Generic placeholder image

Current Cancer Drug Targets


ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment?

Author(s): A.P. Alves, A.C. Mamede, M.G. Alves, P.F. Oliveira, S.M. Rocha, M.F. Botelho and C.J. Maia*

Volume 19, Issue 1, 2019

Page: [26 - 40] Pages: 15

DOI: 10.2174/1568009618666180430144441

Price: $65


Hepatocellular carcinoma (HCC) is the most frequently detected primary malignant liver tumor, representing a worldwide public health problem due to its high morbidity and mortality rates. The HCC is commonly detected in advanced stage, precluding the use of treatments with curative intent. For this reason, it is crucial to find effective therapies for HCC. Cancer cells have a high dependence of glycolysis for ATP production, especially under hypoxic environment. Such dependence provides a reliable possible strategy to specifically target cancer cells based on the inhibition of glycolysis. HCC, such as other cancer types, presents a clinically well-known upregulation of several glycolytic key enzymes and proteins, including glucose transporters particularly glucose transporter 1 (GLUT1). Such enzymes and proteins constitute potential targets for therapy. Indeed, for some of these targets, several inhibitors were already reported, such as 2-Deoxyglucose, Imatinib or Flavonoids. Although the inhibition of glycolysis presents a great potential for an anticancer therapy, the development of glycolytic inhibitors as a new class of anticancer agents needs to be more explored. Herein, we propose to summarize, discuss and present an overview on the different approaches to inhibit the glycolytic metabolism in cancer cells, which may be very effective in the treatment of HCC.

Keywords: Glycolysis, hepatocellular carcinoma, cancer, GLOBOCAN, EGFR, GLUT.

Graphical Abstract
Llovet, J.M.; Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology, 2008, 48(4), 1312-1327.
Reid, A.E. Nonalcoholic steatohepatitis. Gastroenterology, 2001, 121(3), 710-723.
Befeler, A.S.; Di Bisceglie, A.M. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology, 2002, 122(6), 1609-1619.
Jemal, A.; Bray, F.; Ferlay, J. Global cancer statistics: 2011. CA Cancer J. Clin., 1999, 49(2), 1-, 33-64.
António, M.; Gonçalves, D. Hepatocellular carcinoma : epidemiology, biology, diagnosis, and therapies q., 2013. 59(5), 514-524
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-tieulent, J.; Jemal, A. Global cancer statistics, 2012. Cancer J. Clin., 2015, 65(2), 87-108.
Yang, J.; Roberts, L. Hepatocellular carcinoma: a global view. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(8), 448-458.
Llovet, J.M.; Di Bisceglie, A.M.; Bruix, J.; Kramer, B.S.; Lencioni, R.; Zhu, A.X.; Sherman, M.; Schwartz, M.; Lotze, M.; Talwalkar, J.; Gores, G.J. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl. Cancer Inst., 2008, 100(10), 698-711.
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterol., 2012, 142(6), 1264-1273.
Lee, J-S.; Thorgeirsson, S.S. Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer. Hepatology (Baltimore, Md.),, 2002, 35(5), 1134-1143.
Alves, R.; Alves, D.; Guz, B.; Matos, C.; Viana, M.; Harriz, M.; Terrabuio, D.; Kondo, M.; Gampel, O.; Polletti, P. Advanced hepatocellular carcinoma: review of targeted molecular drugs. Ann. Hepatol., 2011, 10(1), 21-27.
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
Mayhew, C.N.; Carter, S.L.; Fox, S.R.; Sexton, C.R.; Reed, C.A.; Srinivasan, S.V.; Liu, X.; Wikenheiser-Brokamp, K.; Boivin, G.P.; Lee, J.S.; Aronow, B.J. RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology, 2007, 133(3), 976-984.
Popescu, N.; Popescu, N.C. Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma: Potential prospects for combined targeted therapeutics. Int. J. Oncol., 2012, 41(2), 393-406.
Tsuda, H.; Oda, T.; Sakamoto, M.; Hirohashi, S. Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. Cancer Res., 1992, 52(6), 1504-1509.
Ding, J.; Gao, Y.; Liu, R.; Xu, F.; Liu, H. Association of PTEN polymorphisms with susceptibility to hepatocellular carcinoma in a han chinese population. DNA Cell Biol., 2011, 30(4), 229-234.
Tang, W.; Feng, X.; Zhang, S.; Ren, Z.; Liu, Y.; Yang, B. lv, B.; Cai, Y.; Xia, J.; Ge, N. Caveolin-1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway. Cell. Physiol. Biochem., 2015, 36(3), 1223-1236.
Zhou, J.N.; Zeng, Q.; Wang, H.Y.; Zhang, B.; Li, S.T.; Nan, X.; Cao, N.; Fu, C.J.; Yan, X.L.; Jia, Y.L.; Wang, J.X.; Zhao, A.H.; Li, Z.W.; Li, Y.H.; Xie, X.Y.; Zhang, X.M.; Dong, Y.; Xu, Y.C.; He, L.J.; Yue, W.; Pei, X.T. MicroRNA-125b attenuates epithelial-mesenchymal transitions and targets stem-like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology, 2015, 62(3), 801-815.
Galuppo, R.; Ramaiah, D.; Ponte, O.M.; Gedaly, R. Molecular therapies in hepatocellular carcinoma: what can we target? Dig. Dis. Sci., 2014, 59(8), 1688-1697.
Zhou, Q.; Yeo, W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol., 2011, 7(10), 1149-1167.
Thompson, M.D.; Monga, S.P.S. WNT/β-catenin signaling in liver health and disease. Hepatology, 2007, 45(5), 1298-1305.
Berman, D.M.; Karhadkar, S.S.; Maitra, A.; Montes De Oca, R.; Gerstenblith, M.R.; Briggs, K.; Parker, A.R.; Shimada, Y.; Eshleman, J.R.; Watkins, D.N.; Beachy, P.A. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature, 2003, 425, 846-851.
Strazzabosco, M.; Fabris, L. Notch signaling in hepatocellular carcinoma: guilty in association. Gastroenterology, 2012, 4, 1-4.
Villanueva, A.; Alsinet, C.; Yanger, K.; Hoshida, Y.; Zong, Y.; Toffanin, S.; Rodriguez-Carunchio, L.; Solé, M.; Thung, S.; Stanger, B.Z.; Llovet, J.M. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology, 2012, 143(6), 1660-1669.
Enguita-Germán, M.; Fortes, P. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma. W. J. Hepatol., 2014, 6(10), 716-737.
Berasain, C.; Avila, M.A. The EGFR signalling system in the liver: From hepatoprotection to hepatocarcinogenesis. J. Gastroenterol., 2014, 49(1), 9-23.
Morris, S.M.; Baek, J.Y.; Koszarek, A.; Kanngurn, S.; Knoblaugh, S.E.; Grady, W.M. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology, 2012, 55(1), 121-131.
Bruix, J.; Sherman, M. Management of hepatocellular carcinoma. Hepatology, 2005, 42(5), 1208-1236.
Llovet, J.M.; Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology, 2003, 37(2), 429-442.
Johnson, P. Systemic chemotherapy of liver tumors. Semin. Surg. Oncol., 2000, 19(2), 116-124.
Llovet, J.M.; Burroughs, A.B.J. Hepatocellular carcinoma. Lancet, 2003, 1907-1917.
Cervello, M.; McCubrey, J.A.; Cusimano, A.; Lampiasi, N.; Azzolina, A.; Montalto, G. Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget, 2012, 3(3), 236-260.
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
Furuse, J. Sorafenib for the treatment of unresectable hepatocellular carcinoma. Biologics : Targets Ther, 2008, 2(4), 779-788.
Wrzesinski, S.H.; Fisher, J.L.; Ernstoff, M.S. Genetic profiles of plasmacytoid (BDCA-4 expressing) DC subtypes-clues to DC subtype function in vivo. Exp. Hematol. Oncol., 2013, 2(1), 8.
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
Warburg, O.; Posener, K.; Negolein, E. Ueber den stoffwechsel der tumoren (The metabolism of tumor cells); Biochem. Zeitschr, 1924, pp. 129-169.
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
Amann, T.; Hellerbrand, C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin. Ther. Targets, 2009, 13(12), 1411-1427.
Amann, T. Maegdefrau, U.; Hartmann, A.; Agaimy, A.; Marienhagen, J.; Weiss, T.S.; Stoeltzing, O.; Warnecke, C.; Schölmerich, J.; Oefner, P.J.; Kreutz, M.; Bosserhoff, A.K.; Hellerbrand, C. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am. J. Pathol., 2009, 174(4), 1544-1552.
Carew, J.S.; Huang, P. Mitochondrial defects in cancer. Mol. Cancer, 2002, 1, 9.
Penta, J.S.; Johnson, F.M.; Wachsman, J.T.; Copeland, W.C. Mitochondrial DNA in human malignancy. Rev. Mutation Res., 2001, 488(2), 119-133.
Dayan, F.; Mazure, N.M.; Brahimi-Horn, M.C.; Pouysségur, J.A. Dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron., 2008, 1(1), 53-68.
Brahimi-Horn, M.C.; Chiche, J.; Pouysségur, J. Hypoxia and cancer. J. Mol. Med., 2007, 85(12), 1301-1307.
Pandey, P.R.; Liu, W.; Xing, F.; Fukuda, K.; Watabe, K. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Patents Anticancer Drug Discov., 2012, 7(2), 185-197.
Singh, K.K. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann. N. Y. Acad. Sci., 2004, 1019, 260-264.
Flier, J.; Mueckler, M.; Usher, P.; Lodish, H. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science, 1987, 235(4795), 1492-1495.
Elstrom, R.L.; Bauer, D.E.; Buzzai, M.; Karnauskas, R.; Harris, M.; Elstrom, R.L.; Bauer, D.E.; Buzzai, M.; Karnauskas, R.; Harris, M.H.; Plas, D.R.; Zhuang, H.; Cinalli, R.M.; Alavi, A.; Rudin, C.M.; Thompson, C.B. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res., 2004, 64, 3892-3899.
Bustamante, E.; Morris, H.P.; Pedersen, P.L. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J. Biol. Chem., 1981, 256(16), 8699-8704.
Selak, M.A.; Armour, S.M.; MacKenzie, E.D.; Boulahbel, H.; Watson, D.G.; Mansfield, K.D.; Pan, Y.; Simon, M.C.; Thompson, C.B.; Gottlieb, E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-? prolyl hydroxylase. Cancer Cell, 2005, 7(1), 77-85.
Gatenby, R.A.; Gawlinski, E.T. A reaction-diffusion model of cancer invasion. Cancer Res., 1996, 56(24), 5745-5753.
Morita, T.; Nagaki, T.; Fukuda, I.; Okumura, K. Clastogenicity of low pH to various cultured mammalian cells. Mutat. Res., 1992, 268(2), 297-305.
Raghunand, N.; Gatenby, R.A.; Gillies, R.J. Microenvironmental and cellular consequences of altered blood flow in tumours., . Br. J. Radiol., 2003. 76(suppl_1), S11-S22
Ruch, R.J.; Klaunig, J.E.; Klaunig, J.E.; Kerckaert, G.A.; LeBoeuf, R.A.; LeBoeuf, R.A. Modification of gap junctional intercellular communication by changes in extracellular pH in Syrian hamster embryo cells. Carcinogenesis, 1990, 11(6), 909-913.
Semenza, G.L. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr. Opin. Genet. Dev., 1998, 8(5), 588-594.
Yasuda, S.; Arii, S.; Mori, A.; Isobe, N.; Yang, W.; Oe, H.; Fujimoto, A.; Yonenaga, Y.; Sakashita, H.; Imamura, M. Hexokinase II and VEGF expression in liver tumors: Correlation with hypoxia-inducible factor-1α and its significance. J. Hepatol., 2004, 40(1), 117-123.
Carmeliet, P.; Dor, Y.; Herbert, J.M.; Fukumura, D.; Brusselmans, K.; Dewerchin, M.; Neeman, M.; Bono, F.; Abramovitch, R.; Maxwell, P.; Koch, C.J.; Ratcliffe, P.; Moons, L.; Jain, R.K.; Collen, D.; Keshert, E. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394(6692), 485-490.
Dong, T.; Yan, Y.; Chai, H.; Chen, S.; Xiong, X.; Sun, D.; Yu, Y.; Deng, L.; Cheng, F. Pyruvate kinase M2 affects liver cancer cell behavior through up-regulation of HIF-1α and Bcl-xL in culture. Biomed. Pharmacother., 2015, 69, 277-284.
Xia, L.; Mo, P.; Huang, W.; Zhang, L.; Wang, Y.; Zhu, H.; Tian, D.; Liu, J.; Chen, Z.; Zhang, Y.; Chen, Z.; Hu, H.; Fan, D.; Nie, Y.; Wu, K. The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis, 2012, 33(11), 2250-2259.
Liu, H.; Hu, Y.P.; Savaraj, N.; Priebe, W.; Lampidis, T.J. Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry, 2001, 40(18), 5542-5547.
Lv, L.; Li, D.; Zhao, D.; Lin, R.; Chu, Y.; Zhang, H.; Zha, Z.; Liu, Y.; Li, Z.; Xu, Y.; Wang, G.; Huang, Y.; Xiong, Y.; Guan, K.L.; Lei, Q.Y. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell, 2011, 42(6), 719-730.
Hitosugi, T.; Kang, S.; Heiden M.G., Vander ; Chung, T.; Lythgoe, K.; Dong, S.; Lonial, S.; Wang, X.; Chen, G.Z.; Xie, J. NIH Public Access. Growth (Lakeland), 2010, 2(97), 1-16.
Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis., 2013, 4(3), e532.
Marín-Hernández, A.; Gallardo-Pérez, J.C.; Rodríguez-Enríquez, S.; Encalada, R.; Moreno-Sánchez, R.; Saavedra, E. Modeling cancer glycolysis. Biochim. Biophys. Acta, 2011, 1807(6), 755-767.
Han, T.; Kang, D.; Ji, D.; Wang, X.; Zhan, W.; Fu, M.; Xin, H.B.; Wang, J.B. How does cancer cell metabolism affect tumor migration and invasion? Cell Adhes. Migr., 2013, 7(5), 395-403.
Perl, A.; Hanczko, R.; Telarico, T.; Oaks, Z.; Landas, S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol. Med., 2011, 17(7), 395-403.
Payen, V.L.; Porporato, P.E.; Baselet, B.; Sonveaux, P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell. Mol. Life Sci., 2016, 73(7), 1333-1348.
Izyumov, D.S.; Avetisyan, A.V.; Pletjushkina, O.Y.; Sakharov, D.V.; Wirtz, K.W.; Chernyak, B.V.; Skulachev, V.P. Wages of fear: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim. Biophys. Acta, 2004, 1658(1-2), 141-147.
Izyumov, D.S.; Avetisyan, A.V.; Pletjushkina, O.Y.; Sakharov, D.V.; Wirtz, K.W.; Chernyak, B.V.; Skulachev, V.P. Wages of fear: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim. Biophys. Acta, 2004, 1658(1-2), 141-147.
Munoz-Pinedo, C.; Ruiz-Ruiz, C.; De Almodovar, C.R.; Palacios, C.; Lopez-Rivas, A. Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J. Biol. Chem., 2003, 278(15), 12759-12768.
Xu, R.; Pelicano, H.; Zhou, Y. Inhibition of glycolysis in cancer cells : a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia inhibition of glycolysis in cancer cells : a novel strategy to overcome drug resistance associated with Mi., 2005. 2, 613-621
Wood, I.S.; Trayhurn, P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr., 2003, 89(1), 3-9.
Lantos, P.L.; Park, D.C.; Hill, D. Development of Nitrosourea - Induced brain tumours wth a special note on changes occuring during latency 1986. 24(2), 121-127
Yokota, J. Tumor progression and metastasis. Carcinogenesis, 2000, 21(3), 497-503.
Karim, S.; Adams, D.H.; Lalor, P.F. Hepatic expression and cellular distribution of the glucose transporter family. World J. Gastroenterol., 2012, 18(46), 6771-6781.
Kurata, T.; Oguri, T.; Isobe, T.; Ishioka, S.; Yamakido, M. Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn. J. Cancer Res., 1999, 90(11), 1238-1243.
Gorovits, N.; Charron, M.J. What we know about facilitative glucose transporters. Biochemistry and Molecular Biology Education., 2003, 31(3), 163-172.
Freemerman, A.J.; Johnson, A.R.; Sacks, G.N.; Milner, J.J.; Kirk, E.L.; Troester, M.A.; Macintyre, A.N.; Goraksha-Hicks, P.; Rathmell, J.C.; Makowski, L. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem., 2014, 289(11), 7884-7896.
Fukumoto, H.; Seino, S.; Imura, H.; Seino, Y.; Bell, G.I. Characterization and expression of human HepG2/erythrocyte glucose-transporter gene. Diabetes, 1988, 37(5), 657-661.
Airley, R.E.; Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: Novel pathways and targets for anticancer therapeutics. Chemotherapy, 2007, 53(4), 233-256.
Zhang, H.L.; Wang, M.D.; Zhou, X. Qin CJ2, Fu GB2, Tang L3, Wu H2, Huang S2, Zhao LH2, Zeng M2, Liu J2, Cao D2, Guo LN2, Wang HY4, Yan HX5, Liu J6. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment. Cancer Lett., 2017, 388, 1-11.
Kayano, T.; Fukumoto, H.; Eddy, R.L.; Fan, Y.S.; Byers, M.G.; Shows, T.B.; Bell, G.I. Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J. Biol. Chem., 1988, 263(30), 15245-15248.
Gould, G.W.; Holman, G.D. The glucose transporter family: structure, function and tissue-specific expression. . Biochem. J., 1993. 295( Pt 2, 329-341
Schmidt, S.; Hommel, A.; Gawlik, V.; Augustin, R.; Junicke, N.; Florian, S.; Richter, M.; Walther, D.J.; Montag, D.; Joost, H.G.; Schürmann, A. Essential role of glucose transporter GLUT3 for post-implantation embryonic development. J. Endocrinol., 2009, 200(1), 23-33.
Zhao, F-Q.; Keating, A.F. Functional properties and genomics of glucose transporters. Curr. Genomics, 2007, 8(2), 113-128.
Manolescu, A.; Salas-Burgos, A.M.; Fischbarg, J.; Cheeseman, C.I. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). J. Biol. Chem., 2005, 280(52), 42978-42983.
Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2), E141-E145.
White, P.S.; Jensen, S.J.; Rajalingam, V.; Stairs, D.; Sulman, E.P.; Maris, J.M.; Biegel, J.A.; Wooster, R.; Brodeur, G.M. Physical mapping of the CA6, ENO1, and SLC2A5 (GLUT5) genes and reassignment of SLC2A5 to 1p36.2. Cytogenet. Cell Genet., 1998, 81(1), 60-64.
Corpe, C.P.; Bovelander, F.J.; Munoz, C.M.; Hoekstra, J.H.; Simpson, I.A.; Kwon, O.; Levine, M.; Burant, C.F. Cloning and functional characterization of the mouse fructose transporter, GLUT5; , 2002. Vol. 1576
Deng, D.; Xu, C.; Sun, P.; Wu, J.; Yan, C.; Hu, M.; Yan, N. Crystal structure of the human glucose transporter GLUT1. Nature, 2014, 510(7503), 121-125.
Nomura, N.; Verdon, G.; Kang, H.J.; Shimamura, T.; Nomura, Y.; Sonoda, Y.; Hussien, S.A.; Qureshi, A.A.; Coincon, M.; Sato, Y.; Abe, H.; Nakada-Nakura, Y.; Hino, T.; Arakawa, T.; Kusano-Arai, O.; Iwanari, H.; Murata, T.; Kobayashi, T.; Hamakubo, T.; Kasahara, M.; Iwata, S.; Drew, D. Structure and mechanism of the mammalian fructose transporter GLUT5. Nature, 2015, 526(7573), 397-401.
Helmlinger, G.; Sckell, A.; Dellian, M.; Forbes, N.S.; Jain, R.K. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin. Cancer Res., 2002, 8(4), 1284-1291.
Yamagata, M.; Hasuda, K.; Stamato, T.; Tannock, I.F. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br. J. Cancer, 1998, 77(11), 1726-1731.
Horecker, B.L. The pentose phosphate pathway. J. Biol. Chem., 2002, 277(50), 47965-47971.
Kruger, N.J.; von Schaewen, A. The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol., 2003, 6(3), 236-246.
Ramos-Montoya, A.; Lee, W-N.P.; Bassilian, S.; Lim, S.; Trebukhina, R.V.; Kazhyna, M.V.; Ciudad, C.J.; Noé, V.; Centelles, J.J.; Cascante, M. Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int. J. Cancer, 2006, 119(12), 2733-2741.
Zhang, S.; Yang, J-H.; Guo, C-K.; Cai, P-C. Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett., 2007, 253(1), 108-114.
Shimizu, T.; Inoue, K.; Hachiya, H.; Shibuya, N.; Shimoda, M.; Kubota, K. Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas. J. Gastroenterol., 2014, 49(9), 1324-1332.
Kowalik, M.A.; Columbano, A.; Perra, A. Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front. Oncol., 2017, 7, 87.
Katzen, H.M.; Schimke, R.T. Multiple forms of hexokinase in the rat: tissue distribution, age dependency, and properties. Proc. Natl. Acad. Sci. USA, 1965, 54(4), 1218-1225.
Sebastian, S. hoebee, B.; Hande, M.P.; Kenkare, U.W.; Natarajan, A.T. Assignment of hexokinase types 1, 2, 3 (Hk1, 2, 3) and glucokinase (Gck) to rat chromosome band 20q11, 4q34, 17q12 and 14q21 respectively, by in situ hybridization. Cytogenet. Genome Res., 1997, 77(3-4), 266-267.
Wilson, J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol., 2003, 206(Pt 12), 2049-2057.
Cárdenas, M.L.; Cornish-Bowden, A.; Ureta, T. Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta, 1998, 1401(3), 242-264.
Gottlob, K.; Majewski, N.; Kennedy, S.; Kandel, E.; Robey, R.B.; Hay, N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev., 2001, 15(11), 1406-1418.
Mathupala, S.P.; Rempel, A.; Pedersen, P.L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem., 2001, 276(46), 43407-43412.
Shinohara, Y.; Yamamoto, K.; Kogure, K.; Ichihara, J.; Terada, H. Steady state transcript levels of the type II hexokinase and type 1 glucose transporter in human tumor cell lines. Cancer Lett., 1994, 82(1), 27-32.
Bork, P.; Sander, C.; Valencia, A. Convergent evolution of similar enzymatic function on different protein folds: The hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci., 1993, 2, 31-40.
Wilson, J.E. Hexokinases. Rev. Physiol. Biochem. Pharmacol., 1995, 126, 65-198.
Rempel, A.; Bannasch, P.; Mayer, D. Differences in expression and intracellular distribution of hexokinase isoenzymes in rat liver cells of different transformation stages. Biochim. Biophys. Acta, 1994, 1219(3), 660-668.
Pedersen, P.L. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J. Bioenerg. Biomembr., 2007, 39(3), 211-222.
Abu-Hamad, S.; Zaid, H.; Israelson, A.; Nahon, E.; Shoshan-Barmatz, V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J. Biol. Chem., 2008, 283(19), 13482-13490.
Shoshan-Barmatz, V.; Keinan, N.; Zaid, H. Uncovering the role of VDAC in the regulation of cell life and death. J. Bioenerg. Biomembr., 2008, 40(3), 183-191.
Dai, W.; Wang, F.; Lu, J.; Xia, Y.; He, L.; Chen, K.; Li, J.; Li, S.; Liu, T.; Zheng, Y.; Wang, J.; Lu, W.; Zhou, Y.; Yin, Q.; Abudumijiti, H.; Chen, R.; Zhang, R.; Zhou, L.; Zhou, Z.; Zhu, R.; Yang, J.; Wang, C.; Zhang, H.; Zhou, Y.; Xu, L.; Guo, C. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget, 2015, 6(15), 13703-13717.
Gong, L.; Cui, Z.; Chen, P.; Han, H.; Peng, J.; Leng, X. Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med. Oncol., 2012, 29(2), 909-914.
Guzman, G.; Chennuri, R.; Chan, A.; Rea, B.; Quintana, A.; Patel, R.; Xu, P-Z.; Xie, H.; Hay, N. Evidence for heightened hexokinase II immunoexpression in hepatocyte dysplasia and hepatocellular carcinoma. Dig. Dis. Sci., 2015, 60(2), 420-426.
Li, Y.; Lu, Z.; Liang, Z.; Ji, D.; Zhang, P.; Liu, Q.; Zheng, X.; Yao, Y. Metastasis-associated in colon cancer-1 is associated with poor prognosis in hepatocellular carcinoma, partly by promoting proliferation through enhanced glucose metabolism. Mol. Med. Rep., 2015, 12(1), 426-434.
Sola-Penna, M.; Da Silva, D.; Coelho, W.S.; Marinho-Carvalho, M.M.; Zancan, P. Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life, 2010, 62(11), 791-796.
Li, S.; Wu, L.; Feng, J.; Li, J.; Liu, T.; Zhang, R.; Xu, S.; Cheng, K.; Zhou, Y.; Zhou, S.; Kong, R.; Chen, K.; Wang, F.; Xia, Y.; Lu, J.; Zhou, Y.; Dai, W.; Guo, C. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci. Rep., 2016, 6, 28479.
Vora, S. Isozymes of human phosphofructokinase: biochemical and genetic aspects. Isozymes, 1983, 11, 3-23.
Hasawi, N.A.; Alkandari, M.F.; Luqmani, Y.A. Phosphofructokinase: A mediator of glycolytic flux in cancer progression. Crit. Rev. Oncol. Hematol., 2014, 92(3), 312-321.
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: cancer’s achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
Oliveira, P.F.; Martins, A.D.; Moreira, A.C.; Cheng, C.Y.; Alves, M.G. The warburg effect revisited-lesson from the sertoli cell. Med. Res. Rev., 2015, 35(1), 126-151.
Moreno-Sanchez, R.; Rodriguez-Enriquez, S.; Marin-Hernindez, A.; Saavedra, E. Energy metabolism in tumor cells. FEBS J., 2007, 274(6), 1393-1418.
Rathmell, J.C.; Fox, C.J.; Plas, D.R.; Hammerman, P.S.; Cinalli, R.M.; Thompson, C.B. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol., 2003, 23(20), 7315-7328.
Moreno-Sánchez, R.; Marín-Hernández, A.; Gallardo-Pérez, J.C.; Quezada, H.; Encalada, R.; Rodríguez-Enríquez, S.; Saavedra, E. Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells. J. Cell. Biochem., 2012, 113(5), 1692-1703.
Vaz, C.; Alves, M.; Marques, R.; Moreira, P.; Oliveira, P.; Maia, C.; Socorro, S. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int. J. Biochem. Cell Biol., 2012, 44(11), 2077-2084.
Liu, A.M.; Xu, Z.; Shek, F.H.; Wong, K-F.; Lee, N.P.; Poon, R.T.; Chen, J.; Luk, J.M. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One, 2014, 9(1), e86872.
Cattaneo, A.; Biocca, S.; Corvaja, N.; Calissano, P. Nuclear localization of a lactic dehydrogenase with single-stranded DNA-binding properties. Exp. Cell Res., 1985, 161(1), 130-140.
Koukourakis, M.I.; Giatromanolaki, A.; Sivridis, E.; Bougioukas, G.; Didilis, V.; Gatter, K.C.; Harris, A.L. Tumour and angiogenesis research group. lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br. J. Cancer, 2003, 89(5), 877-885.
Kolev, Y.; Uetake, H.; Takagi, Y.; Sugihara, K. Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer: association with hypoxia-inducible factor (HIF-1alpha) pathway, angiogenic factors production and poor prognosis. Ann. Surg. Oncol., 2008, 15(8), 2336-2344.
Koukourakis, M.I.; Giatromanolaki, A.; Sivridis, E.; Gatter, K.C.; Harris, A.L. Tumour angiogenesis research group. lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway--a report of the Tumour Angiogenesis Research Group. J. Clin. Oncol., 2006, 24(26), 4301-4308.
Giatromanolaki, A.; Sivridis, E.; Gatter, K.C.; Turley, H.; Harris, A.L.; Koukourakis, M.I. Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecol. Oncol., 2006, 103(3), 912-918.
Billiard, J.; Dennison, J.B.; Briand, J.; Annan, R.S.; Chai, D.; Colón, M.; Dodson, C.S.; Gilbert, S.A.; Greshock, J.; Jing, J.; Lu, H.; McSurdy-Freed, J.E.; Orband-Miller, L.A.; Mills, G.B.; Quinn, C.J.; Schneck, J.L.; Scott, G.F.; Shaw, A.N.; Waitt, G.M.; Wooster, R.F.; Duffy, K.J. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells. Cancer Metab., 2013, 1(1), 19.
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6), 425-434.
Sheng, S.L.; Liu, J.J.; Dai, Y.H.; Sun, X.G.; Xiong, X.P.; Huang, G. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J., 2012, 279(20), 3898-3910.
Kanno, T.; Sudo, K.; Maekawa, M.; Nishimura, Y.; Ukita, M.; Fukutake, K. Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin. Chim. Acta, 1988, 173(1), 89-98.
Yang, Z.; Ye, P.; Xu, Q.; Lu, Y.; Tang, B.; Wang, Q.; Chen, S.; Chen, X. Elevation of serum GGT and LDH levels, together with higher BCLC staging are associated with poor overall survival from hepatocellular carcinoma: a retrospective analysis. Discov. Med., 2015, 19(107), 409-418.
Imamura, K.; Tanaka, T. Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J. Biochem., 1972, 71(6), 1043-1051.
Tanaka, T.; Harano, Y.; Sue, F.; Morimura, H. Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J. Biochem., 1967, 62(1), 71-91.
Mazurek, S.; Boschek, C.B.; Hugo, F.; Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol., 2005, 15(4), 300-308.
Liu, W-R.; Tian, M-X.; Yang, L-X.; Lin, Y-L.; Jin, L.; Ding, Z-B.; Shen, Y-H.; Peng, Y-F.; Gao, D-M.; Zhou, J. PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma. Oncotarget, 2015, 6(2), 846-861.
Chen, Z.; Lu, X.; Wang, Z.; Jin, G.; Wang, Q.; Chen, D.; Chen, T.; Li, J.; Fan, J.; Cong, W.; Gao, Q.; He, X. Co-expression of PKM2 and TRIM35 predicts survival and recurrence in hepatocellular carcinoma. Oncotarget, 2015, 6(4), 2538-2548.
Hu, W.; Lu, S-X.; Li, M.; Zhang, C.; Liu, L-L.; Fu, J.; Jin, J-T.; Luo, R-Z.; Zhang, C.Z.; Yun, J-P. Pyruvate kinase M2 prevents apoptosis via modulating Bim stability and associates with poor outcome in hepatocellular carcinoma. Oncotarget, 2015, 6(9), 6570-6583.
Patel, M.S.; Nemeria, N.S.; Furey, W.; Jordan, F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J. Biol. Chem., 2014, 289(24), 16615-16623.
Kim, J.; Gao, P.; Liu, Y-C.; Semenza, G.L.; Dang, C.V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol., 2007, 27(21), 7381-7393.
Shen, Y-C.; Ou, D-L.; Hsu, C.; Lin, K-L.; Chang, C-Y.; Lin, C-Y.; Liu, S-H.; Cheng, A-L. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br. J. Cancer, 2013, 108(1), 72-81.
Hitosugi, T.; Fan, J.; Chung, T.W.; Lythgoe, K.; Wang, X.; Xie, J.; Ge, Q.; Gu, T.L.; Polakiewicz, R.D.; Roesel, J.L.; Chen, G.Z.; Boggon, T.J.; Lonial, S.; Fu, H.; Khuri, F.R.; Kang, S.; Chen, J. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell, 2011, 44(6), 864-877.
Pelicano, H.; Martin, D.S.; Xu, R.H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene, 2006, 25(34), 4633-4646.
Zhang, X.D.; Deslandes, E.; Villedieu, M.; Poulain, L.; Duval, M.; Gauduchon, P.; Schwartz, L.; Icard, P. Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res., 26(5A), 3561-3566.
Liu, H.; Savaraj, N.; Priebe, W.; Lampidis, T.J. Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem. Pharmacol., 2002, 64(12), 1745-1751.
Reyes, R.; Wani, N.A.; Ghoshal, K.; Jacob, S.T.; Motiwala, T. Sorafenib and 2-deoxyglucose synergistically inhibit proliferation of both sorafenib-sensitive and -resistant HCC cells by inhibiting ATP production. Gene Expr., 2017, 17(2), 129-140.
Tomizawa, M.; Shinozaki, F.; Motoyoshi, Y.; Sugiyama, T.; Yamamoto, S.; Ishige, N. 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol. Lett., 2017, 13(2), 800-804.
Wang, Z.; Zhang, L.; Zhang, D.; Sun, R.; Wang, Q.; Liu, X. Glycolysis inhibitor 2-deoxy-D-glucose suppresses carcinogen-induced rat hepatocarcinogenesis by restricting cancer cell metabolism. Mol. Med. Rep., 2015, 11(3), 1917-1924.
Vijayaraghavan, R.; Kumar, D.; Dube, S.N.; Singh, R.; Pandey, K.S.; Bag, B.C.; Kaushik, M.P.; Sekhar, K.; Dwarakanath, B.S.; Ravindranath, T. Acute toxicity and cardio-respiratory effects of 2-deoxy-D-glucose: a promising radio sensitiser. Biomed. Environ. Sci., 2006, 19(2), 96-103.
Raez, L.E.; Papadopoulos, K.; Ricart, A.D.; Chiorean, E.G.; Dipaola, R.S.; Stein, M.N.; Rocha Lima, C.M.; Schlesselman, J.J.; Tolba, K.; Langmuir, V.K.; Kroll, S.; Jung, D.T.; Kurtoglu, M.; Rosenblatt, J.; Lampidis, T.J. A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2013, 71(2), 523-530.
Stein, M.; Lin, H.; Jeyamohan, C.; Dvorzhinski, D.; Gounder, M.; Bray, K.; Eddy, S.; Goodin, S.; White, E.; Dipaola, R.S. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. The Prostate, 2010, 70(13), 1388-1394.
Nakano, A.; Miki, H.; Nakamura, S.; Harada, T.; Oda, A.; Amou, H.; Fujii, S.; Kagawa, K.; Takeuchi, K.; Ozaki, S.; Matsumoto, T.; Abe, M. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate. J. Bioenerg. Biomembr., 2012, 44(1), 31-38.
Ko, Y.H.; McFadden, B.A. Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate. Arch. Biochem. Biophys., 1990, 278(2), 373-380.
Ko, Y.H.; Pedersen, P.L.; Geschwind, J.F. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett., 2001, 173(1), 83-91.
Lee, M.; Jo, A.; Lee Kim, J.B.; Chang, Y.; Nam, J.Y.; Cho, H.; Cho, Y.Y.; Cho, E.J.; Lee, J.H.; Yu, S.J.; Yoon, J.H.; Kim, Y.J. 3-bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One, 2017, 12(3), e0174271.
Tomizawa, M.; Shinozaki, F.; Motoyoshi, Y.; Sugiyama, T.; Yamamoto, S.; Ishige, N. Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells. Oncol. Rep., 2016, 35(1), 59-63.
Gong, L.; Wei, Y.; Yu, X.; Peng, J.; Leng, X. 3-Bromopyruvic acid, a hexokinase II inhibitor, is an effective antitumor agent on the hepatoma cells : in vitro and in vivo findings. Anticancer. Agents Med. Chem., 2014, 14(5), 771-776.
Ganapathy-Kanniappan, S.; Geschwind, J-F.H.; Kunjithapatham, R.; Buijs, M.; Syed, L.H.; Rao, P.P.; Ota, S.; Kwak, B.K.; Loffroy, R.; Vali, M. 3-Bromopyruvate induces endoplasmic reticulum stress, overcomes autophagy and causes apoptosis in human HCC cell lines. Anticancer Res., 2010, 30(3), 923-935.
Ko, Y.H.; Smith, B.L.; Wang, Y.; Pomper, M.G.; Rini, D.A.; Torbenson, M.S.; Hullihen, J.; Pedersen, P.L. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun., 2004, 324(1), 269-275.
Geschwind, J-F.H.; Ko, Y.H.; Torbenson, M.S.; Magee, C.; Pedersen, P.L. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res., 2002, 62(14), 3909-3913.
Ko, Y.H.; Verhoeven, H.A.; Lee, M.J.; Corbin, D.J.; Vogl, T.J.; Pedersen, P.L. A translational study “case-report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J. Bioenerg. Biomembr., 2012, 44(1), 163-170.
El Sayed, S.M.; Mohamed, W.G.; Seddik, M-A.H.; Ahmed, A-S.A.; Mahmoud, A.G.; Amer, W.H.; Helmy Nabo, M.M.; Hamed, A.R.; Ahmed, N.S.; Abd-Allah, A.A-R. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study. Chin. J. Cancer, 2014, 33(7), 356-364.
Bonnet, S.; Archer, S.L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C.T.; Lopaschuk, G.D.; Puttagunta, L.; Bonnet, S.; Harry, G.; Hashimoto, K.; Porter, C.J.; Andrade, M.A.; Thebaud, B.; Michelakis, E.D. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 2007, 11(1), 37-51.
Kankotia, S.; Stacpoole, P.W. Dichloroacetate and cancer: new home for an orphan drug? Biochim. Biophys. Acta, 2014, 1846(2), 617-629.
Xue, X.; You, S.; Zhang, Q.; Wu, Y.; Zou, G.Z.; Wang, P.C.; Zhao, Y.L.; Xu, Y.; Jia, L.; Zhang, X.; Liang, X.J. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol. Pharm., 2012, 9(3), 634-644.
Dai, Y.; Xiong, X.; Huang, G.; Liu, J.; Sheng, S.; Wang, H.; Qin, W. Dichloroacetate enhances adriamycin-induced hepatoma cell toxicity in vitro and in vivo by increasing reactive oxygen species levels. PLoS One, 2014, 9(4), e92962.
Xiao, L.; Li, X.; Niu, N.; Qian, J.; Xie, G.; Wang, Y. Dichloroacetate (DCA) enhances tumor cell death in combination with oncolytic adenovirus armed with MDA-7/IL-24. Mol. Cell. Biochem., 2010, 340(1-2), 31-40.
Stacpoole, P.W. The dichloroacetate dilemma: environmental hazard versus therapeutic goldmine--both or neither? Environ. Health Perspect., 2011, 119(2), 155-158.
Kaufmann, P.; Engelstad, K.; Wei, Y.; Jhung, S.; Sano, M.C.; Shungu, D.C.; Millar, W.S.; Hong, X.; Gooch, C.L.; Mao, X.; Pascual, J.M. Dichloroacetate causes toxic neuropathy in MELAS: A randomized, controlled clinical trial. Neurology, 2006, 66(3), 324-330.
Deininger, M.W.; Goldman, J.M.; Lydon, N.; Melo, J.V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood, 1997, 90(9), 3691-3698.
Gottschalk, S.; Anderson, N.; Hainz, C.; Leukemia, H.; Cells, B.P.; Eckhardt, S.G.; Serkova, N.J. Imatinib (STI571) -mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells imatinib (STI571) -Mediated Changes in Glucose Metabolism. Clin. Cancer Res., 2004, 10, 6661-6668.
Al-Hadiya, B.M.H.; Bakheit, A.H.H.; Abd-Elgalil, A.A. Chapter Six - Imatinib Mesylate. In Profiles of Drug Substances, Excipients and Related Methodology;., 2014. Vol. 39, pp 265-297
Fiume, L.; Vettraino, M.; Manerba, M.; Di Stefano, G. Inhibition of lactic dehydrogenase as a way to increase the anti-proliferative effect of multi-targeted kinase inhibitors. Pharmacol. Res., 2011, 63(4), 328-334.
Keshavarz-Pakseresht, B.; Shandiz, S.A.S.; Baghbani-Arani, F. Imatinib induces up-regulation of NM23, a metastasis suppressor gene, in human Hepatocarcinoma (HepG2) Cell Line. Gastroenterol. Hepatol., 2017, 10(1), 29-33.
Knight, B.; Tirnitz-Parker, J.E.E.; Olynyk, J.K. C-kit inhibition by imatinib mesylate attenuates progenitor cell expansion and inhibits liver tumor formation in mice. Gastroenterology, 2008. 135(3), 969-979, 979.e1.
Campbell, J.S.; Johnson, M.M.; Bauer, R.L.; Hudkins, K.L.; Gilbertson, D.G.; Riehle, K.J.; Yeh, M.M.; Alpers, C.E.; Fausto, N. Targeting stromal cells for the treatment of platelet-derived growth factor C-induced hepatocellular carcinogenesis. Differentiation, 2007, 75(9), 843-852.
Treiber, G.; Wex, T.; Schleyer, E.; Troeger, U.; Hosius, C.; Malfertheiner, P. Imatinib for hepatocellular cancer--focus on pharmacokinetic/pharmacodynamic modelling and liver function. Cancer Lett., 2008, 260(1-2), 146-154.
Ramadori, G.; Füzesi, L.; Grabbe, E.; Pieler, T.; Armbrust, T. Successful treatment of hepatocellular carcinoma with the tyrosine kinase inhibitor imatinib in a patient with liver cirrhosis. Anticancer Drugs, 2004, 15(4), 405-409.
Lin, A.Y.; Fisher, G.A.; So, S.; Tang, C.; Levitt, L.; Phase, I.I. Study of Imatinib in Unresectable Hepatocellular Carcinoma. Am. J. Clin. Oncol., 2008, 31(1), 84-88.
Eckel, F.; von Delius, S.; Mayr, M.; Dobritz, M.; Fend, F.; Hosius, C.; Schleyer, E.; Schulte-Frohlinde, E.; Schmid, R.M.; Lersch, C. Pharmacokinetic and clinical phase II trial of imatinib in patients with impaired liver function and advanced hepatocellular carcinoma. Oncology, 2005, 69(5), 363-371.
Huang, J.; Huang, K.; Lan, T.; Xie, X.; Shen, X.; Liu, P.; Huang, H. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol. Cell. Endocrinol., 2013, 365(2), 231-240.
Neerati, P.; Devde, R.; Gangi, A.K. Evaluation of the effect of curcumin capsules on glyburide therapy in patients with type-2 diabetes mellitus. Phytother. Res., 2014, 28(12), 1796-1800.
Soetikno, V.; Sari, F.R.; Sukumaran, V.; Lakshmanan, A.P.; Harima, M.; Suzuki, K.; Kawachi, H.; Watanabe, K. Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J. Nutr. Biochem., 2013, 24(5), 796-802.
Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.D.E.; DE Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623.
Nabavi, S.F.; Thiagarajan, R.; Rastrelli, L.; Daglia, M.; Sobarzo-Sánchez, E.; Alinezhad, H.; Nabavi, S.M. Curcumin: a natural product for diabetes and its complications. Curr. Top. Med. Chem., 2015, 15(23), 2445-2455.
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 645-651.
Gunnink, L.K.; Alabi, O.D.; Kuiper, B.D.; Gunnink, S.M.; Schuiteman, S.J.; Strohbehn, L.E.; Hamilton, K.E.; Wrobel, K.E.; Louters, L.L. Curcumin directly inhibits the transport activity of GLUT1. Biochimie, 2016.
Cao, M.T.; Liu, H.F.; Liu, Z.G.; Xiao, P.; Chen, J.J.; Tan, Y.; Jiang, X.X.; Jiang, Z.C.; Qiu, Y.; Huang, H.J.; Zhang, Q.G. Curcumin downregulates the expression of Snail via suppressing Smad2 pathway to inhibit TGF-β1-induced epithelial-mesenchymal transitions in hepatoma cells. Oncotarget, 2017, 8(65), 108498-108508.
Cao, J.; Liu, Y.; Jia, L.; Zhou, H-M.; Kong, Y.; Yang, G.; Jiang, L-P.; Li, Q-J.; Zhong, L-F. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free radical biology & medicine ., 2007, 43(6), 968-975.
Bae, M-K.; Kim, S-H.; Jeong, J-W.; Lee, Y.M.; Kim, H-S.; Kim, S-R.; Yun, I.; Bae, S-K.; Kim, K-W. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol. Rep., 2006, 15(6), 1557-1562.
Xiao, J.; Chu, Y.; Hu, K.; Wan, J.; Huang, Y.; Jiang, C.; Liang, G.; Li, X. Synthesis and biological analysis of a new curcumin analogue for enhanced anti-tumor activity in HepG 2 cells. Oncol. Rep., 2010, 23(5), 1435-1441.
Wang, W-Z.; Cheng, J.; Luo, J.; Zhuang, S-M. Abrogation of G2/M arrest sensitizes curcumin-resistant hepatoma cells to apoptosis. FEBS Lett., 2008, 582(18), 2689-2695.
Choi, H.; Chun, Y-S.; Kim, S-W.; Kim, M-S.; Park, J-W. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol. Pharmacol., 2006, 70(5), 1664-1671.
Gao, J-Z. DU, J.-L.; Wang, Y.-L.; Li, J.; Wei, L.-X.; Guo, M.-Z. Synergistic effects of curcumin and bevacizumab on cell signaling pathways in hepatocellular carcinoma. Oncol. Lett., 2015, 9(1), 295-299.
Ahmed, H.H.; Shousha, W.G.; Shalby, A.B.; El-Mezayen, H.A.; Ismaiel, N.N.; Mahmoud, N.S. Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol., 2015, 36(3), 1667-1678.
El-Houseini, M.E.; El-Agoza, I.A.; Sakr, M.M.; El-Malky, G.M. Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp. Ther. Med., 2017, 13(1), 29-36.
Zhang, H-H.; Zhang, Y.; Cheng, Y-N.; Gong, F-L.; Cao, Z-Q.; Yu, L-G.; Guo, X-L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog., 2018, 57(1), 44-56.
Seufi, A.M.; Ibrahim, S.S.; Elmaghraby, T.K.; Hafez, E.E. Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences. J. Exp. Clin. Cancer Res., 2009, 28, 80.
Lee, S.H.; Yumnam, S.; Hong, G.E.; Raha, S.; Venkatarame Gowda Saralamma, V.; Lee, H.J.; Heo, J.D.; Lee, S.J.; Lee, W.S.; Kim, E.H.; Park, H.S. Flavonoids of Korean Citrus aurantium L. induce apoptosis via intrinsic pathway in human hepatoblastoma HepG2 cells. Phytother. Res., 2015, 29(12), 1940-1949.
Nomura, M.; Takahashi, T.; Nagata, N.; Tsutsumi, K.; Kobayashi, S.; Akiba, T.; Yokogawa, K.; Moritani, S.; Miyamoto, K. Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol. Pharm. Bull., 2008, 31(7), 1403-1409.
Park, J.B. Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochem. Biophys. Res. Commun., 1999, 260(2), 568-574.
Martin, H.J.; Kornmann, F.; Fuhrmann, G.F. The inhibitory effects of flavonoids and antiestrogens on the Glut1 glucose transporter in human erythrocytes. Chem. Biol. Interact., 2003, 146(3), 225-235.
Brito, A.F.; Ribeiro, M.; Abrantes, A.M.; Mamede, A.C.; Laranjo, M.; Casalta-Lopes, J.E.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Tralhão, J.G.; Botelho, M.F. New Approach for treatment of primary liver tumors: the role of quercetin. Nutr. Cancer, 2016, 68(2), 250-266.
Dai, W.; Gao, Q.; Qiu, J.; Yuan, J.; Wu, G.; Shen, G. Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma. Tumour Biol., 2016, 37(5), 6307-6313.
Ren, K-W.; Li, Y-H.; Wu, G.; Ren, J-Z.; Lu, H-B.; Li, Z-M.; Han, X-W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311.
Brito, A.F.; Ribeiro, M.; Abrantes, A.M.; Pires, A.S.; Teixo, R.J.; Tralhão, J.G.; Botelho, M.F. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr. Med. Chem., 2015, 22(26), 3025-3039.
Ghosh, A.; Ghosh, D.; Sarkar, S.; Mandal, A.K.; Thakur Choudhury, S.; Das, N. Anticarcinogenic activity of nanoencapsulated quercetin in combating diethylnitrosamine-induced hepatocarcinoma in rats. Eur. J. Cancer Prev., 2012, 21(1), 32-41.
Yuan, Z.P.; Chen, L.J.; Fan, L.Y.; Tang, M.H.; Yang, G.L.; Yang, H.S.; Du, X.B.; Wang, G.Q.; Yao, W.X.; Zhao, Q.M.; Ye, B. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res., 2006, 12(10), 3193-3199.
Floridi, A.; Paggi, M.G.; Marcante, M.L.; Silvestrini, B.; Caputo, A.; De Martino, C. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J. Natl. Cancer Inst., 1981, 66(3), 497-499.
Floridi, A.; Paggi, M.G.; D’Atri, S.; De Martino, C.; Marcante, M.L.; Silvestrini, B.; Caputo, A. Effect of lonidamine on the energy metabolism of Ehrlich ascites tumor cells. Cancer Res., 1981, 41(11 Pt 1), 4661-4666.
Ben-Horin, H.; Tassini, M.; Vivi, A.; Navon, G.; Kaplan, O. Mechanism of action of the antineoplastic drug lonidamine: 31P and 13C nuclear magnetic resonance studies. Cancer Res., 1995, 55(13), 2814-2821.
Ben-Yoseph, O.; Lyons, J.C.; Song, C.W.; Ross, B.D. Mechanism of action of lonidamine in the 9L brain tumor model involves inhibition of lactate efflux and intracellular acidification. J. Neurooncol., 1998, 36(2), 149-157.
Yuan, Z.P.; Chen, L.J.; Fan, L.Y.; Tang, M.H.; Yang, G.L.; Yang, H.S.; Du, X.B.; Wang, G.Q.; Yao, W.X.; Zhao, Q.M.; Ye, B. Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood, 2001, 97(12), 3931-3940.
Biroccio, A.; Del Bufalo, D.; Fanciulli, M.; Bruno, T.; Zupi, G.; Floridi, A. bcl-2 inhibits mitochondrial metabolism and lonidamine-induced apoptosis in adriamycin-resistant mcf7 cells. Int. J. Cancer, 1999, 82(1), 125-130.
Orlandi, L.; Zaffaroni, N.; Bearzatto, A.; Villa, R.; De Marco, C.; Silvestrini, R. Lonidamine as a modulator of taxol activity in human ovarian cancer cells: effects on cell cycle and induction of apoptosis. Int. J. Cancer, 1998, 78(3), 377-384.
Belzacq, A-S.; El Hamel, C.; Vieira, H.L.A.; Cohen, I.; Haouzi, D.; Métivier, D.; Marchetti, P.; Brenner, C.; Kroemer, G. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene, 2001, 20(52), 7579-7587.
Ravagnan, L.; Marzo, I.; Costantini, P.; Susin, S.A.; Zamzami, N.; Petit, P.X.; Hirsch, F.; Goulbern, M.; Poupon, M.F.; Miccoli, L.; Xie, Z. Oncogene, 1999, 18(16), 2537-2546.
Cervantes-Madrid, D.; Romero, Y.; Dueñas-González, A. Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy. BioMed Res. Int., 2015, 2015, 690492.
Galluzzi, L.; Kepp, O.; Tajeddine, N.; Kroemer, G. Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene, 2008, 27(34), 4633-4635.
Goldin, N.; Arzoine, L.; Heyfets, A.; Israelson, A.; Zaslavsky, Z.; Bravman, T.; Bronner, V.; Notcovich, A.; Shoshan-Barmatz, V.; Flescher, E. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene, 2008, 27(34), 4636-4643.
Ricotti, L.; Tesei, A.; De Paola, F.; Milandri, C.; Amadori, D.; Frassineti, G.L.; Ulivi, P.; Zoli, W. Potentiation of antiproliferative drug activity by lonidamine in hepatocellular carcinoma cells. J. Chemother., 2003, 15(5), 480-487.
Nath, K.; Guo, L.; Nancolas, B.; Nelson, D.S.; Shestov, A.A.; Lee, S.C.; Roman, J.; Zhou, R.; Leeper, D.B.; Halestrap, A.P.; Blair, I.A. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta, 2016, 1866(2), 151-162.
Nancolas, B.; Guo, L.; Zhou, R.; Nath, K.; Nelson, D.S.; Leeper, D.B.; Blair, I.A.; Glickson, J.D.; Halestrap, A.P. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. The Biochem. J., 2016, 473(7), 929-936.
Fiume, L.; Manerba, M.; Vettraino, M.; Di Stefano, G. Impairment of aerobic glycolysis by inhibitors of lactic dehydrogenase hinders the growth of human hepatocellular carcinoma cell lines. Pharmacology, 2010, 86(3), 157-162.
Raïs, B.; Comin, B.; Puigjaner, J.; Brandes, J.L.; Creppy, E.; Saboureau, D.; Ennamany, R.; Paul Lee, W-N.; Boros, L.G.; Cascante, M. Oxythiamine and dehydroepiandrosterone induce a G 1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Lett., 1999, 456(1), 113-118.
Boros, L.G.; Puigjaner, J.; Cascante, M.; Lee, W.N.P.; Brandes, J.L.; Bassilian, S.; Yusuf, F.I.; Williams, R.D.; Muscarella, P.; Melvin, W.S.; Schirmer, W.J. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res., 1997, 57(19), 4242-4248.
Comín-Anduix, B.; Boren, J.; Martinez, S.; Moro, C.; Centelles, J.J.; Trebukhina, R.; Petushok, N.; Lee, W.N.; Boros, L.G.; Cascante, M. The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur. J. Biochem., 2001, 268(15), 4177-4182.
Xu, I.M.J.; Lai, R.K.H.; Lin, S.H.; Tse, A.P.W.; Chiu, D.K.C.; Koh, H.Y.; Law, C.T.; Wong, C.M.; Cai, Z.; Wong, C.C.L.; Ng, I.O.L. Transketolase counteracts oxidative stress to drive cancer development. Proc. Natl. Acad. Sci. USA, 2016, 113(6), E725-E734.
Wang, J.; Zhang, X.; Ma, D.; Lee, W.N.; Xiao, J.; Zhao, Y.; Go, V.L.; Wang, Q.; Yen, Y.; Recker, R.; Xiao, G.G. Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Exp. Hematol. Oncol., 2013, 2, 18.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy