Generic placeholder image

Medicinal Chemistry


ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship

Author(s): Ana P. Bettencourt, Marián Castro, João P. Silva, Francisco Fernandes, Olga P. Coutinho, Maria J. Sousa, Maria Fernanda Proença* and Filipe M. Areias*

Volume 15, Issue 4, 2019

Page: [341 - 351] Pages: 11

DOI: 10.2174/1573406414666181005143431

Price: $65


Background: Previous publications show that the addition of a phenolic antioxidant to an antifungal agent, considerably enhances the antifungal activity.

Objective: Synthesis of novel compounds combining phenolic units with linear or cyclic nitrogencontaining organic molecules with antioxidant/antifungal activity using methodologies previously developed in the group.

Methods: Several N- [1,2-dicyano-2- (arylidenamino) vinyl]-O-alkylformamidoximes 3 were synthesized and cyclized to 4,5-dicyano-N- (N´-alcoxyformimidoyl)-2-arylimidazoles 4 upon reflux in DMF, in the presence of manganese dioxide or to 6-cyano-8-arylpurines 5 when the reagent was refluxed in acetonitrile with an excess of triethylamine. These compounds were tested for their antioxidant activity by cyclic voltammetry, DPPH radical (DPPH•) assay and deoxyribose degradation assay. The minimum inhibitory concentration (MIC) of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans, and against bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram negative). Their cytotoxicity was evaluated in fibroblasts.

Results: Among the synthetised compounds, five presented higher antioxidant activity than reference antioxidant Trolox and from these compounds, four presented antifungal activity without toxic effects in fibroblasts and bacteria.

Conclusion: Four novel compounds presented dual antioxidant/antifungal activity at concentrations that are not toxic to bacteria and fibroblasts. The active molecules can be used as an inspiration for further studies in this area.

Keywords: Phenolic imidazoles, cancer, phenolic purines, antioxidant activity, antifungal activity, structure-activity relationship.

Graphical Abstract
Finley, J.W.; Kong, A.N.; Hintze, K.J.; Jeffery, E.H.; Ji, L.L.; Lei, X.G. Antioxidants in foods: State of the science important to the food industry. J. Agric. Food Chem., 2011, 59, 6837-6846.
Maia, A.M.; Baby, A.R.; Yasaka, W.J.; Suenaga, E.; Kaneko, T.M.; Velasco, M.V. Validation of HPLC stability-indicating method for Vitamin C in semisolid pharmaceutical/cosmetic preparations with glutathione and sodium metabisulfite, as antioxidants. Talanta, 2007, 71, 639-643.
Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem., 2017, 133, 379-402.
Griffiths, K.; Aggarwal, B.B.; Singh, R.B.; Buttar, H.S.; Wilson, D.; De Meester, F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases, 2016, 4, 1-15.
Alov, P.; Tsakovska, I.; Pajeva, I. Computational studies of free radical-scavenging properties of phenolic compounds. Curr. Top. Med. Chem., 2015, 15, 85-104.
Galano, A.; Mazzone, G.; Alvarez-Diduk, R.; Marino, T.; Alvarez-Idaboy, J.R.; Russo, N. Food antioxidants: Chemical insights at the molecular level. Annu. Rev. Food Sci. Technol., 2016, 7, 335-352.
van Acker, S.A.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.; Kelder, G.; van der Vijgh, W.J.; Bast, A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol., 1996, 9, 1305-1312.
Sanglard, D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med., 2016, 3, 1-10.
Davey, P.G.; Wilcox, M.; Irving, W.; Thwaites, G. In: Antimicrobial chemotherapy, 7th ed; Oxford: Oxford University Press , 2015.
Peng, X.; Huang, Q.; Zhang, K.; Yu, Y.; Wang, Z.; Wang, C. Distribution, behavior and fate of azole antifungals during mechanical, biological and chemical treatments in sewage treatment plants in China. Sci. Total Environ., 2012, 426, 311-317.
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2017, 133, 86-96.
Booth, B.; Costa, F.; Pritchard, R.; Proença, M. Synthesis of 1-(N-Benzyloxyformimidoyl)-2-aryl-4,5-dicyanoimidazoles: A new and efficient method from Diaminomaleonitrile derivatives. Synthesis, 2000, 9, 1269-1278.
Areias, F.M.; Proença, M.F. A base-catalyzed cascade route to phenolic 6-cyanopurines via O-alkylformamidoximes. Synlett, 2014, 25, 2595-2598.
Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int., 2015, 74, 10-36.
Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 2007, 15, 230-235.
Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Modification of the deoxyribose test to detect strong iron binding. Acta Biochim. Pol., 2017, 64, 195-198.
Han, R.M.; Zhang, J.P.; Skibsted, L.H. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 2012, 17, 2140-2160.
Vlachodimitropoulou, E.; Sharp, P.A.; Naftalin, R.J. Quercetin–iron chelates are transported via glucose transporters. Free Radic. Biol. Med., 2011, 15, 934-944.
Marino, T.; Galano, A.; Russo, N. Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory. J. Phys. Chem. B, 2014, 118, 10380-10389.
Fazary, A.E.; Taha, M.; Ju, Y. Iron complexation studies of gallic acid. J. Chem. Eng. Data, 2009, 54, 35-42.
Thomas, C.; Mackey, M.M.; Diaz, A.A.; Cox, D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep., 2009, 14, 102-108.
Muhoberac, B.B.; Vidal, R. Abnormal iron homeostasis and neurodegeneration. Front. Aging Neurosci., 2013, 5, 1-9.
Bashkatova, N.V.; Korotkova, E.I.; Karbainov, Y.A.; Yagovkin, A.Y.; Bakibaev, A.A. Electrochemical, quantum- chemical and antioxidant properties of antipyrine and its derivatives. J. Pharm. Biomed. Anal., 2005, 37, 1143-1147.
Vedernikova, I.; Tollenaere, J.P.; Haemers, A. Quantum mechanical evaluation of the anodic oxidation of phenolic compounds. J. Phys. Org. Chem., 1999, 12, 144-150.
Wadhwa, A.; Kaur, R.; Bhalla, P. Saccharomyces cerevisiae as a cause of oral thrush & diarrhoea in an HIV/AIDS patient. Trop. Gastroenterol., 2010, 31, 227-228.
Sardi, J.C.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Giannini, M.J. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62, 10-24.
Silva, C.R.; Neto, J.B.; Campos, R.; Figueiredo, N.S.; Sampaio, L.S.; Magalhães, H.I.; Cavalcanti, B.C.; Gaspar, D.M.; Andrade, G.M.; Lima, I.S.; Viana, G.S.; Moraes, M.O.; Lobo, M.D.; Grangeiro, T.B.; Nobre, Jr, H.V. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother., 2014, 58, 1468-1478.
Zirngibl, L. In: Antifungal Azoles: A Comprehensive Survey of their Structures and Properties; Wiley-VCH: Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 1998.
Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The mechanistic targets of antifungal agents: An overview. Mini Rev. Med. Chem., 2016, 16, 555-578.
Cummings, B.S.; Wills, L.P.; Schnellmann, R.G. Measurement of cell death in mammalian cells. Curr. Protocols Pharmacol., 2004, 12, 1-24.
Wayne, P.A. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved. Standard, 3rd ed., CLSI document M27-A3, Clinical and Laboratory Standards Institute, , 2008.
Areias, F.M. Novos compostos heterocíclicos de azoto com unidades fenólicas: síntese e actividade biológica.Ph.D. Thesis, University of Minho, Portugal, 2006.
Wayne, P.A. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 2012.

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy