
[3]
Donovan, E.L.; Pettine, S.M.; Hickey, M.S.; Hamilton, K.L.; Miller, B.F. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol. Metab. Syndr., 2013, 5(1), 24.
[4]
Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol., 2009, 53(21), 1925-1932.
[5]
Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Cardiovascular benefits of bariatric surgery in morbidly obese patients. Obes. Rev., 2011, 12(7), 515-524.
[6]
Yetukuri, L.; Katajamaa, M.; Medina-Gomez, G.; Seppänen-Laakso, T.; Vidal-Puig, A.; Orešič, M. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol., 2007, 1(1), 12.
[7]
Vaziri, N.D. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am. J. Physiol. Renal Physiol., 2006, 290(2), F262-F272.
[8]
Bargiota, A.; Diamanti-Kandarakis, E. The effects of old, new and emerging medicines on metabolic aberrations in PCOS. Ther. Adv. Endocrinol. Metab., 2012, 3(1), 27-47.
[9]
Blomberg, M.I.; Källén, B. Maternal obesity and morbid obesity: the risk for birth defects in the offspring. Birth Defects Res. A Clin. Mol. Teratol., 2010, 88(1), 35-40.
[10]
Adosraku, R.K.; Choi, G.T.Y.; Constantinou-Kokotos, V.; Anderson, M.M.; Gibbons, W.A. NMR lipid profiles of cells, tissues, and body fluids: proton NMR analysis of human erythrocyte lipids. J. Lipid Res., 1994, 35(11), 1925-1931.
[11]
Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem., 2003, 49(11), 1797-1817.
[12]
Ekroos, K.; Jänis, M.; Tarasov, K.; Hurme, R.; Laaksonen, R. Lipidomics: a tool for studies of atherosclerosis. Curr. Atheroscler. Rep., 2010, 12(4), 273-281.
[13]
Blanksby, S.J.; Mitchell, T.W. Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2010, 3, 433-465.
[14]
Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[15]
Teo, C.C.; Chong, W.P.K.; Tan, E.; Basri, N.B.; Low, Z.J.; Ho, Y.S. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC -. Trends Analyt. Chem., 2015, 66, 1-18.
[16]
Watson, A.D. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res., 2006, 47(10), 2101-2111.
[17]
Wang, M.; Wang, C.; Han, R.H.; Han, X. Novel advances in shotgun lipidomics for biology and medicine. Prog. Lipid Res., 2016, 61, 83-108.
[18]
Lin, Y.H.; Hanson, J.A.; Strandjord, S.E.; Salem, N.M.; Dretsch, M.N.; Haub, M.D.; Hibbeln, J.R. Fast transmethylation of total lipids in dried blood by microwave irradiation and its application to a population study. Lipids, 2014, 49(8), 839-851.
[19]
Bamba, T.; Lee, J.W.; Matsubara, A.; Fukusaki, E. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J. Chromatogr. A, 2012, 1250, 212-219.
[20]
Kopf, T.; Schmitz, G. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 938, 22-26.
[21]
Nishijima, F.; Hidaka, E.; Kubota, N.; Ono, T.; Nakamura, T.; Honda, T.; Hongo, M.; Hidaka, H. [Rapid and Easy Measurement of Serum Fatty Acid Composition of Neonates, Infants and Young People Using the Gas Chromatography Mass Spectrometry]. Rinsho Byori, 2015, 63(2), 187-193.
[22]
Li, X.; Xu, Z.; Lu, X.; Yang, X.; Yin, P.; Kong, H.; Yu, Y.; Xu, G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal. Chim. Acta, 2009, 633(2), 257-262.
[23]
Chen, J.; Wang, W.; Lv, S.; Yin, P.; Zhao, X.; Lu, X.; Zhang, F.; Xu, G. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal. Chim. Acta, 2009, 650(1), 3-9.
[24]
Lísa, M.; Cífková, E.; Holčapek, M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A, 2011, 1218(31), 5146-5156.
[25]
García-Cañaveras, J.C.; Donato, M.T.; Castell, J.V.; Lahoz, A. A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J. Proteome Res., 2011, 10(10), 4825-4834.
[26]
Holčapek, M.; Cífková, E.; Červená, B.; Lísa, M.; Vostálová, J.; Galuszka, J. Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry. J. Chromatogr. A, 2015, 1377, 85-91.
[27]
Holčapek, M.; Červená, B.; Cífková, E.; Lísa, M.; Chagovets, V.; Vostálová, J.; Bancířová, M.; Galuszka, J.; Hill, M. Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 990, 52-63.
[28]
Calderón-Santiago, M.; Priego-Capote, F.; Galache-Osuna, J.G.; Luque de Castro, M.D. Analysis of serum phospholipid profiles by liquid chromatography-tandem mass spectrometry in high resolution mode for evaluation of atherosclerotic patients. J. Chromatogr. A, 2014, 1371, 154-162.
[29]
Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC -. Trends Analyt. Chem., 2015, 66, 32-44.
[30]
Hu, Q.; Noll, R.J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R. The Orbitrap: a new mass spectrometer. J. Mass Spectrom., 2005, 40(4), 430-443.
[31]
Yamada, T.; Uchikata, T.; Sakamoto, S.; Yokoi, Y.; Fukusaki, E.; Bamba, T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J. Chromatogr. A, 2013, 1292, 211-218.
[32]
Blanksby, S.J.; Mitchell, T.W. Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2010, 3, 433-465.
[33]
Prasain, J.K.; Wilson, L.; Hoang, H.D.; Moore, R.; Miller, M.A. Comparative Lipidomics of Caenorhabditis elegans Metabolic Disease Models by SWATH Non-Targeted Tandem Mass Spectrometry. Metabolites, 2015, 5(4), 677-696.
[34]
Jelonek, K.; Ros, M.; Pietrowska, M. Cancer biomarkers and mass spectrometry-based analyses of phospholipids in body fluids. Clin. Lipidol., 2013, 8(1), 137-150.
[35]
Levery, S.B. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol., 2005, 405(405), 300-369.
[36]
Kim, Y.; Shanta, S.R.; Zhou, L-H.; Kim, K.P. Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: a brief review. Exp. Mol. Med., 2010, 42(1), 1-11.
[37]
Li, L.; Han, J.; Wang, Z.; Liu, J.; Wei, J.; Xiong, S.; Zhao, Z. Mass spectrometry methodology in lipid analysis. Int. J. Mol. Sci., 2014, 15(6), 10492-10507.
[38]
Jäverfalk-Hoyes, E.; Upsaliensis, A.U. Development of methods in CE, CE-MS and MS / MS. Applications in pharmaceutical, biomedical and forensic sciences. Acta Univ. Ups., 2001, 257(1), 39.
[39]
Cruwys, J.A.; Dinsdale, R.M.; Hawkes, F.R.; Hawkes, D.L. Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatogr. A, 2002, 945(1-2), 195-209.
[40]
McDonald, J.G.; Thompson, B.M.; McCrum, E.C.; Russell, D.W. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Methods Enzymol., 2007, 432(7), 145-170.
[41]
Schiller, J.; Süss, R.; Arnhold, J.; Fuchs, B.; Lessig, J.; Müller, M.; Petković, M.; Spalteholz, H.; Zschörnig, O.; Arnold, K. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res., 2004, 43(5), 449-488.
[42]
Lodowska, J.; Zięba, A.; Wolny, D.; Węglarz, L.; Dzierzewicz, Z. [Methods of lipopolysaccharide component derivation in evaluating their structures by chromatographic techniques]. Postepy Hig. Med. Dosw., 2006, 60, 113-128.
[43]
Ichihara, K.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res., 2010, 51(3), 635-640.
[44]
Xu, F.; Zou, L.; Ong, C.N. Multiorigination of chromatographic peaks in derivatized GC/MS metabolomics: a confounder that influences metabolic pathway interpretation. J. Proteome Res., 2009, 8(12), 5657-5665.
[45]
Hall, L. M.; Murphy, R. C. Analysis of Stable Oxidized Molecular Species of Glycerophospholipids Following Treatment of Red Blood Cell Ghosts with t - Butylhydroperoxide 1998, 194, (2), 184-194.
[46]
Raftery, D. High-throughput NMR spectroscopy. Anal. Bioanal. Chem., 2004, 378(6), 1403-1404.
[47]
O’Hagan, S.; Dunn, W.B.; Knowles, J.D.; Broadhurst, D.; Williams, R.; Ashworth, J.J.; Cameron, M.; Kell, D.B. Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal. Chem., 2007, 79(2), 464-476.
[48]
Pasikanti, K.K.; Ho, P.C.; Chan, E.C.Y. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 202-211.
[49]
Payeur, A.L.; Lorenz, M.A.; Kennedy, R.T. Analysis of fatty acid composition in insulin secreting cells by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 187-192.
[50]
Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246(4926), 64-71.
[51]
Duncan, M.W.; Roder, H.; Hunsucker, S.W. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief. Funct. Genomics Proteomics, 2008, 7(5), 355-370.
[52]
Pitt, J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev., 2009, 30(1), 19-34.
[53]
Johanson, R.A.; Buccafusca, R.; Quong, J.N.; Shaw, M.A.; Berry, G.T. Phosphatidylcholine removal from brain lipid extracts expands lipid detection and enhances phosphoinositide quantification by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Anal. Biochem., 2007, 362(2), 155-167.
[54]
Schiller, J.; Hammerschmidt, S.; Wirtz, H.; Arnhold, J.; Arnold, K. Lipid analysis of bronchoalveolar lavage fluid (BAL) by MALDI-TOF mass spectrometry and 31P NMR spectroscopy. Chem. Phys. Lipids, 2001, 112(1), 67-79.
[55]
Vergara, D.; D’Alessandro, M.; Rizzello, A.; De Riccardis, L.; Lunetti, P.; Del Boccio, P.; De Robertis, F.; Trianni, G.; Maffia, M.; Giudetti, A.M. A lipidomic approach to the study of human CD4(+) T lymphocytes in multiple sclerosis. BMC Neurosci., 2015, 16(1), 46.
[56]
Hidaka, H.; Hanyu, N.; Sugano, M.; Kawasaki, K.; Yamauchi, K.; Katsuyama, T. Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry. Ann. Clin. Lab. Sci., 2007, 37(3), 213-221.
[57]
Cornett, D.S.; Reyzer, M.L.; Chaurand, P.; Caprioli, R.M. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods, 2007, 4(10), 828-833.
[58]
Christie, W.W. Introduction to mass spectrometric analysis of lipids in lipidomics; Lipid Anal (4th ed.), 2012, pp. 277-303.
[59]
Chughtai, K.; Heeren, R.M.A. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev., 2010, 110(5), 3237-3277.
[60]
Seeley, E.H.; Caprioli, R.M. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol., 2011, 29(3), 136-143.
[61]
Manicke, N.E.; Nefliu, M.; Wu, C.; Woods, J.W.; Reiser, V.; Hendrickson, R.C.; Cooks, R.G. Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem., 2009, 81(21), 8702-8707.
[62]
Malmberg, P.; Börner, K.; Chen, Y.; Friberg, P.; Hagenhoff, B.; Månsson, J.E.; Nygren, H. Localization of lipids in the aortic wall with imaging TOF-SIMS. Biochim. Biophys. Acta, 2007, 1771(2), 185-195.
[63]
Mas, S.; Touboul, D.; Brunelle, A.; Aragoncillo, P.; Egido, J.; Laprévote, O.; Vivanco, F. Lipid cartography of atherosclerotic plaque by cluster-TOF-SIMS imaging. Analyst (Lond.), 2007, 132(1), 24-26.
[64]
Lehti, S.; Sjövall, P.; Käkelä, R.; Mäyränpää, M.I.; Kovanen, P.T.; Öörni, K. Spatial distributions of lipids in atherosclerosis of human coronary arteries studied by time-of-flight secondary ion mass spectrometry. Am. J. Pathol., 2015, 185(5), 1216-1233.
[65]
Fuchs, B.; Süss, R.; Schiller, J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res., 2010, 49(4), 450-475.
[66]
Fuchs, B. Mass spectrometry and inflammation--MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal. Bioanal. Chem., 2014, 406(5), 1291-1306.
[67]
Köfeler, H.C.; Fauland, A.; Rechberger, G.N.; Trötzmüller, M. Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites, 2012, 2(1), 19-38.
[68]
Schwudke, D.; Schuhmann, K.; Herzog, R.; Bornstein, S.R.; Shevchenko, A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb. Perspect. Biol., 2011, 3(9), a004614.
[69]
Puri, P.; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.J.; Sanyal, A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology, 2007, 46(4), 1081-1090.
[70]
Lobasso, S.; Lopalco, P.; Angelini, R.; Vitale, R.; Huber, H.; Müller, V.; Corcelli, A. Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. Archaea, 2012, 2012, 957852.
[71]
Elizondo, A.; Araya, J.; Rodrigo, R.; Poniachik, J.; Csendes, A.; Maluenda, F.; Díaz, J.C.; Signorini, C.; Sgherri, C.; Comporti, M.; Videla, L.A. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity (Silver Spring), 2007, 15(1), 24-31.
[72]
Wilson, I.D.; Plumb, R.; Granger, J.; Major, H.; Williams, R.; Lenz, E.M. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 817(1), 67-76.
[73]
Wilson, I.D.; Nicholson, J.K.; Castro-Perez, J.; Granger, J.H.; Johnson, K.A.; Smith, B.W.; Plumb, R.S. High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res., 2005, 4(2), 591-598.
[74]
Knittelfelder, O.L.; Weberhofer, B.P.; Eichmann, T.O.; Kohlwein, S.D.; Rechberger, G.N. A versatile ultra-high performance LC-MS method for lipid profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 951-952(1), 119-128.
[75]
Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25.
[76]
Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem., 2005, 77(13), 4108-4116.
[77]
Pourfarzam, M.; Zadhoush, F. Newborn Screening for inherited metabolic disorders; news and views. J. Res. Med. Sci., 2013, 18(9), 801-808.
[78]
Wilcken, B.; Wiley, V.; Hammond, J.; Carpenter, K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med., 2003, 348(23), 2304-2312.
[79]
Yi, L.Z.; He, J.; Liang, Y.Z.; Yuan, D.L.; Chau, F.T. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett., 2006, 580(30), 6837-6845.
[80]
Yi, L.; He, J.; Liang, Y.; Yuan, D.; Gao, H.; Zhou, H. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chem. Phys. Lipids, 2007, 150(2), 204-216.
