Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets


ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Review of the Literature Examining the Association of Serum Uric Acid with Osteoporosis and Mechanistic Insights into Its Effect on Bone Metabolism

Author(s): Neelam Kaushal, Divya Vohora*, Rajinder K Jalali and Sujeet Jha

Volume 19, Issue 3, 2019

Page: [259 - 273] Pages: 15

DOI: 10.2174/1871530318666181102115106

Price: $65


Background And Objective: Osteoporosis is a common bone disorder that increases susceptibility to fragility bone fractures. The clinical and public health repercussions of osteoporosis are huge due to the morbidity, mortality, and cost of medical care linked with fragility fractures. Clinical assessment of osteoporotic risk factors can help to identify candidates at an early stage that will benefit from medical intervention and potentially lowering the morbidity and mortality seen with fractures and complications. Given this, research is ongoing to evaluate the association of osteoporosis with some novel or less well-studied risk factors/bio-markers such as uric acid (UA).

Discussion: Uric acid’s antioxidant activity has been proposed to be one of the factors responsible for increasing longevity and lowering rates of age-related cancers during primate evolution, the level of which increased markedly due to loss of uricase enzyme activity (mutational silencing). Accumulated evidence shows that oxidative stress is the fundamental mechanism of age-related bone loss and acts via enhancing osteoclastic activity and increasing bone resorption. Antioxidant substances such as ascorbic acid scavenge free radicals are positively related to bone health. Thus, it is hypothesized that uric acid holds bone-protective potential owing to its potent antioxidative property. Several correlation studies have been conducted globally to investigate the relationship between serum uric acid with bone mineral density and osteoporosis. Few pre-clinical studies have tried to investigate the interaction between uric acid and bone mineral density and reported important role played via Runt-related transcription factor 2 (RUNX2)/core-binding factor subunit alpha-1 (CBF-alpha-1), Wingless-related integration site (Wnt)-3a/β-catenin signaling pathway and 11β Hydroxysteroid Dehydrogenase type 1.

Conclusion: In this review, the authors provided a comprehensive summary of the literature related to association studies reported in humans as well work done until date to understand the potential cellular and molecular mechanisms that interplay between uric acid and bone metabolism.

Keywords: Uric acid, osteoporosis, antioxidant, bone mineral density, uricase, Wnt-3a/β-catenin signaling pathway.

Graphical Abstract
Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet, 2011, 377(9773), 1276-1287.
Riggs, B.L.; Melton, L.J. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 1995, 17(5), S505-S511.
Kanis, J.A.; Borgström, F.; Compston, J.; Dreinhöfer, K.; Nolte, E.; Jonsson, L.; Lems, W.F.; McCloskey, E.V.; Rizzoli, R.; Stenmark, J. SCOPE: A scorecard for osteoporosis in Europe. Arch. Osteoporos., 2013, 8(1-2), 144.
Kanis, J.A.; Adachi, J.D.; Cooper, C.; Clark, P.; Cummings, S.R.; Diaz-Curiel, M.; Harvey, N.; Hiligsmann, M.; Papaioannou, A.; Pierroz, D.D.; Silverman, S.L.; Szulc, P. Epidemiology and Quality of Life Working Group of IOF. Standardising the descriptive epidemiology of osteoporosis: recommendations from the epidemiology and quality of life working group of iof. Osteoporos. Int., 2013, 24(11), 2763-2764.
Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Oden, A.; Melton, L.J.; Khaltaev, N. A reference standard for the description of osteoporosis. Bone, 2008, 42(3), 467-475.
Lane, N.E. Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol., 2006, 194(2)(Suppl.), S3-S11.
Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos. Int., 2008, 19(4), 385-397.
Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European union: Medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos., 2013, 8(1-2), 136.
Ensrud, K.E.; Crandall, C. J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), ITC17-ITC31.
Diem, S.J.; Peters, K.W.; Gourlay, M.L.; Schousboe, J.T.; Taylor, B.C.; Orwoll, E.S.; Cauley, J.A.; Langsetmo, L.; Crandall, C.J.; Ensrud, K.E. Osteoporotic Fractures in Men Research Group. Screening for osteoporosis in older men: Operating characteristics of proposed strategies for selecting men for BMD testing. J. Gen. Intern. Med., 2017, 32(11), 1235-1241.
Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone, 2006, 38(2)(Suppl. 1), S4-S9.
International Osteoporosis Foundation. The global burden of osteoporosis: A factsheet. Available at: www.iofbonehealth. org/sites/default/files/media/PDFs/Fact Sheets/2014-factsheet-osteoporosis-A4.pdf (Accessed May 1, 2018).
Ström, O.; Borgström, F.; Kanis, J.A.; Compston, J.; Cooper, C.; McCloskey, E.V.; Jönsson, B. Osteoporosis: Burden, health care provision and opportunities in the EU. Arch. Osteoporos., 2011, 6(1-2), 59-155.
Mauck, K.F.; Clarke, B.L. Diagnosis, Screening, Prevention, and Treatment of Osteoporosis. Mayo Clin. Proc., 2006, 81(5), 662-672.
Nabipour, I.; Sambrook, P.N.; Blyth, F.M.; Janu, M.R.; Waite, L.M.; Naganathan, V.; Handelsman, D.J.; Le Couteur, D.G.; Cumming, R.G.; Seibel, M.J. Serum uric acid is associated with bone health in older men: A cross-sectional population-based study. J. Bone Miner. Res., 2011, 26(5), 955-964.
Kaushal, N.; Vohora, D.; Jalali, R.; Jha, S. Raised serum uric acid is associated with higher bone mineral density in a cross-sectional study of a healthy Indian population. Ther. Clin. Risk Manag., 2018, 14, 75-82.
Veronese, N.; Carraro, S.; Bano, G.; Trevisan, C.; Solmi, M.; Luchini, C.; Manzato, E.; Caccialanza, R.; Sergi, G.; Nicetto, D.; Cereda, E. Hyperuricemia protects against low bone mineral density, osteoporosis and fractures: A systematic review and meta-analysis. Eur. J. Clin. Invest., 2016, 46(11), 920-930.
Roch-Ramel, F.; Guisan, B. Renal transport of urate in humans. News Physiol. Sci., 1999, 14, 80-84.
Álvarez-Lario, B.; Macarrón-Vicente, J. Uric acid and evolution. Rheumatology, 2010, 49(11), 2010-2015.
El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res., 2017, 8(5), 487-493.
de Oliveira, E.P.; Burini, R.C. High plasma uric acid concentration: Causes and consequences. Diabetol. Metab. Syndr., 2012, 4(1), 12.
Watts, R.W. Uric acid production with particular reference to the role of xanthine oxidase and its inhibition. Proc. R. Soc. Med., 1966, 59(4), 287-292.
Hediger, M.A. Molecular physiology of urate transport. Physiology, 2005, 20(2), 125-133.
Wu, X.; Muzny, D.M.; Lee, C.C.; Caskey, C.T. two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol., 1992, 34(1), 78-84.
Oda, M.; Satta, Y.; Takenaka, O.; Takahata, N. loss of urate oxidase activity in hominoids and its evolutionary implications. Mol. Biol. Evol., 2002, 19(5), 640-653.
Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; Matsuo, H.; Kikuchi, Y.; Oda, T.; Ichida, K.; Hosoya, T.; Shimokata, K.; Niwa, T.; Kanai, Y.; Endou, H. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature, 2002, 417(6887), 447-452.
Yang, Y.; Ishii, S. Serum uric acid and biomarkers of lumbar spine bone mineral density. In:Biomarkers in Bone Disease; Patel, V.; Preedy, V., Eds.; Springer: Dordrecht, 2017, pp. 201-220.
Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA, 1981, 78(11), 6858-6862.
Lai, J.H.; Luo, S.F.; Hung, L.F.; Huang, C.Y.; Lien, S.B.; Lin, L.C.; Liu, F.C.; Yen, B.L.; Ho, L.J. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci. Rep., 2017, 7(1), 2359.
Chen, L.; Zhu, W.; Chen, Z.; Dai, H.; Ren, J.; Chen, J.; Chen, L.; Fang, L. Relationship between hyperuricemia and metabolic syndrome. J. Zhejiang Univ. Sci. B, 2007, 8(8), 593-598.
Cameron, M.A.; Sakhaee, K. Uric acid nephrolithiasis. Urol. Clin. North Am., 2007, 34(3), 335-346.
Terkeltaub, R.; Bushinsky, D.A.; Becker, M.A. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res. Ther., 2006(Suppl. 1), S4.
Verdecchia, P.; Schillaci, G.; Reboldi, G.; Santeusanio, F.; Porcellati, C.; Brunetti, P. relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension, 2000, 36(6), 1072-1078.
Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003, 41, 1183-1190.
Dehghan, A.; van Hoek, M.; Sijbrands, E.J.G.; Hofman, A.; Witteman, J.C.M. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care, 2008, 31(2), 361-362.
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
Feig, D.I. Hyperuricemia and hypertension. Adv. Chronic Kidney Dis., 2012, 19(6), 377-385.
Greig, D.; Alcaino, H.; Castro, P.F.; Garcia, L.; Verdejo, H.E.; Navarro, M.; López, R.; Mellado, R.; Tapia, F.; Gabrielli, L.A.; Nogerol, C.; Chiong, M.; Godoy, I.; Lavandero, S. Xanthine-oxidase inhibitors and statins in chronic heart failure: Effects on vascular and functional parameters. J. Heart Lung Transplant., 2011, 30(4), 408-413.
Becker, B.F. Towards the physiological function of uric acid. Free Radic. Biol. Med., 1993, 14(6), 615-631.
Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6), 608-619.
Glantzounis, G.K.; Tsimoyiannis, E.C.; Kappas, A.M.; Galaris, D.A. Uric acid and oxidative stress. Curr. Pharm. Des., 2005, 11(32), 4145-4151.
Simoyi, M.F.; Van Dyke, K.; Klandorf, H. Manipulation of plasma uric acid in broiler chicks and its effect on leukocyte oxidative activity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(3), R791-R796.
Machín, M.; Simoyi, M.F.; Blemings, K.P.; Klandorf, H. Increased dietary protein elevates plasma uric acid and is associated with decreased oxidative stress in rapidly-growing broilers. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2004, 137(3), 383-390.
Carro, M.; Falkenstein, E.; Radke, W.; Klandorf, H. Effects of allopurinol on uric acid concentrations, xanthine oxidoreductase activity and oxidative stress in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2010, 151(1), 12-17.
Seaman, C.; Moritz, J.; Falkenstein, E.; Van Dyke, K.; Casotti, G.; Klandorf, H. Inosine ameliorates the effects of hemin-induced oxidative stress in broilers. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2008, 151(4), 670-675.
Settle, T.; Klandorf, H. The role of uric acid as an antioxidant in selected neurodegenerative disease pathogenesis: A short review. Brain Disord. Ther., 2014, 3, 129.
Sevanian, A.; Davies, K.J.; Hochstein, P. Serum urate as an antioxidant for ascorbic acid. Am. J. Clin. Nutr., 1991, 54(6)(Suppl.), 1129S-1134S.
Mikami, T.; Sorimachi, M. Uric acid contributes greatly to hepatic antioxidant capacity besides protein. Physiol. Res., 2017, 66(6), 1001-1007.
Cutler, R.G. Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Arch. Gerontol. Geriatr., 1984, 3(4), 321-348.
Tasaki, E.; Sakurai, H.; Nitao, M.; Matsuura, K.; Iuchi, Y. Uric acid, an important antioxidant contributing to survival in termites. PLoS One, 2017, 12(6), e0179426.
Taghizadeh, N.; Vonk, J.M.; Boezen, H.M. Serum uric acid levels and cancer mortality risk among males in a large general population-based cohort study. Cancer Causes Control, 2014, 25(8), 1075-1080.
Massa, J.; O’Reilly, E.; Munger, K.L.; Delorenze, G.N.; Ascherio, A. Serum uric acid and risk of multiple sclerosis. J. Neurol., 2009, 256(10), 1643-1648.
Sotgiu, S.; Pugliatti, M.; Sanna, A.; Sotgiu, A.; Fois, M.L.; Arru, G.; Rosati, G. Serum uric acid and multiple sclerosis. Neurol. Sci., 2002, 23(4), 183-188.
Keizman, D.; Ish-Shalom, M.; Berliner, S.; Maimon, N.; Vered, Y.; Artamonov, I.; Tsehori, J.; Nefussy, B.; Drory, V.E. low uric acid levels in serum of patients with ALS: Further evidence for oxidative stress? J. Neurol. Sci., 2009, 285(1-2), 95-99.
Andreadou, E.; Nikolaou, C.; Gournaras, F.; Rentzos, M.; Boufidou, F.; Tsoutsou, A.; Zournas, C.; Zissimopoulos, V.; Vassilopoulos, D. Serum uric acid levels in patients with Parkinson’s disease: Their relationship to treatment and disease duration. Clin. Neurol. Neurosurg., 2009, 111(9), 724-728.
Wen, M.; Zhou, B.; Chen, Y.H.; Ma, Z.L.; Gou, Y.; Zhang, C.L.; Yu, W.F.; Jiao, L. Serum Uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS One, 2017, 12(3), e0173731.
Du, N.; Xu, D.; Hou, X.; Song, X.; Liu, C.; Chen, Y.; Wang, Y.; Li, X. Inverse association between serum uric acid levels and Alzheimer’s disease risk. Mol. Neurobiol., 2016, 53(4), 2594-2599.
Euser, S.M.; Hofman, A.; Westendorp, R.G.J.; Breteler, M.M.B. Serum uric acid and cognitive function and dementia. Brain, 2009, 132(2), 377-382.
Yao, J.K.; Reddy, R.; van Kammen, D.P. Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res., 1998, 80(1), 29-39.
Mahajan, M.; Kaur, S.; Mahajan, S.; Kant, R. Uric acid a better scavenger of free radicals than vitamin c in rheumatoid arthritis. Indian J. Clin. Biochem., 2009, 24(2), 205-207.
Yamakado, M.; Toda, A.; Tani, M.; Ishizaka, N.; Ishizaka, N. Relationship between serum uric acid and serum oxidative stress markers in the Japanese general population. Nephron Clin. Pract., 2014, 128(1-2), 49-56.
Waring, W.S.; Webb, D.J.; Maxwell, S.R. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J. Cardiovasc. Pharmacol., 2001, 38(3), 365-371.
Li, H.Z.; Chen, Z.; Hou, C.L.; Tang, Y.X.; Wang, F.; Fu, Q.G. Uric acid promotes osteogenic differentiation and inhibits adipogenic differentiation of human bone mesenchymal stem cells. J. Biochem. Mol. Toxicol., 2015, 29(8), 382-387.
Mody, N.; Parhami, F.; Sarafian, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med., 2001, 31(4), 509-519.
Bai, X.C.; Lu, D.; Bai, J.; Zheng, H.; Ke, Z-Y.; Li, X-M.; Luo, S.Q. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-JB. Biochem. Biophys. Res. Commun., 2004, 314, 197-207.
Ihara, H.; Hashizume, N.; Hasegawa, T.; Yoshida, M. Antioxidant capacities of ascorbic acid, uric acid, α-tocopherol, and bilirubin can be measured in the presence of another antioxidant, serum albumin. J. Clin. Lab. Anal., 2004, 18(1), 45-49.
Choi, K.M.; Seo, Y.K.; Yoon, H.H.; Song, K.Y.; Kwon, S.Y.; Lee, H.S.; Park, J.K. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J. Biosci. Bioeng., 2008, 105(6), 586-594.
Ahn, S.H.; Lee, S.H.; Kim, B.J.; Lim, K.H.; Bae, S.J.; Kim, E.H.; Kim, H.K.; Choe, J.W.; Koh, J.M.; Kim, G.S. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos. Int., 2013, 24(12), 2961-2970.
Zhang, D.; Bobulescu, I.A.; Maalouf, N.M.; Adams-Huet, B.; Poindexter, J.; Park, S.; Wei, F.; Chen, C.; Moe, O.W.; Sakhaee, K. Relationship between serum uric acid and bone mineral density in the general population and in rats with experimental hyperuricemia. J. Bone Miner. Res., 2015, 30(6), 992-999.
Liu, B.; Yang, N.; Xu, L.; Han, Y.; Li, P.; Ma, L.; Xin, Y.; Xian, Hao X.; Huang, H. The effects of uric acid on bone mesenchymal stem cells osteogenic differentiation. J. Appl. Sci. Eng. Innov., 2017, 4(2), 39-45.
Dalbeth, N.; Pool, B.; Chhana, A.; Lin, J.M.; Tay, M.L.; Tan, P.; Callon, K.E.; Naot, D.; Horne, A.; Drake, J.; Gamble, G.D.; Reid, I.R.; Grey, A.; Stamp, L.K.; Cornish, J. Lack of evidence that soluble urate directly influences bone remodelling: a laboratory and clinical study. Calcif. Tissue Int., 2018, 102(1), 73-84.
Komori, T. A fundamental transcription factor for bone and cartilage. Biochem. Biophys. Res. Commun., 2000, 276(3), 813-816.
Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R.T.; Gao, Y.H.; Inada, M.; Sato, M.; Okamoto, R.; Kitamura, Y.; Yoshiki, S.; Kishimoto, T. Targeted disruption of cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89(5), 755-764.
MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med., 2013, 19(2), 179-192.
Krishnan, V.; Bryant, H.U.; Macdougald, O.A. regulation of bone mass by wnt signaling. J. Clin. Invest., 2006, 116(5), 1202-1209.
Mbalaviele, G.; Sheikh, S.; Stains, J.P.; Salazar, V.S.; Cheng, S.L.; Chen, D.; Civitelli, R. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J. Cell. Biochem., 2005, 94(2), 403-418.
Wang, Y.; Li, Y.P.; Paulson, C.; Shao, J.Z.; Zhang, X.; Wu, M.; Chen, W. Wnt and the Wnt signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed), 2014, 19, 379-407.
Almeida, M.; Han, L.; Martin-Millan, M.; O’Brien, C.A.; Manolagas, S.C. Oxidative stress antagonizes wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem., 2007, 282(37), 27298-27305.
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(39), 44-84.
Banfi, G.; Iorio, E.L.; Corsi, M.M. Oxidative stress, free radicals and bone remodeling. Clin. Chem. Lab. Med., 2008, 46(11), 1550-1555.
Cutler, R.G. Antioxidants and aging. Am. J. Clin. Nutr., 1991, 53(1)(Suppl.), 373S-379S.
Filaire, E.; Toumi, H. Reactive oxygen species and exercise on bone metabolism: friend or enemy? Joint Bone Spine, 2012, 79(4), 341-346.
Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab., 2017, 14(2), 209-216.
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
Almeida, M.; O’Brien, C.A. Basic biology of skeletal aging: role of stress response pathways. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(10), 1197-1208.
Manolagas, S.C. From estrogen-centric to aging and oxidative Stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev., 2010, 31(3), 266-300.
Abdollahi, M.; Larijani, B.; Rahimi, R.; Salari, P. Role of oxidative stress in osteoporosis. Therapy, 2005, 2(5), 787-796.
Portal-Núñez, S.; de la Fuente, M.; Díez, A.; Esbrit, P. Oxidative stress as a possible therapeutic target for osteoporosis associated with aging. Rev. Osteoporos. Metab. Miner., 2016, 8(4), 138-146.
Maggio, D.; Barabani, M.; Pierandrei, M.; Polidori, M.C.; Catani, M.; Mecocci, P.; Senin, U.; Pacifici, R.; Cherubini, A. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J. Clin. Endocrinol. Metab., 2003, 88(4), 1523-1527.
Lin, X.; Zhao, C.; Qin, A.; Hong, D.; Liu, W.; Huang, K.; Mo, J.; Yu, H.; Wu, S.; Fan, S. Association between serum uric acid and bone health in general population: A large and multicentre study. Oncotarget, 2015, 6(34), 35395-35403.
Chen, L.; Peng, Y.; Fang, F.; Chen, J.; Pan, L.; You, L. Correlation of serum uric acid with bone mineral density and fragility fracture in patients with primary osteoporosis: A single-center retrospective study of 253 cases. Int. J. Clin. Exp. Med., 2015, 8(4), 6291-6294.
Dong, X.; Tian, H.; He, J.; Wang, C.; Qiu, R.; Chen, Y. Elevated Serum uric acid is associated with greater bone mineral density and skeletal muscle mass in middle-aged and older adults. PLoS One, 2016, 11(5), e0154692.
Yan, D.; Wang, J.; Hou, X.; Bao, Y.; Zhang, Z.; Hu, C.; Jia, W. Association of serum uric acid levels with osteoporosis and bone turnover markers in a chinese population. Acta Pharmacol. Sin., 2017, 39(4), 626-632.
Han, W.; Bai, X.J.; Wang, N.; Han, L.L.; Sun, X.F.; Chen, X.M. Association between Lumbar Bone mineral density and serum uric acid in postmenopausal women: A cross-sectional study of healthy chinese population. Arch. Osteoporos., 2017, 12(1), 9.
Xiao, J.; Chen, W.; Feng, X.; Liu, W.; Zhang, Z.; He, L.; Ye, Z. Serum uric acid is associated with lumbar spine bone mineral density in healthy chinese males older than 50 years. Clin. Interv. Aging, 2017, 12, 445-452.
Xu, M.; Su, J.; Hao, J.; Zhong, N.; Zhang, Z.; Cui, R.; Li, F.; Sheng, C.; Zhang, G.; Sheng, H.; Qu, S. Positive association between serum uric acid and bone mineral density in chinese type 2 diabetes mellitus stratified by gender and BMI. J. Bone Miner. Metab., 2018, 36(5), 609-619.
Zhao, D.D.; Jiao, P.L.; Yu, J.J.; Wang, X.J.; Zhao, L.; Xuan, Y.; Sun, L.H.; Tao, B.; Wang, W.Q.; Ning, G.; Liu, J.M.; Zhao, H.Y. Higher serum uric acid is associated with higher bone mineral density in chinese men with type 2 diabetes mellitus. Int. J. Endocrinol., 2016, 2016, 2528956.
Xiong, A.; Yao, Q.; He, J.; Fu, W.; Yu, J.; Zhang, Z. No causal effect of serum urate on bone-related outcomes among a population of postmenopausal women and elderly men of chinese han ethnicity-a mendelian randomization study. Osteoporos. Int., 2016, 27(3), 1031-1039.
Ishii, S.; Miyao, M.; Mizuno, Y.; Tanaka-Ishikawa, M.; Akishita, M.; Ouchi, Y. Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Osteoporos. Int., 2014, 25(3), 1099-1105.
Kim, B.J.; Baek, S.; Ahn, S.H.; Kim, S.H.; Jo, M.W.; Bae, S.J.; Kim, H.K.; Choe, J.; Park, G.M.; Kim, Y.H.; Lee, S.H.; Kim, G.S.; Koh, J.M. Higher serum uric acid as a protective factor against incident osteoporotic fractures in korean men: A longitudinal study using the national claim registry. Osteoporos. Int., 2014, 25(7), 1837-1844.
Kim, S.; Jung, J.; Jung, J.H.; Kim, S.K.; Kim, R.B.; Hahm, J.R. Risk factors of bone mass loss at the lumbar spine: A longitudinal study in healthy korean pre- and perimenopausal women older than 40 years. PLoS One, 2015, 10(8), e0136283.
Hwang, J.; Hwang, J.H.; Ryu, S.; Ahn, J.K. Higher serum uric acid is associated with higher lumbar spine bone mineral density in male health-screening examinees: A cross-sectional study. J. Bone Miner. Metab., 2019, 37(1), 142-151.
Lee, Y.J.; Hong, J.Y.; Kim, S.C.; Joo, J.K.; Na, Y.J.; Lee, K.S. The association between oxidative stress and bone mineral density according to menopausal status of korean women. Obstet. Gynecol. Sci., 2015, 58(1), 46-52.
Kang, K.Y.; Hong, Y.S.; Park, S.H.; Ju, J.H. Low levels of serum uric acid increase the risk of low bone mineral density in young male patients with ankylosing spondylitis. J. Rheumatol., 2015, 42(6), 968-974.
Joo, S.H.; Kim, M.T.; Cho, J.H.; Lee, H.K.; Ahn, J.O. Blood levels related to the z-score of bone mineral density in young males and females. J. Phys. Ther. Sci., 2015, 27(4), 1117-1120.
Sritara, C.; Ongphiphadhanakul, B.; Chailurkit, L.; Yamwong, S.; Ratanachaiwong, W.; Sritara, P. Serum uric acid levels in relation to bone-related phenotypes in men and women. J. Clin. Densitom., 2013, 16(3), 336-340.
Muka, T.; De Jonge, E.A.L.; Kiefte-De Jong, J.C.; Uitterlinden, A.G.; Hofman, A.; Dehghan, A.; Carola Zillikens, M.; Franco, O.H.; Rivadeneira, F. The Influence of Serum Uric Acid on Bone Mineral Density, Hip Geometry, and Fracture Risk: The Rotterdam Study. J. Clin. Endocrinol. Metab., 2016, 101(3), 1113-1122.
Kuyumcu, M.E.; Yesil, Y.; Oztürk, Z.A.; Cinar, E.; Kizilarslanoglu, C.; Halil, M.; Ulger, Z.; Yesil, N.K.; Cankurtaran, M.; Arioĝul, S. The association between homocysteine (Hcy) and serum natural antioxidants in elderly bone mineral densitometry (BMD). Arch. Gerontol. Geriatr., 2012, 55(3), 739-743.
Veronese, N.; Bolzetta, F.; De Rui, M.; Maggi, S.; Noale, M.; Zambon, S.; Corti, M.C.; Toffanello, E.D.; Baggio, G.; Perissinotto, E.; Crepaldi, G.; Manzato, E.; Sergi, G. Serum uric acid and incident osteoporotic fractures in old people: The PRO.V.A study. Bone, 2015, 79, 183-189.
Pirro, M.; Mannarino, M.R.; Bianconi, V.; De Vuono, S.; Sahebkar, A.; Bagaglia, F.; Franceschini, L.; Scarponi, A.M.; Mannarino, E.; Merriman, T. Uric acid and bone mineral density in postmenopausal osteoporotic women: The link lies within the fat. Osteoporos. Int., 2017, 28(3), 973-981.
Bhupathiraju, S.N.; Alekel, D.L.; Stewart, J.W.; Hanson, L.N.; Shedd, K.M.; Reddy, M.B.; Hanson, K.B.; Van Loan, M.D.; Genschel, U.; Koehler, K.J. Relationship of circulating total homocysteine and c-reactive protein to trabecular bone in postmenopausal women. J. Clin. Densitom., 2007, 10(4), 395-403.
Lane, N.E.; Parimi, N.; Lui, L.Y.; Wise, B.L.; Yao, W.; Lay, Y.A.E.; Cawthon, P.M.; Orwoll, E. Association of serum uric acid and incident nonspine fractures in elderly men: The osteoporotic fractures in men (MrOS) study. J. Bone Miner. Res., 2014, 29(7), 1701-1707.
Dalbeth, N.; Topless, R.; Flynn, T.; Cadzow, M.; Bolland, M.J.; Merriman, T.R. Mendelian randomization analysis to examine for a causal effect of urate on bone mineral density. J. Bone Miner. Res., 2015, 30(6), 985-991.
Mehta, T.; Bůžková, P.; Sarnak, M.J.; Chonchol, M.; Cauley, J.A.; Wallace, E.; Fink, H.A.; Robbins, J.; Jalal, D. Serum urate levels and the risk of hip fractures: data from the cardiovascular health study. Metabolism, 2015, 64(3), 438-446.
Makovey, J.; Macara, M.; Chen, J.S.; Hayward, C.S.; March, L.; Seibel, M.J.; Sambrook, P.N. Serum uric acid plays a protective role for bone loss in peri- and postmenopausal women: a longitudinal study. Bone, 2013, 52(1), 400-406.
Lei, S.F.; Chen, Y.; Xiong, D.H.; Li, L.M.; Deng, H.W. Ethnic difference in osteoporosis-related phenotypes and its potential underlying genetic determination. J. Musculoskelet. Neuronal Interact., 2006, 6(1), 36-46.
Anderson, J.J.; Pollitzer, W.S. Ethnic and genetic differences in susceptibility to osteoporotic fractures. Adv. Nutr. Res., 1994, 9, 129-149.
Zengin, A.; Prentice, A.; Ward, K.A. Ethnic differences in bone health. Front. Endocrinol. (Lausanne), 2015, 6, 24.
Leslie, W.D. Ethnic differences in bone mass-clinical implications. J. Clin. Endocrinol. Metab., 2012, 97(12), 4329-4340.
Musumeci, M.; Vadalà, G.; Tringali, G.; Insirello, E.; Roccazzello, A.M.; Simpore, J.; Musumeci, S. Genetic and environmental factors in human osteoporosis from sub-saharan to mediterranean areas. J. Bone Miner. Metab., 2009, 27(4), 424-434.
Cauley, J.A. Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin. Orthop. Relat. Res., 2011, 469, 1891-1899.
Thomas, P.A. Racial and ethnic differences in osteoporosis. J. Am. Acad. Orthop. Surg., 2007, 15(Suppl. 1), S26-S30.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy