Generic placeholder image

Current Organocatalysis


ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Recent Contributions of Nuclear Magnetic Resonance in Organocatalysis Mechanism Elucidation

Author(s): Gustavo Senra Gonçalves De Carvalho, Álisson Silva Granato, Pedro Pôssa De Castro and Giovanni Wilson Amarante*

Volume 7, Issue 1, 2020

Page: [7 - 22] Pages: 16

DOI: 10.2174/2213337206666190328210907


Background: Nuclear Magnetic Resonance (NMR) is one of the most employed techniques in structural elucidation of organic compounds. In addition to its use in structural characterization, it has been widely employed in the investigation of reaction mechanisms, especially those involving catalysis.

Objective: In this review, we aim to provide recent examples of the interface of NMR and organocatalysis reaction mechanism.

Methods: Selected examples of different approaches for mechanism elucidation will be presented, such as isotopic effect, catalyst labelling and online reaction monitoring. A discussion involving the use of solid-state NMR will also be disclosed.

Conclusion: NMR consists of a non-destructive technique, extremely useful in the real-time identification of intermediates in crude reaction mixtures. With the advent of two-dimensional experiments and high field NMR spectrometers, the reports of studies involving mechanistic elucidation were greatly enhanced. In this context, nowadays NMR appears as a powerful tool for the comprehension of reaction mechanisms, including the possibility of the proposal of unknown reaction mechanisms within organocatalysis.

Keywords: Heteronuclei, isotopic labelling, NMR, organocatalysis, reaction mechanism, solid state NMR.

Graphical Abstract
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
Berkessel, A.; Gröger, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, 2006.
Holland, M.C.; Gilmour, R. Deconstructing covalent organocatalysis. Angew. Chem. Int. Ed., 2015, 54(13), 3862-3871.
Ávila, E.P.; Amarante, G.W. Recent advances in asymmetric counteranion-directed catalysis (ACDC). ChemCatChem, 2012, 4(11), 1713-1721.
Wong, K.C. Review of NMR spectroscopy: Basic principles, concepts and applications in chemistry NMR spectroscopy: Basic principles, concepts and applications in chemistry; 3rd Edition by HaraldGünther Wiley-VCH: Weinheim, Germany, 2013. Xvi + 718 Pp. ISBN 978-352733. J. Chem. Educ., 2014, 91(8), 1103-1104.
Lepre, C.A.; Moore, J.M.; Peng, J.W. Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev., 2004, 104(8), 3641-3676.
Blasco, T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev., 2010, 39(12), 4685-4702.
Seco, J.M.; Quiñoá, E.; Riguera, R. The assignment of absolute configuration by NMR. Chem. Rev., 2004, 104(1), 17-118.
Rabi, I.I. Space quantization in a gyrating magnetic field. Phys. Rev., 1937, 51(8), 652-654.
Bloch, F.; Hansen, W.W.; Packard, M. Nuclear induction. Phys. Rev., 1946, 69(3-4), 127-127.
Bloch, F.; Hansen, W.W.; Packard, M. The nuclear induction experiment. Phys. Rev., 1946, 70(7-8), 474-485.
Purcell, E.M.; Pound, R.V.T. Proceedings of the american physical society Phys. Rev., 1946, 69(11-12), pp. 674-702.
Arnold, J.T.; Dharmatti, S.S.; Packard, M.E. Chemical effects on nuclear induction signals from organic compounds. J. Chem. Phys., 1951, 19(4), 507-507.
Ernst, R.R.; Anderson, W.A. Application of fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 1966, 37(1), 93-102.
Ernst, R.R. Sensitivity enhancement in magnetic resonance. Adv. Magn. Opt. Reson., 1966, 2, 1-135.
Carafa, M.; Mesto, E.; Quaranta, E. DBU-Promoted nucleophilic activation of carbonic acid diesters. European. J. Org. Chem., 2011, 2011(13), 2458-2465.
De Castro, P.P.; Carpanez, A.G.; Amarante, G.W. Azlactone reaction developments. Chem. A Eur. J., 2016, 22(30), 10294-10318.
Pinheiro, D.L.J.; Ávila, E.P.; Batista, G.M.F.; Amarante, G.W. Chemoselective reduction of azlactones using schwartz’s reagent. J. Org. Chem., 2017, 82(11), 5981-5985.
de Castro, P.P.; Batista, G.M.F.; dos Santos, H.F.; Amarante, G.W. Theoretical study on the epimerization of azlactone rings: Keto-Enol tautomerism or base-mediated racemization? ACS Omega, 2018, 3(3), 3507-3512.
Pinheiro, D.L.J.; Ávila, E.P.; Amarante, G.W. A practicable synthesis of oxazol-5(4H)-ones through hydrogenation: scope and applications. ChemistrySelect, 2016, 1(11), 2960-2962.
Pinheiro, D.L.J.; Batista, G.M.F.; Gonçalves, J.R.; Duarte, T.N.; Amarante, G.W. Sugar-based organocatalyst for the diastereoselective desymmetrization of dibenzylideneacetones. European. J. Org. Chem., 2016, 2016(3), 459-462.
Pinheiro, D.L.J.; Batista, G.M.F.; de Castro, P.P.; Flores, L.S.; Andrade, G.F.S.; Amarante, G.W. A Brønsted base-promoted diastereoselective dimerization of azlactones. Beilstein J. Org. Chem., 2017, 13, 2663-2670.
de Castro, P.P.; Rimulo, I.M.R.; de Almeida, A.M.; Diniz, R.; Amarante, G.W. Brønsted acid-catalyzed epimerization-free preparation of dual-protected amino acid derivatives. ACS Omega, 2017, 2(6), 2967-2976.
de Castro, P.P.; Campos, D.L.; Pavan, F.R.; Amarante, G.W. Dual-protected amino acid derivatives as new antitubercular agents. Chem. Biol. Drug Des., 2018, 92(2), 1576-1580.
de Castro, P.; Batista, G.; Pinheiro, D.; dos Santos, H.; Amarante, G. Old drawback on azlactone formation revealed by a combination of theoretical and experimental studies. J. Braz. Chem. Soc., 2018, 29(11), 2213-2219.
Bera, M.; Ghosh, T.K.; Akhuli, B.; Ghosh, P. Tris-ureas as versatile and highly efficient organocatalysts for michael addition reactions of nitro-olefins: Mechanistic insight from in-situ diagnostics. J. Mol. Catal. A Chem., 2015, 408, 287-295.
Pereira, A.A.; De Castro, P.P.; De Mello, A.C.; Ferreira, B.R.V.; Eberlin, M.N.; Amarante, G.W. Brønsted acid catalyzed azlactone ring opening by nucleophiles. Tetrahedron, 2014, 70(20), 3271-3275.
De Castro, P.P.; Dos Santos, I.F.; Amarante, G.W. Brønsted acid catalyzed peptide synthesis through azlactone rings. Curr. Org. Synth., 2016, 13, 440-444.
dos Santos, I.; de Castro, P.; de Almeida, A.; Amarante, G. Brønsted acid-catalyzed dipeptides functionalization through azlactones. J. Braz. Chem. Soc., 2017, 28(7), 1145-1148.
Carpanez, A.G.; Coelho, F.; Amarante, G.W. On the tandem Morita-Baylis-Hillman/transesterification processes. Mechanistic insights for the role of protic solvents. J. Mol. Struct., 2018, 1154, 83-91.
Ashley, M.A.; Hirschi, J.S.; Izzo, J.A.; Vetticatt, M.J. Isotope effects reveal the mechanism of enamine formation in L-proline-catalyzed α-amination of aldehydes. J. Am. Chem. Soc., 2016, 138(6), 1756-1759.
Schmid, M.B.; Zeitler, K.; Gschwind, R.M. NMR Investigations on the proline-catalyzed aldehyde self-condensation: Mannich mechanism, dienamine detection, and erosion of the aldol addition selectivity. J. Org. Chem., 2011, 76(9), 3005-3015.
Perez, F.; Ren, Y.; Boddaert, T.; Rodriguez, J.; Coquerel, Y. A stable N-heterocyclic carbene organocatalyst for hydrogen/deuterium exchange reactions between pseudoacids and deuterated chloroform. J. Org. Chem., 2015, 80(2), 1092-1097.
Aue, W.P.; Bartholdi, E.; Ernst, R.R. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5), 2229-2246.
Malm, C.; Kim, H.; Wagner, M.; Hunger, J. Complexity in acid-base titrations: multimer formation between phosphoric acids and imines. Chem. A Eur. J., 2017, 23(45), 10853-10860.
Berkessel, A.; Elfert, S.; Etzenbach-Effers, K.; Teles, J.H. Aldehyde umpolung by N-heterocyclic carbenes: NMR characterization of the breslow intermediate in its keto form, and a spiro-dioxolane as the resting state of the catalytic system. Angew. Chemie. Int. Ed., 2010, 49(39), 7120-7124.
Schmid, M.B.; Zeitler, K.; Gschwind, R.M. The elusive enamine intermediate in proline-catalyzed aldol reactions: NMR detection, formation pathway, and stabilization trends. Angew. Chemie. Int. Ed., 2010, 49(29), 4997-5003.
Abbasov, M.E.; Hudson, B.M.; Tantillo, D.J.; Romo, D. Stereodivergent, diels-alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application. Chem. Sci., 2017, 8(2), 1511-1524.
Burés, J.; Dingwall, P.; Armstrong, A.; Blackmond, D.G. Rationalization of an unusual solvent-induced inversion of enantiomeric excess in organocatalytic selenylation of aldehydes. Angew. Chemie. Int. Ed., 2014, 53(33), 8700-8704.
Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Activation of diboron reagents with brønsted bases and alcohols: an experimental and theoretical perspective of the organocatalytic boron conjugate addition reaction. Chem. A Eur. J., 2012, 18(4), 1121-1126.
Prakash, G.K.S.; Wang, F.; Zhang, Z.; Haiges, R.; Rahm, M.; Christe, K.O.; Mathew, T.; Olah, G.A. Long-lived trifluoromethanide anion: A key intermediate in nucleophilic trifluoromethylations. Angew. Chemie. Int. Ed., 2014, 53(43), 11575-11578.
Georgiou, I.; Whiting, A. Mechanism and optimisation of the homoboroproline bifunctional catalytic asymmetric aldol reaction: lewis acid tuning through in situ esterification. Org. Biomol. Chem., 2012, 10(12), 2422-2430.
Tyndall, S.; Wong, K.F.; VanAlstine-Parris, M.A. Insight into the mechanism of the pechmann condensation reaction using NMR. J. Org. Chem., 2015, 80(18), 8951-8953.
Cozzi, F. Immobilization of organic catalysts: When, Why, and How. Adv. Synth. Catal., 2006, 348(12-13), 1367-1390.
Trindade, A.F.; Gois, P.M.P.; Afonso, C.A.M. Recyclable stereoselective catalysts. Chem. Rev., 2009, 109(2), 418-514.
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37(8), 1666-1668.
Zamboulis, A.; Rahier, N.J.; Gehringer, M.; Cattoën, X.; Niel, G.; Bied, C.; Moreau, J.J.E.; Man, M.W.C. Silica-supported l-proline organocatalysts for asymmetric aldolisation. Tetrahedron Asymmetry, 2009, 20(24), 2880-2885.
Chagas, L.H.; De Carvalho, G.S.G.; Do Carmo, W.R.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.; De Sena, L.A.; Achete, C.A. MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: structural characterization and thermal decomposition. Mater. Res. Bull., 2015, 64, 207-215.
Shylesh, S.; Zhou, Z.; Meng, Q.; Wagener, A.; Seifert, A.; Ernst, S.; Thiel, W.R. Sustainable, green protocols for heterogenized organocatalysts: N-phenylthiazolium salts heterogenized on organic-inorganic hybrid mesoporous supports. J. Mol. Catal. A Chem., 2010, 332(1-2), 65-69.
Shi, J.Y.; Wang, C.A.; Li, Z.J.; Wang, Q.; Zhang, Y.; Wang, W. Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with macmillan catalyst. Chem. A Eur. J., 2011, 17(22), 6206-6213.
Wang, C.A.; Zhang, Z.K.; Yue, T.; Sun, Y.L.; Wang, L.; Wang, W.D.; Zhang, Y.; Liu, C.; Wang, W. “Bottom-Up” embedding of the jørgensen-hayashi catalyst into a chiral porous polymer for highly efficient heterogeneous asymmetric organocatalysis. Chem. A Eur. J., 2012, 18(22), 6718-6723.
Kandel, K.; Althaus, S.M.; Peeraphatdit, C.; Kobayashi, T.; Trewyn, B.G.; Pruski, M.; Slowing, I.I. Substrate inhibition in the heterogeneous catalyzed aldol condensation: A mechanistic study of supported organocatalysts. J. Catal., 2012, 291, 63-68.
Monge-Marcet, A.; Cattoën, X.; Alonso, D.A.; Nájera, C.; Man, M.W.C.; Pleixats, R. Recyclable silica-supported prolinamide organocatalysts for direct asymmetric aldol reaction in water. Green Chem., 2012, 14(6), 1601-1610.
Porta, R.; Coccia, F.; Annunziata, R.; Puglisi, A. comparison of different polymer- and silica-supported 9-Amino-9-Deoxy-epi-quinines as recyclable organocatalysts. ChemCatChem, 2015, 7(9), 1490-1499.

© 2024 Bentham Science Publishers | Privacy Policy