[81]
Pang, L.Q.; Liang, Q.L.; Wang, Y.M.; Ping, L.; Luo, G.A. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 869(1-2), 118-125.
[82]
Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes, 2009, 58(2), 337-343.
[83]
Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; Watkins, S.M.; Sanyal, A.J. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 2009, 50(6), 1827-1838.
[84]
Feldstein, A.E.; Lopez, R.; Tamimi, T.A.; Yerian, L.; Chung, Y.M.; Berk, M.; Zhang, R.; McIntyre, T.M.; Hazen, S.L. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res., 2010, 51(10), 3046-3054.
[85]
Bertea, M.; Rütti, M.F.; Othman, A.; Marti-Jaun, J.; Hersberger, M.; von Eckardstein, A.; Hornemann, T. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis., 2010, 9, 84.
[86]
Zhao, X.; Fritsche, J.; Wang, J.; Chen, J.; Rittig, K.; Schmitt-Kopplin, P.; Fritsche, A.; Häring, H.U.; Schleicher, E.D.; Xu, G.; Lehmann, R. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 2010, 6(3), 362-374.
[87]
Chen, X.; Liu, L.; Palacios, G.; Gao, J.; Zhang, N.; Li, G.; Lu, J.; Song, T.; Zhang, Y.; Lv, H. Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci., 2010, 33(17-18), 2776-2783.
[88]
Han, L.D.; Xia, J.F.; Liang, Q.L.; Wang, Y.; Wang, Y.M.; Hu, P.; Li, P.; Luo, G.A. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal. Chim. Acta, 2011, 689(1), 85-91.
[89]
Othman, A.; Rütti, M.F.; Ernst, D.; Saely, C.H.; Rein, P.; Drexel, H.; Porretta-Serapiglia, C.; Lauria, G.; Bianchi, R.; von Eckardstein, A.; Hornemann, T. Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome? Diabetologia, 2012, 55(2), 421-431.
[90]
Chen, S.; Chu, Y.; Zhao, X.; Gao, P.; Zhang, L.; Zhan, L.; Xu, G. HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in Patients with Metabolic Syndrome. J. Anal. Sci. Technol., 2011, 2(Suppl. A), A173-A178.
[91]
Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; O’Donnell, C.J.; Carr, S.A.; Mootha, V.K.; Florez, J.C.; Souza, A.; Melander, O.; Clish, C.B.; Gerszten, R.E. Metabolite profiles and the risk of developing diabetes. Nat. Med., 2011, 17(4), 448-453.
[92]
Kalhan, S.C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A.J.; Hanson, R.W.; Milburn, M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism, 2011, 60(3), 404-413.
[93]
Rhee, E.P.; Cheng, S.; Larson, M.G.; Walford, G.A.; Lewis, G.D.; McCabe, E.; Yang, E.; Farrell, L.; Fox, C.S.; O’Donnell, C.J.; Carr, S.A.; Vasan, R.S.; Florez, J.C.; Clish, C.B.; Wang, T.J.; Gerszten, R.E. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest., 2011, 121(4), 1402-1411.
[94]
Barber, M.N.; Risis, S.; Yang, C.; Meikle, P.J.; Staples, M.; Febbraio, M.A.; Bruce, C.R. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One, 2012, 7(7), e41456.
[95]
Zhao, Y.; Fu, L.; Li, R.; Wang, L.N.; Yang, Y.; Liu, N.N.; Zhang, C.M.; Wang, Y.; Liu, P.; Tu, B.B.; Zhang, X.; Qiao, J. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med., 2012, 10(153), 153.
[96]
Escobar-Morreale, H.F.; Samino, S.; Insenser, M.; Vinaixa, M.; Luque-Ramírez, M.; Lasunción, M.A.; Correig, X. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC-MS. Clin. Chem., 2012, 58(6), 999-1009.
[97]
Orešič, M.; Hyötyläinen, T.; Kotronen, A.; Gopalacharyulu, P.; Nygren, H.; Arola, J.; Castillo, S.; Mattila, I.; Hakkarainen, A.; Borra, R.J.H.; Honka, M.J.; Verrijken, A.; Francque, S.; Iozzo, P.; Leivonen, M.; Jaser, N.; Juuti, A.; Sørensen, T.I.; Nuutila, P.; Van Gaal, L.; Yki-Järvinen, H. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia, 2013, 56(10), 2266-2274.
[98]
Hellmuth, C.; Demmelmair, H.; Schmitt, I.; Peissner, W.; Blüher, M.; Koletzko, B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One, 2013, 8(10), e74927.
[99]
Strassburg, K.; Esser, D.; Vreeken, R.J.; Hankemeier, T.; Müller, M.; van Duynhoven, J.; van Golde, J.; van Dijk, S.J.; Afman, L.A.; Jacobs, D.M. Postprandial fatty acid specific changes in circulating oxylipins in lean and obese men after high-fat challenge tests. Mol. Nutr. Food Res., 2014, 58(3), 591-600.
[100]
Zhang, X.J.; Huang, L.L.; Su, H.; Chen, Y.X.; Huang, J.; He, C.; Li, P.; Yang, D.Z.; Wan, J.B. Characterizing plasma phospholipid fatty acid profiles of polycystic ovary syndrome patients with and without insulin resistance using GC-MS and chemometrics approach. J. Pharm. Biomed. Anal., 2014, 95, 85-92.
[101]
Niu, Z.; Lin, N.; Gu, R.; Sun, Y.; Feng, Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J. Clin. Endocrinol. Metab., 2014, 99(11), E2269-E2276.
[102]
Pickens, C.A.; Sordillo, L.M.; Comstock, S.S.; Harris, W.S.; Hortos, K.; Kovan, B.; Fenton, J.I. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot. Essent. Fatty Acids, 2015, 95, 31-40.
[103]
Kasumov, T.; Solomon, T.P.J.; Hwang, C.; Huang, H.; Haus, J.M.; Zhang, R.; Kirwan, J.P. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity (Silver Spring), 2015, 23(7), 1414-1421.
[104]
Zhu, Q.F.; Hao, Y.H.; Liu, M.Z.; Yue, J.; Ni, J.; Yuan, B.F.; Feng, Y.Q. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. J. Chromatogr. A, 2015, 1410, 154-163.
[105]
El-Najjar, N.; Orsó, E.; Wallner, S.; Liebisch, G.; Schmitz, G. Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients. PLoS One, 2015, 10(10), e0140683.
[106]
Loomba, R.; Quehenberger, O.; Armando, A.; Dennis, E.A. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J. Lipid Res., 2015, 56(1), 185-192.
[107]
Haoula, Z.; Ravipati, S.; Stekel, D.J.; Ortori, C.A.; Hodgman, C.; Daykin, C.; Raine-Fenning, N.; Barrett, D.A.; Atiomo, W. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics, 2015, 11(3), 657-666.
[108]
Chen, Y.X.; Zhang, X.J.; Huang, J.; Zhou, S.J.; Liu, F.; Jiang, L.L.; Chen, M.; Wan, J.B.; Yang, D.Z. UHPLC/Q-TOFMS-based plasma metabolomics of polycystic ovary syndrome patients with and without insulin resistance. J. Pharm. Biomed. Anal., 2016, 121, 141-150.
[109]
Yamazaki, Y.; Kondo, K.; Maeba, R.; Nishimukai, M.; Nezu, T.; Hara, H. Proportion of nervonic acid in serum lipids is associated with serum plasmalogen levels and metabolic syndrome. J. Oleo Sci., 2014, 63(5), 527-537.
[110]
Marchesini, G.; Brizi, M.; Bianchi, G.; Tomassetti, S.; Bugianesi, E.; Lenzi, M.; McCullough, A.J.; Natale, S.; Forlani, G.; Melchionda, N. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes, 2001, 50(8), 1844-1850.
[111]
Yang, J.; Xu, G.; Hong, Q.; Liebich, H.M.; Lutz, K.; Schmülling, R.M.; Wahl, H.G. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813(1-2), 53-58.
[112]
Zhang, J.; Yan, L.; Chen, W.; Lin, L.; Song, X.; Yan, X.; Hang, W.; Huang, B. Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Anal. Chim. Acta, 2009, 650(1), 16-22.
[113]
Kotronen, A.; Seppänen-Laakso, T.; Westerbacka, J.; Kiviluoto, T.; Arola, J.; Ruskeepää, A-L.; Yki-Järvinen, H.; Oresic, M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity (Silver Spring), 2010, 18(5), 937-944.
[114]
Kotronen, A.; Velagapudi, V.R.; Yetukuri, L.; Westerbacka, J.; Bergholm, R.; Ekroos, K.; Makkonen, J.; Taskinen, M-R.; Orešič, M.; Yki-Järvinen, H. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia, 2009, 52(4), 684-690.
[115]
Barr, J.; Alonso, C.; Vázquez-chantada, M. Pérez-, M.; Mayo, R.; Galán, A.; Caballería, J.; Martín-duce, A.; Wagner, C.; Luka, Z.; Lu, S. C.; Castro, A.; Le Marchand-Brustel, Y.; Martínez-Chantar, M. L.; Veyrie, N.; Clément, K.; Tordjman, J.; Gual, P.; Mato, J. M. Liquid Chromatography-Mass Spectrometry (LC/MS)-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of non-alcoholic fatty liver disease. J. Proteome Res., 2011, 9(9), 4501-4512.
[116]
Sysi-Aho, M.; Koikkalainen, J.; Seppänen-Laakso, T.; Kaartinen, M.; Kuusisto, J.; Peuhkurinen, K.; Kärkkäinen, S.; Antila, M.; Lauerma, K.; Reissell, E.; Jurkko, R.; Lötjönen, J.; Heliö, T.; Orešič, M. Serum lipidomics meets cardiac magnetic resonance imaging: Profiling of subjects at risk of dilated cardiomyopathy. PLoS One, 2011, 6(1), e15744.
[117]
Vinaixa, M.; Rodriguez, M.A.; Samino, S.; Díaz, M.; Beltran, A.; Mallol, R.; Bladé, C.; Ibañez, L.; Correig, X.; Yanes, O. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. PLoS One, 2011, 6(12), e29052.
[118]
Sledzinski, T.; Mika, A.; Stepnowski, P.; Proczko-Markuszewska, M.; Kaska, L.; Stefaniak, T.; Swierczynski, J. Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum. Lipids, 2013, 48(8), 839-848.
[119]
Xu, F.; Tavintharan, S.; Sum, C.F.; Woon, K.; Lim, S.C.; Ong, C.N. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J. Clin. Endocrinol. Metab., 2013, 98(6), E1060-E1065.
[120]
Orešič, M.; Gopalacharyulu, P.; Mykkänen, J.; Lietzen, N.; Mäkinen, M.; Nygren, H.; Simell, S.; Simell, V.; Hyöty, H.; Veijola, R.; Ilonen, J.; Sysi-Aho, M.; Knip, M.; Hyötyläinen, T.; Simell, O. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes, 2013, 62(9), 3268-3274.
[121]
Tokushige, K.; Hashimoto, E.; Kodama, K.; Tobari, M.; Matsushita, N.; Kogiso, T.; Taniai, M.; Torii, N.; Shiratori, K.; Nishizaki, Y.; Ohga, T.; Ohashi, Y.; Sato, T. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol., 2013, 48(12), 1392-1400.
[122]
Hanamatsu, H.; Ohnishi, S.; Sakai, S.; Yuyama, K.; Mitsutake, S.; Takeda, H.; Hashino, S.; Igarashi, Y. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes, 2014, 4(10), e141.
[123]
Kaska, L.; Mika, A.; Stepnowski, P.; Proczko, M.; Ratnicki-Sklucki, K.; Sledzinski, T.; Goyke, E.; Swierczynski, J. The relationship between specific Fatty acids of serum lipids and serum high sensitivity C- reactive protein levels in morbidly obese women. Cell. Physiol. Biochem., 2014, 34(4), 1101-1108.
[124]
Lin, Z.; Vicente Gonçalves, C.M.; Dai, L.; Lu, H.M.; Huang, J.H.; Ji, H.; Wang, D.S.; Yi, L.Z.; Liang, Y.Z. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrometry and random forest models. Anal. Chim. Acta, 2014, 827, 22-27.
[125]
Nishimukai, M.; Maeba, R.; Yamazaki, Y.; Nezu, T.; Sakurai, T.; Takahashi, Y.; Hui, S.P.; Chiba, H.; Okazaki, T.; Hara, H. Serum choline plasmalogens, particularly those with oleic acid in sn-2, are associated with proatherogenic state. J. Lipid Res., 2014, 55(5), 956-965.
[126]
Hyysalo, J.; Gopalacharyulu, P.; Bian, H.; Hyötyläinen, T.; Leivonen, M.; Jaser, N.; Juuti, A.; Honka, M.J.; Nuutila, P.; Olkkonen, V.M.; Oresic, M.; Yki-Järvinen, H. Circulating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity. Diabetes, 2014, 63(1), 312-322.
[127]
Anjani, K.; Lhomme, M.; Sokolovska, N.; Poitou, C.; Aron-Wisnewsky, J.; Bouillot, J.L.; Lesnik, P.; Bedossa, P.; Kontush, A.; Clement, K.; Dugail, I.; Tordjman, J. Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. J. Hepatol., 2015, 62(4), 905-912.
[128]
Liu, L.; Feng, R.; Guo, F.; Li, Y.; Jiao, J.; Sun, C. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects. Diabetes Res. Clin. Pract., 2015, 108(1), 84-93.
[129]
Mika, A.; Kaska, L.; Korczynska, J.; Mirowska, A.; Stepnowski, P.; Proczko, M.; Ratnicki-Sklucki, K.; Goyke, E.; Sledzinski, T. Visceral and subcutaneous adipose tissue stearoyl-CoA desaturase-1 mRNA levels and fatty acid desaturation index positively correlate with BMI in morbidly obese women. Eur. J. Lipid Sci. Technol., 2015, 117(7), 926-932.
[130]
Dai, L.; Gonçalves, C.M.V.; Lin, Z.; Huang, J.; Lu, H.; Yi, L.; Liang, Y.; Wang, D.; An, D. Exploring metabolic syndrome serum free fatty acid profiles based on GC-SIM-MS combined with random forests and canonical correlation analysis. Talanta, 2015, 135, 108-114.
[131]
Münzker, J.; Hofer, D.; Trummer, C.; Ulbing, M.; Harger, A.; Pieber, T.; Owen, L.; Keevil, B.; Brabant, G.; Lerchbaum, E.; Obermayer-Pietsch, B. Testosterone to dihydrotestosterone ratio as a new biomarker for an adverse metabolic phenotype in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2015, 100(2), 653-660.
[132]
Huang, C.F.; Cheng, M.L.; Fan, C.M.; Hong, C.Y.; Shiao, M.S. Nicotinuric acid: a potential marker of metabolic syndrome through a metabolomics-based approach. Diabetes Care, 2013, 36(6), 1729-1731.
[133]
Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed., 2005, 18(3), 143-162.
[134]
Gowda, G.A.N.; Ijare, O.B.; Somashekar, B.S.; Sharma, A.; Kapoor, V.K.; Khetrapal, C.L. Single-step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids, 2006, 41(6), 591-603.
[135]
Bala, L.; Ghoshal, U.C.; Ghoshal, U.; Tripathi, P.; Misra, A.; Gowda, G.A.N.; Khetrapal, C.L. Malabsorption syndrome with and without small intestinal bacterial overgrowth: a study on upper-gut aspirate using 1H NMR spectroscopy. Magn. Reson. Med., 2006, 56(4), 738-744.
[136]
Mueller, P.; Schulze, A.; Schindler, I.; Ethofer, T.; Buehrdel, P.; Ceglarek, U. Validation of an ESI-MS/MS screening method for acylcarnitine profiling in urine specimens of neonates, children, adolescents and adults. Clin. Chim. Acta, 2003, 327(1-2), 47-57.
[137]
Okun, J.G.; Kölker, S.; Schulze, A.; Kohlmüller, D.; Olgemöller, K.; Lindner, M.; Hoffmann, G.F.; Wanders, R.J.A.; Mayatepek, E. A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim. Biophys. Acta, 2002, 1584(2-3), 91-98.
[138]
Chace, D.H.; Pons, R.; Chiriboga, C.A.; McMahon, D.J.; Tein, I.; Naylor, E.W.; De Vivo, D.C. Neonatal blood carnitine concentrations: normative data by electrospray tandem mass spectometry. Pediatr. Res., 2003, 53(5), 823-829.
[139]
Braida, L.; Crovella, S.; Boniotto, M.; Luchesi, A.; de Vonderweid, U.; Casetta, B.; Amoroso, A. A rapid and quantitative mass spectrometry method for determining the concentration of acylcarnitines and aminoacids in amniotic fluid. Prenat. Diagn., 2001, 21(7), 543-546.
[140]
Shigematsu, Y.; Hata, I.; Nakai, A.; Kikawa, Y.; Sudo, M.; Tanaka, Y.; Yamaguchi, S.; Jakobs, C. Prenatal diagnosis of organic acidemias based on amniotic fluid levels of acylcarnitines. Pediatr. Res., 1996, 39(4 Pt 1), 680-684.
[141]
Cataldi, T.; Cordeiro, F.B. Costa, Ldo.V.; Pilau, E.J.; Ferreira, C.R.; Gozzo, F.C.; Eberlin, M.N.; Bertolla, R.P.; Cedenho, A.P.; Turco, E.G. Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders. Hum. Fertil. (Camb.), 2013, 16(4), 269-277.
[142]
Cordeiro, F.B.; Cataldi, T.R.; do Vale Teixeira da Costa, L.; de Lima, C.B.; Stevanato, J.; Zylbersztejn, D.S.; Ferreira, C.R.; Eberlin, M.N.; Cedenho, A.P.; Turco, E.G. Follicular fluid lipid fingerprinting from women with PCOS and hyper response during IVF treatment. J. Assist. Reprod. Genet., 2015, 32(1), 45-54.
[143]
Niu, Z.; Lin, N.; Gu, R.; Sun, Y.; Feng, Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J. Clin. Endocrinol. Metab., 2014, 99(11), E2269-E2276.
[144]
Griffin, J.L.; Kauppinen, R.A. Tumour metabolomics in animal models of human cancer. J. Proteome Res., 2007, 6(2), 498-505.
[145]
Gorden, D.L.; Ivanova, P.T.; Myers, D.S.; McIntyre, J.O.; VanSaun, M.N.; Wright, J.K.; Matrisian, L.M.; Brown, H.A. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS One, 2011, 6(8), e22775.
[146]
Quintás, G.; Portillo, N.; García-Cañaveras, J.C.; Castell, J.V.; Ferrer, A.; Lahoz, A. Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics, 2012, 8(1), 86-98.
[147]
Arendt, B.M.; Ma, D.W.; Simons, B.; Noureldin, S.A.; Therapondos, G.; Guindi, M.; Sherman, M.; Allard, J.P. Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine. Appl. Physiol. Nutr. Metab., 2013, 38(3), 334-340.
[148]
Waddington, E.; Sienuarine, K.; Puddey, I.; Croft, K. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal. Biochem., 2001, 292(2), 234-244.
[149]
Waddington, E.I.; Croft, K.D.; Sienuarine, K.; Latham, B.; Puddey, I.B. Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates. Atherosclerosis, 2003, 167(1), 111-120.
[150]
Pettinella, C.; Lee, S.H.; Cipollone, F.; Blair, I.A. Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 850(1-2), 168-176.
[151]
Lehti, S.; Käkelä, R.; Hörkkö, S.; Kummu, O.; Helske-Suihko, S.; Kupari, M.; Werkkala, K.; Kovanen, P.T.; Oörni, K. Modified lipoprotein-derived lipid particles accumulate in human stenotic aortic valves. PLoS One, 2013, 8(6), e65810.
[152]
Kolak, M.; Westerbacka, J.; Velagapudi, V.R.; Wågsäter, D.; Yetukuri, L.; Makkonen, J.; Rissanen, A.; Häkkinen, A-M.; Lindell, M.; Bergholm, R.; Hamsten, A.; Eriksson, P.; Fisher, R.M.; Oresic, M.; Yki-Järvinen, H. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes, 2007, 56(8), 1960-1968.
[153]
Adams, J.M., II; Pratipanawatr, T.; Berria, R.; Wang, E.; DeFronzo, R.A.; Sullards, M.C.; Mandarino, L.J. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes, 2004, 53(1), 25-31.
[154]
de la Maza, M.P.; Rodriguez, J.M.; Hirsch, S.; Leiva, L.; Barrera, G.; Bunout, D. Skeletal muscle ceramide species in men with abdominal obesity. J. Nutr. Health Aging, 2015, 19(4), 389-396.
[155]
Reinehr, T.; Kulle, A.; Wolters, B.; Lass, N.; Welzel, M.; Riepe, F.; Holterhus, P-M. Steroid hormone profiles in prepubertal obese children before and after weight loss. J. Clin. Endocrinol. Metab., 2013, 98(6), E1022-E1030.
[156]
Son, H.H.; Moon, J.Y.; Seo, H.S.; Kim, H.H.; Chung, B.C.; Choi, M.H. High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina. J. Lipid Res., 2014, 55(1), 155-162.
[157]
del Genio, G.; Ferreri, C.; Marfella, R.; Pournaras, D.; le Roux, C.W.; del Genio, F.; Paolo, L.; Tolone, S.; Docimo, L.; Puca, A.A. Morbid Obesity is Associated to Altered Fatty Acid Profile of Erythrocyte Membranes. J. Diabetes Metab., 2015, 6(8), 582.
[158]
Dong, F.; Deng, D.; Chen, H.; Cheng, W.; Li, Q.; Luo, R.; Ding, S. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal. Bioanal. Chem., 2015, 407(16), 4683-4695.
[159]
Beger, R.D. A review of applications of metabolomics in cancer. Metabolites, 2013, 3(3), 552-574.
[160]
Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem., 2008, 372(2), 204-212.
[161]
Arendt, B.M.; Ma, D.W.; Simons, B.; Noureldin, S.A.; Therapondos, G.; Guindi, M.; Sherman, M.; Allard, J.P. Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine. Appl. Physiol. Nutr. Metab., 2013, 38(3), 334-340.
[162]
Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509.
[163]
Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959, 37(8), 911-917.
[164]
Christie, W. W. Gas Chromatography and lipids - a practical guide 1989.
[165]
Sánchez-Avila, N.; Mata-Granados, J.M.; Ruiz-Jiménez, J.; Luque de Castro, M.D. Fast, sensitive and highly discriminant gas chromatography-mass spectrometry method for profiling analysis of fatty acids in serum. J. Chromatogr. A, 2009, 1216(40), 6864-6872.
[166]
Roberts, L.D.; McCombie, G.; Titman, C.M.; Griffin, J.L. A matter of fat: an introduction to lipidomic profiling methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 174-181.
[167]
Nier, A.O. A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum., 1947, 18(6), 398-411.
[168]
Munson, M.S.B.; Field, F.H. Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc., 1966, 88(12), 2621-2630.
[169]
Gordin, A.; Fialkov, A.B.; Amirav, A. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams. Rapid Commun. Mass Spectrom., 2008, 22(17), 2660-2666.
[170]
Schiller, J.; Arnold, K.; Meyers, R.A.E. Encyclopedia of analytical chemistry; , 2000, pp. 559-585.
[171]
Sickmann, A.; Mreyen, M.; Meyer, H.E. Mass spectrometry--a key technology in proteome research. Adv. Biochem. Eng. Biotechnol., 2003, 83, 141-176.
[172]
Li, M.; Zhou, Z.; Nie, H.; Bai, Y.; Liu, H. Recent advances of chromatography and mass spectrometry in lipidomics. Anal. Bioanal. Chem., 2011, 399(1), 243-249.
[173]
Byrdwell, W.C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids, 2001, 36(4), 327-346.
[174]
Souverain, S.; Rudaz, S.; Veuthey, J-L. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. J. Chromatogr. A, 2004, 1058(1-2), 61-66.
[175]
Byrdwell, W.C. Dual parallel mass spectrometers for analysis of sphingolipid, glycerophospholipid and plasmalogen molecular species. Rapid Commun. Mass Spectrom., 1998, 12(5), 256-272.
[176]
Cai, S-S.; Syage, J.A. Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal. Chem., 2006, 78(4), 1191-1199.
[177]
Chernushevich, I.V.; Loboda, A.V.; Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom., 2001, 36(8), 849-865.
[178]
Holčapek, M.; Jirásko, R.; Lísa, M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J. Chromatogr. A, 2012, 1259, 3-15.
[179]
Loizides-Mangold, U. On the future of mass-spectrometry-based lipidomics. FEBS J., 2013, 280(12), 2817-2829.
[180]
Teuber, K.; Schiller, J.; Jakop, U.; Lüpold, S.; Orledge, J.M.; Blount, J.D.; Royle, N.J.; Hoodless, A.; Müller, K. MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: pheasant spermatozoa as one selected example. Anim. Reprod. Sci., 2011, 123(3-4), 270-278.
[181]
Ivanova, P.T.; Milne, S.B.; Byrne, M.O.; Xiang, Y.; Brown, H.A. Lipidomics and bioactive lipids: mass-spectrometrybased lipid analysis. Methods Enzymol, H. Alex Brown Ed.; Elsevier Science B.V.: USA, 2007; Vol. 432.
[182]
Sobott, F.; Watt, S.J.; Smith, J.; Edelmann, M.J.; Kramer, H.B.; Kessler, B.M. Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J. Am. Soc. Mass Spectrom., 2009, 20(9), 1652-1659.
[183]
Marczak, Ł. Analysis of protein posttranslational modifications using mass spectrometry. Biotechnologia, 2009, 2(85), 27-38.
[184]
Bird, S.S.; Marur, V.R.; Sniatynski, M.J.; Greenberg, H.K.; Kristal, B.S. Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal. Chem., 2011, 83(3), 940-949.
[185]
Lam, S.M.; Shui, G. Lipidomics as a principal tool for advancing biomedical research. J. Genet. Genomics, 2013, 40(8), 375-390.
[186]
Ståhlman, M.; Ejsing, C.S.; Tarasov, K.; Perman, J.; Borén, J.; Ekroos, K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(26), 2664-2672.
[187]
Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem., 2011, 80(80), 301-325.
[188]
Zhao, Z.; Xu, Y. Measurement of endogenous lysophosphatidic acid by ESI-MS/MS in plasma samples requires pre-separation of lysophosphatidylcholine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(29), 3739-3742.
[189]
Mika, A.; Swiezewska, E.; Stepnowski, P. Polar and neutral lipid composition and fatty acids profile in selected fish meals depending on raw material and grade of products. Lebensm. Wiss. Technol., 2016, 70, 199-207.
[190]
Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 2011, 1811(11), 637-647.
[191]
Craig Byrdwell, Wm. http://byrdwell.com/ [accessed Mar 12, 2016]
[192]
Cífková, E.; Holčapek, M.; Lísa, M.; Ovčačíková, M.; Lyčka, A.; Lynen, F.; Sandra, P. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal. Chem., 2012, 84(22), 10064-10070.
[193]
Bryan, K.; Brennan, L.; Cunningham, P. MetaFIND: a feature analysis tool for metabolomics data. BMC Bioinformatics, 2008, 9, 470.
[194]
Lourenço, C.; Turner, C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites, 2014, 4(2), 465-498.
[195]
Breiman, L. Random Forests. Mach. Learn., 2001, 45(1), 5-32.
[196]
Legette, L.L.; Reed, R.L.; Murty, L.; Maier, C.S.; Stevens, J.F. Application of paper strip extraction in combination with LC-MS-MS in pharmacokinetics. Spectroscopy (Springf.), 2013, 39(10), s18-s25.
[197]
Bosomworth, N.J. Approach to identifying and managing atherogenic dyslipidemia: a metabolic consequence of obesity and diabetes. Can. Fam. Physician, 2013, 59(11), 1169-1180.
[198]
Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell, 2008, 134(6), 933-944.
[199]
Pinnick, K.E.; Neville, M.J.; Fielding, B.A.; Frayn, K.N.; Karpe, F.; Hodson, L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes, 2012, 61(6), 1399-1403.
[200]
Burns, T.A.; Kadegowda, A.K.G.; Duckett, S.K.; Pratt, S.L.; Jenkins, T.C. Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids, 2012, 47(12), 1143-1153.
[201]
Waguri, T.; Goda, T.; Kasezawa, N.; Yamakawa-Kobayashi, K. The combined effects of genetic variations in the GPR120 gene and dietary fat intake on obesity risk. Biomed. Res., 2013, 34(2), 69-74.
[202]
Popeijus, H.E.; Saris, W.H.M.; Mensink, R.P. Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int. J. Obes., 2008, 32(7), 1076-1082.
[203]
Calder, P.C. Long-chain fatty acids and inflammation. Proc. Nutr. Soc., 2012, 71(2), 284-289.
[204]
Perreault, M.; Zulyniak, M.A.; Badoud, F.; Stephenson, S.; Badawi, A.; Buchholz, A.; Mutch, D.M. A distinct fatty acid profile underlies the reduced inflammatory state of metabolically healthy obese individuals. PLoS One, 2014, 9(2), e88539.
[205]
Mika, A.; Stepnowski, P.; Kaska, L.; Proczko, M.; Wisniewski, P.; Sledzinski, M. Obesity a comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight Obes. (Silver Spring), 2016, 24, (8), 1669-1676.
[206]
Mika, A.; Stepnowski, P.; Chmielewski, M.; Malgorzewicz, S.; Kaska, L.; Proczko, M.; Ratnicki-Sklucki, K.; Sledzinski, M.; Sledzinski, T. Increased serum level of cyclopropaneoctanoic acid 2-hexyl in patients with hypertriglyceridemia-related disorders. Lipids, 2016, 51(7), 867-873.
[207]
Okada, T.; Furuhashi, N.; Kuromori, Y.; Miyashita, M.; Iwata, F.; Harada, K. Plasma palmitoleic acid content and obesity in children. Am. J. Clin. Nutr., 2005, 82(4), 747-750.
[208]
Rössner, S.; Walldius, G.; Björvell, H. Fatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. Int. J. Obes., 1989, 13(5), 603-612.
[209]
Warensjö, E.; Ohrvall, M.; Vessby, B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr. Metab. Cardiovasc. Dis., 2006, 16(2), 128-136.
[210]
Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr., 2010, 92(6), 1350-1358.
[211]
Karlsson, M.; Mårild, S.; Brandberg, J.; Lönn, L.; Friberg, P.; Strandvik, B. Serum phospholipid fatty acids, adipose tissue, and metabolic markers in obese adolescents. Obesity (Silver Spring), 2006, 14(11), 1931-1939.
[212]
Tremblay, A.J.; Després, J.P.; Piché, M.E.; Nadeau, A.; Bergeron, J.; Alméras, N.; Tremblay, A.; Lemieux, S. Associations between the fatty acid content of triglyceride, visceral adipose tissue accumulation, and components of the insulin resistance syndrome. Metabolism, 2004, 53(3), 310-317.
[213]
Warensjö, E.; Risérus, U.; Vessby, B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia, 2005, 48(10), 1999-2005.
[214]
Kim, O.Y.; Lim, H.H.; Lee, M.J.; Kim, J.Y.; Lee, J.H. Association of fatty acid composition in serum phospholipids with metabolic syndrome and arterial stiffness. Nutr. Metab. Cardiovasc. Dis., 2013, 23(4), 366-374.
[215]
Sethom, M.M.; Fares, S.; Feki, M.; Hadj-Taieb, S.; Elasmi, M.; Omar, S.; Sanhaji, H.; Jemaa, R.; Kaabachi, N. Plasma fatty acids profile and estimated elongase and desaturases activities in Tunisian patients with the metabolic syndrome. Prostaglandins Leukot. Essent. Fatty Acids, 2011, 85(3-4), 137-141.
[216]
Mayneris-Perxachs, J.; Guerendiain, M.; Castellote, A.I.; Estruch, R.; Covas, M.I.; Fitó, M.; Salas-Salvadó, J.; Martínez-González, M.A.; Aros, F.; Lamuela-Raventós, R.M.; López-Sabater, M.C. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. Clin. Nutr., 2014, 33(1), 90-97.
[217]
O’Connor, J.P.; Manigrasso, M.B.; Kim, B.D.; Subramanian, S. Fracture healing and lipid mediators. Bonekey Rep., 2014, 3, 517.
[218]
Błachnio-Zabielska, A.U.; Pułka, M.; Baranowski, M.; Nikołajuk, A.; Zabielski, P.; Górska, M.; Górski, J. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J. Cell. Physiol., 2012, 227(2), 550-557.
[219]
Kowalski, G.M.; Carey, A.L.; Selathurai, A.; Kingwell, B.A.; Bruce, C.R. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One, 2013, 8(9), e72449.
[220]
Kim, J.Y.; Park, J.Y.; Kim, O.Y.; Ham, B.M.; Kim, H.J.; Kwon, D.Y.; Jang, Y.; Lee, J.H. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J. Proteome Res., 2010, 9(9), 4368-4375.
[221]
Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-chain polyunsaturated fatty acid status in obesity: a systematic review and meta-analysis. Obes. Rev., 2015, 16(6), 488-497.
[222]
Serna, J.; García-Seisdedos, D.; Alcázar, A.; Lasunción, M.Á.; Busto, R.; Pastor, Ó. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry. Chem. Phys. Lipids, 2015, 189, 7-18.
[223]
Vergès, B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 2015, 58(5), 886-899.
[224]
Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1), 3-10.
[225]
Shayman, J.A. Sphingolipids: their role in intracellular signaling and renal growth. J. Am. Soc. Nephrol., 1996, 7(2), 171-182.
[226]
Janikiewicz, J.; Hanzelka, K.; Kozinski, K.; Kolczynska, K.; Dobrzyn, A. Islet β-cell failure in type 2 diabetes--Within the network of toxic lipids. Biochem. Biophys. Res. Commun., 2015, 460(3), 491-496.
[227]
de Mello, V.D.F.; Lankinen, M.; Schwab, U.; Kolehmainen, M.; Lehto, S.; Seppänen-Laakso, T.; Oresic, M.; Pulkkinen, L.; Uusitupa, M.; Erkkilä, A.T. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia, 2009, 52(12), 2612-2615.
[228]
Denimal, D.; Pais de Barros, J-P.; Petit, J-M.; Bouillet, B.; Vergès, B.; Duvillard, L. Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration. Atherosclerosis, 2015, 241(2), 752-760.
[229]
Vessby, B.; Aro, A.; Skarfors, E.; Berglund, L.; Salminen, I.; Lithell, H. The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes, 1994, 43(11), 1353-1357.
[230]
Vessby, B.; Tengblad, S.; Lithell, H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia, 1994, 37(10), 1044-1050.
[231]
Stefan, N.; Kantartzis, K.; Celebi, N.; Staiger, H.; Machann, J.; Schick, F.; Cegan, A.; Elcnerova, M.; Schleicher, E.; Fritsche, A.; Häring, H.U. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care, 2010, 33(2), 405-407.
[232]
Gunes, O.; Tascilar, E.; Sertoglu, E.; Tas, A.; Serdar, M.A.; Kaya, G.; Kayadibi, H.; Ozcan, O. Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chem. Phys. Lipids, 2014, 184, 69-75.
[233]
Needleman, P.; Turk, J.; Jakschik, B.A.; Morrison, A.R.; Lefkowith, J.B. Arachidonic acid metabolism. Annu. Rev. Biochem., 1986, 55, 69-102.
[234]
Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the west virginian population. Int. J. Med. Sci., 2016, 13(1), 25-38.
[235]
Zoeller, R.A.; Lake, A.C.; Nagan, N.; Gaposchkin, D.P.; Legner, M.A.; Lieberthal, W. Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem. J., 1999, 338(Pt 3), 769-776.
[236]
Jové, M.; Naudí, A.; Portero-Otin, M.; Cabré, R.; Rovira-Llopis, S.; Bañuls, C.; Rocha, M.; Hernández-Mijares, A.; Victor, V.M.; Pamplona, R. Plasma lipidomics discloses metabolic syndrome with a specific HDL phenotype. FASEB J., 2014, 28(12), 5163-5171.
[237]
Rinaldo, P.; Schmidt-Sommerfeld, E.; Posca, A.P.; Heales, S.J.; Woolf, D.A.; Leonard, J.V. Effect of treatment with glycine and L-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency. J. Pediatr., 1993, 122(4), 580-584.
[238]
Majumdar, I.; Mastrandrea, L.D. Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome. Endocrine, 2012, 41(3), 442-449.
[239]
Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Nygren, H.; Seppänen-Laakso, T.; Poutanen, K.; Hyötyläinen, T.; Risérus, U.; Savolainen, M.J.; Hukkanen, J.; Brader, L.; Marklund, M.; Rosqvist, F.; Hermansen, K.; Cloetens, L.; Önning, G.; Thorsdottir, I.; Gunnarsdottir, I.; Åkesson, B.; Dragsted, L.O.; Uusitupa, M.; Orešič, M. A Healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J. Nutr., 2016, jn220459.
[240]
Warshauer, J.T.; Lopez, X.; Gordillo, R.; Hicks, J.; Holland, W.L.; Anuwe, E.; Blankfard, M.B.; Scherer, P.E.; Lingvay, I. Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome. Diabetes Metab. Res. Rev., 2015, 31(7), 734-744.
[241]
Ng, T.W.K.; Ooi, E.M.M.; Watts, G.F.; Chan, D.C.; Meikle, P.J.; Barrett, P.H.R. Association of Plasma Ceramides and Sphingomyelin With VLDL apoB-100 Fractional Catabolic Rate Before and After Rosuvastatin Treatment. J. Clin. Endocrinol. Metab., 2015, 100(6), 2497-2501.
[242]
Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[243]
Kolovou, G.; Kolovou, V.; Mavrogeni, S. Lipidomics in vascular health: current perspectives. Vasc. Health Risk Manag., 2015, 11, 333-342.
[244]
Proudfoot, J.; Barden, A.; Mori, T.A.; Burke, V.; Croft, K.D.; Beilin, L.J.; Puddey, I.B. Measurement of urinary F(2)-isoprostanes as markers of in vivo lipid peroxidation-A comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Anal. Biochem., 1999, 272(2), 209-215.
[245]
Yoshino, G.; Tanaka, M.; Nakano, S.; Matsumoto, T.; Kojima, M.; Murakami, E.; Morita, T. Effect of rosuvastatin on concentrations of plasma lipids, urine and plasma oxidative stress markers, and plasma high-sensitivity C-reactive protein in hypercholesterolemic patients with and without type 2 diabetes mellitus: A 12-week, open-label, pilot study. Curr. Ther. Res. Clin. Exp., 2009, 70(6), 439-448.
[246]
Ohashi, N.; Yoshikawa, M. Rapid and sensitive quantification of 8-isoprostaglandin F2alpha in human plasma and urine by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 746(1), 17-24.
[247]
Obata, T.; Tomaru, K.; Nagakura, T.; Izumi, Y.; Kawamoto, T. Smoking and oxidant stress: assay of isoprostane in human urine by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 746(1), 11-15.
[248]
Sjövall, P.; Lausmaa, J.; Johansson, B. Mass spectrometric imaging of lipids in brain tissue. Anal. Chem., 2004, 76(15), 4271-4278.
[249]
Stegemann, C.; Drozdov, I.; Shalhoub, J.; Humphries, J.; Ladroue, C.; Didangelos, A.; Baumert, M.; Allen, M.; Davies, A.H.; Monaco, C.; Smith, A.; Xu, Q.; Mayr, M. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet, 2011, 4(3), 232-242.
[250]
Teul, J.; Rupérez, F.J.; Garcia, A.; Vaysse, J.; Balayssac, S.; Gilard, V.; Malet-Martino, M.; Martin-Ventura, J.L.; Blanco-Colio, L.M.; Tuñón, J.; Egido, J.; Barbas, C. Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC-MS and 1H NMR fingerprints. J. Proteome Res., 2009, 8(12), 5580-5589.
[251]
Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol., 2003, 14(5), 421-430.
[252]
Berliner, J.A.; Subbanagounder, G.; Leitinger, N.; Watson, A.D.; Vora, D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med., 2001, 11(3-4), 142-147.
[253]
Watson, A.D.; Leitinger, N.; Navab, M.; Faull, K.F.; Hörkkö, S.; Witztum, J.L.; Palinski, W.; Schwenke, D.; Salomon, R.G.; Sha, W.; Subbanagounder, G.; Fogelman, A.M.; Berliner, J.A. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem., 1997, 272(21), 13597-13607.
[254]
Dunn, W.B.; Goodacre, R.; Neyses, L.; Mamas, M. Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis, 2011, 3(19), 2205-2222.
[255]
Brügger, B.; Erben, G.; Sandhoff, R.; Wieland, F.T.; Lehmann, W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA, 1997, 94(6), 2339-2344.
[256]
Houjou, T.; Yamatani, K.; Nakanishi, H.; Imagawa, M.; Shimizu, T.; Taguchi, R. Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun. Mass Spectrom., 2004, 18(24), 3123-3130.
[257]
Greiner, M. R A. T.; Gmbh, M.; Kg, C. Capillary Electrophoresis coupling to Mass Spectrometry (CE-MS), an advanced technique orthogonal to LC-MS for high resolution separation and accurate molecule identification., 2010, 9- 10.
[258]
Yin, P.; Wan, D.; Zhao, C.; Chen, J.; Zhao, X.; Wang, W.; Lu, X.; Yang, S.; Gu, J.; Xu, G. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol. Biosyst., 2009, 5(8), 868-876.
[259]
Spagou, K.; Tsoukali, H.; Raikos, N.; Gika, H.; Wilson, I.D.; Theodoridis, G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci., 2010, 33(6-7), 716-727.
[260]
Gika, H.G.; Theodoridis, G.A.; Wilson, I.D. Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine. J. Sep. Sci., 2008, 31(9), 1598-1608.
[261]
Saleh, J.; Sniderman, A.D.; Cianflone, K. Regulation of Plasma fatty acid metabolism. Clin. Chim. Acta, 1999, 286(1-2), 163-180.
[262]
Wan, J-B.; Huang, L-L.; Rong, R.; Tan, R.; Wang, J.; Kang, J.X. Endogenously decreasing tissue n-6/n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2487-2494.
[263]
Spickett, C.M.; Pitt, A.R. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox Signal., 2015, 22(18), 1646-1666.
[264]
Forbes, R.; Gasevic, D.; Watson, E.M.; Ziegler, T.R.; Lin, E.; Burgess, J.R.; Gletsu-Miller, N. Essential Fatty Acid Plasma Profiles Following Gastric Bypass and Adjusted Gastric Banding Bariatric Surgeries. Obes. Surg., 2016, 26(6), 1237-1246.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy