Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Expression Profile of Genes Associated with the Proteins Degradation Pathways in Colorectal adenocarcinoma

Author(s): Bednarczyk Martyna*, Muc-Wierzgoń Małgorzata, Zmarzły Nikola, Grabarek Beniamin, Mazurek Urszula and Janikowska Grażyna

Volume 20, Issue 7, 2019

Page: [551 - 561] Pages: 11

DOI: 10.2174/1389201020666190516090744

Price: $65

Abstract

Background: Changes in expression of genes associated with proteins or organelles degradation system in the cell may be a cause or signal to carcinogenesis. Thus, the aim of this study was to assess the profile of gene expression linked to the degradation systems of proteins or organelles in histo-pathologically confirmed colorectal adenocarcinoma in relation to normal colon tissue.

Methods: Using oligonucleotide microarrays and GeneSpring 13.0, and PANTHER 13.1 software’s we characterized 1095 mRNAs linked to the degradation system of proteins and organelles in sections of colorectal cancer from patients at various clinical stages of disease. Subsequent analyses with restrictive assumptions narrowed down the number of genes differentiating cancer, assuming a P-value of less than 0.05.

Results: We found that most of the significant genes were silenced in the development of colorectal cancer. The FOXO1 had the lowest fold change value in the first clinical stage (CSI) comparing to the control. The HSPA8 was up-regulated in the two early clinical stages (CSI and CSII), and UBB only in the CSI. Only little-known PTPN22 showed increasing expression at all stages.

Conclusion: In summary, the examined colorectal adenocarcinoma samples were characterized by almost complete silencing of the significant genes associated with the degradation of proteins and mitochondria in transcriptomic level. The FOXO1, HSPA8 and UBB genes may become potential diagnostic and/or therapeutic targets in the early stage of this cancer.

Keywords: Autophagy, cancer, ubiquitination, colon, microarrays, lysosome.

Graphical Abstract
[1]
Didkowska, J.; Wojciechowska, U.; Olasek, P. National Cancer Registry. Oncology Center - Institute of Maria Skłodowska – Curie., 2017.http://onkologia.org.pl/publikacje/
[2]
Zatoński, W.A.; Sulkowska, U.; Didkowska, J. Cancer epidemiology in Poland. Warsaw: Nowotwory. J. Oncol., 2015, 65, 179-196.
[3]
Cichoż-Lach, H.; Szumiło, J.; Celiński, K.; Kasztelan-Szczerbińska, B.; Szczerbiński, M.; Swatek, J.; Wronecki, L.; Wargocki, J.; Słomka, M. Results of screening in Lublin Province, Poland, for colorectal cancer and neoplastic polyps - the role of environmental factors. Ann. Agric. Environ. Med., 2017, 24(1), 108-112. [http://dx.doi.org/10.5604/12321966.1227648]. [PMID: 28378966].
[4]
Bubko, I.; Gruber, B.M.; Anuszewska, E.L. The role of the proteasome for therapy of incurable diseases. Postepy Hig. Med. Dosw., 2010, 64, 314-325. [PMID: 20679687].
[5]
Kwon, Y.T.; Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci., 2017, 42(11), 873-886. [http://dx.doi.org/10.1016/j.tibs.2017.09.002]. [PMID: 28947091].
[6]
Sujashvili, R. Advantages of extracellular ubiquitin in modulation of immune responses. In. Mediat Inflamm., 1-6., 2016; pp. [http://dx.doi.org/10.1155/2016/4190390].
[7]
Huang, X.; Dixit, V.M. Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res., 2016, 26(4), 484-498. [http://dx.doi.org/10.1038/cr.2016.31]. [PMID: 27002218].
[8]
Xu, D.; Shan, B.; Lee, B.; Zhu, K.; Zhang, T.; Sun, H. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife, 2015, 1-16.
[9]
Zhong, J.L.; Huang, C.Z. Ubiquitin proteasome system research in gastrointestinal cancer. World J. Gastrointest. Oncol., 2016, 8(2), 198-206. [http://dx.doi.org/10.4251/wjgo.v8.i2.198]. [PMID: 26909134].
[10]
Lee, H.; Park, J.; Kim, E.E.; Yoo, Y.S.; Song, E.J. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells. BMB Rep., 2016, 49(5), 270-275. [http://dx.doi.org/10.5483/BMBRep.2016.49.5.187]. [PMID: 26592933].
[11]
Gadhave, K.; Bolshette, N.; Ahire, A.; Pardeshi, R.; Thakur, K.; Trandafir, C.; Istrate, A.; Ahmed, S.; Lahkar, M.; Muresanu, D.F.; Balea, M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J. Cell. Mol. Med., 2016, 20(7), 1392-1407. [http://dx.doi.org/10.1111/jcmm.12817]. [PMID: 27028664].
[12]
Hamacher-Brady, A.; Brady, N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci., 2016, 73(4), 775-795. [http://dx.doi.org/10.1007/s00018-015-2087-8]. [PMID: 26611876].
[13]
Kaushik, S.; Massey, A.C.; Cuervo, A.M. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J., 2006, 25(17), 3921-3933. [http://dx.doi.org/10.1038/sj.emboj.7601283]. [PMID: 16917501].
[14]
Zhao, Y.; Li, X.; Ma, K.; Yang, J.; Zhou, J.; Fu, W.; Wei, F.; Wang, L.; Zhu, W.G. The axis of MAPK1/3-XBP1u-FOXO1 controls autophagic dynamics in cancer cells. Autophagy, 2013, 9(5), 794-796. [http://dx.doi.org/10.4161/auto.23918]. [PMID: 23426330].
[15]
Füllgrabe, J.; Ghislat, G.; Cho, D.H.; Rubinsztein, D.C. Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci., 2016, 129(16), 3059-3066. [http://dx.doi.org/10.1242/jcs.188920]. [PMID: 27528206].
[16]
Zhang, Y.; Zhang, L.; Sun, H.; Lv, Q.; Qiu, C.; Che, X.; Liu, Z.; Jiang, J. Forkhead transcription factor 1 inhibits endometrial cancer cell proliferation via sterol regulatory element-binding protein 1. Oncol. Lett., 2017, 13(2), 731-737. [http://dx.doi.org/10.3892/ol.2016.5480]. [PMID: 28356952].
[17]
Whitehouse, C.A.; Waters, S.; Marchbank, K.; Horner, A.; McGowan, N.W.; Jovanovic, J.V.; Xavier, G.M.; Kashima, T.G.; Cobourne, M.T.; Richards, G.O.; Sharpe, P.T.; Skerry, T.M.; Grigoriadis, A.E.; Solomon, E. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 12913-12918. [http://dx.doi.org/10.1073/pnas.0913058107]. [PMID: 20616007].
[18]
Behrends, C.; Fulda, S. Receptor proteins in selective autophagy. Int. J. Cell Biol., 2012, •••, 2012673290. [http://dx.doi.org/10.1155/2012/673290]. [PMID: 22536250].
[19]
Xiao, W.; Xiong, Z.; Yuan, C.; Bao, L.; Liu, D.; Yang, X. Low neighbour of BRCA1 gene expression predicts poor clinical outcome and resistance of sunitinib in clear cell renal cell carcinoma. Oncotarget, 2017, 8(55), 94819-94833.
[20]
Lisak, D.A.; Schacht, T.; Enders, V.; Habicht, J.; Kiviluoto, S.; Schneider, J.; Henke, N.; Bultynck, G.; Methner, A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA2+-filling state. Biochim. Biophys. Acta, 2015, 1853(9), 2104-2114. [http://dx.doi.org/10.1016/j.bbamcr.2015.03.002]. [PMID: 25764978].
[21]
Grzmil, M.; Thelen, P.; Hemmerlein, B.; Schweyer, S.; Voigt, S.; Mury, D.; Burfeind, P. Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am. J. Pathol., 2003, 163(2), 543-552. [http://dx.doi.org/10.1016/S0002-9440(10)63682-6]. [PMID: 12875974].
[22]
Liu, Q. TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(6), 850-857. [http://dx.doi.org/10.1016/j.bbamcr.2016.12.023]. [PMID: 28064000].
[23]
Sun, T.; Li, X.; Zhang, P.; Chen, W.D.; Zhang, H.L.; Li, D.D.; Deng, R.; Qian, X.J.; Jiao, L.; Ji, J.; Li, Y.T.; Wu, R.Y.; Yu, Y.; Feng, G.K.; Zhu, X.F. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun., 2015, 6(7215), 7215. [http://dx.doi.org/10.1038/ncomms8215]. [PMID: 26008601].
[24]
Rohatgi, R.A.; Shaw, L.M. An autophagy-independent function for Beclin 1 in cancer. Mol. Cell. Oncol., 2016, 3(1), e1030539. [http://dx.doi.org/10.1080/23723556.2015.1030539]. [PMID: 26998512].
[25]
Tang, H.; Sebti, S.; Titone, R.; Zhou, Y.; Isidoro, C.; Ross, T.S.; Hibshoosh, H.; Xiao, G.; Packer, M.; Xie, Y.; Levine, B. Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine, 2015, 2(3), 255-263. [http://dx.doi.org/10.1016/j.ebiom.2015.01.008]. [PMID: 25825707].
[26]
Hervouet, E.; Claude-Taupin, A.; Gauthier, T.; Perez, V.; Fraichard, A.; Adami, P.; Despouy, G.; Monnien, F.; Algros, M.P.; Jouvenot, M.; Delage-Mourroux, R.; Boyer-Guittaut, M. The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. BMC Cancer, 2015, 15(729), 729. [http://dx.doi.org/10.1186/s12885-015-1761-4]. [PMID: 26474850].
[27]
Salah, F.S.; Ebbinghaus, M.; Muley, V.Y.; Zhou, Z.; Al-Saadi, K.R.; Pacyna-Gengelbach, M.; O’Sullivan, G.A.; Betz, H.; König, R.; Wang, Z.Q.; Bräuer, R.; Petersen, I. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death Dis., 2016, 7, e2205. [http://dx.doi.org/10.1038/cddis.2016.93]. [PMID: 27124579].
[28]
Steffen, J.; Vashisht, A.A.; Wan, J.; Jen, J.C.; Claypool, S.M.; Wohlschlegel, J.A.; Koehler, C.M. Rapid degradation of mutant SLC25A46 by the ubiquitin-proteasome system results in MFN1/2-mediated hyperfusion of mitochondria. Mol. Biol. Cell, 2017, 28(5), 600-612. [http://dx.doi.org/10.1091/mbc.e16-07-0545]. [PMID: 28057766].
[29]
Chu, C.T. Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim. Biophys. Acta, 2010, 1802(1), 20-28. [http://dx.doi.org/10.1016/j.bbadis.2009.06.012]. [PMID: 19595762].
[30]
Arena, G.; Gelmetti, V.; Torosantucci, L.; Vignone, D.; Lamorte, G.; De Rosa, P.; Cilia, E.; Jonas, E.A.; Valente, E.M. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ., 2013, 20(7), 920-930. [http://dx.doi.org/10.1038/cdd.2013.19]. [PMID: 23519076].
[31]
O’Flanagan, C.H.; O’Neill, C. PINK1 signalling in cancer biology. Biochim. Biophys. Acta, 2014, 1846(2), 590-598. [PMID: 25450579].
[32]
Qian, H.; Chao, X.; Ding, W.X.A.A. PINK1-mediated mitophagy pathway decides the fate of tumors-to be benign or malignant? Autophagy, 2018, 14(4), 563-566. [http://dx.doi.org/10.1080/15548627.2018.1425057]. [PMID: 29313453].
[33]
Wong, Y.C.; Holzbaur, E.L. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Autophagy, 2015, 11(2), 422-424. [http://dx.doi.org/10.1080/15548627.2015.1009792]. [PMID: 25801386].
[34]
Heo, J.M.; Ordureau, A.; Paulo, J.; Rinehart, J.; Harper, J. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of TBK1 activation and recruitment of OPTN and NDP52 to promote mitophagy. Mol. Cell, 2015, 60(1), 7-20. [http://dx.doi.org/10.1016/j.molcel.2015.08.016]. [PMID: 26365381].
[35]
Slowicka, K.; Vereecke, L.; Mc Guire, C.; Sze, M.; Maelfait, J.; Kolpe, A.; Saelens, X.; Beyaert, R.; van Loo, G. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur. J. Immunol., 2016, 46(4), 971-980. [http://dx.doi.org/10.1002/eji.201545863]. [PMID: 26677802].
[36]
Moore, A.; Holzbaur, E. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl. Acad. Sci. USA, 2016, 113(24), E3349-E3358. [https://doi.org/10.1073/pnas.1523810113]. [PMID: 27247382].
[37]
La Spada, A.R. PPARGC1A/PGC-1α, TFEB and enhanced proteostasis in Huntington disease: Defining regulatory linkages between energy production and protein-organelle quality control. Autophagy, 2012, 8(12), 1845-1847. [http://dx.doi.org/10.4161/auto.21862]. [PMID: 22932698].
[38]
Yang, C.S.; Kim, J.J.; Lee, H.M.; Jin, H.S.; Lee, S.H.; Park, J.H.; Kim, S.J.; Kim, J.M.; Han, Y.M.; Lee, M.S.; Kweon, G.R.; Shong, M.; Jo, E.K. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy, 2014, 10(5), 785-802. [http://dx.doi.org/10.4161/auto.28072]. [PMID: 24598403].
[39]
Mastropasqua, F.; Girolimetti, G.; Shoshan, M. PGC1alpha: Friend or foe in cancer? Genes., 2018, 9(1), pii: E48. [https://www.mdpi.com/2073-4425/9/1/48]. [PMID: 29361779].
[40]
Nelson, D.E.; Randle, S.J.; Laman, H. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol., 2013, 3(10), 130-131. [http://dx.doi.org/10.1098/rsob.130131]. [PMID: 24107298].
[41]
Randle, S.J.; Nelson, D.E.; Patel, S.P.; Laman, H. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J. Pathol., 2015, 237(2), 263-272. [http://dx.doi.org/10.1002/path.4571]. [PMID: 26095538].
[42]
Radici, L.; Bianchi, M.; Crinelli, R.; Magnani, M. Ubiquitin C gene: Structure, function, and transcriptional regulation. Adv. Biosci. Biotechnol., 2013, 4, 1057-1062. [http://dx.doi.org/10.4236/abb.2013.412141].
[43]
Kedves, A.T.; Gleim, S.; Liang, X.; Bonal, D.M.; Sigoillot, F.; Harbinski, F.; Sanghavi, S.; Benander, C.; George, E.; Gokhale, P.C.; Nguyen, Q.D.; Kirschmeier, P.T.; Distel, R.J.; Jenkins, J.; Goldberg, M.S.; Forrester, W.C. Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C. J. Clin. Invest., 2017, 127(12), 4554-4568. [http://dx.doi.org/10.1172/JCI92914]. [PMID: 29130934].
[44]
Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; Meyers, R.M.; Ali, L.; Goodale, A.; Lee, Y.; Jiang, G.; Hsiao, J.; Gerath, W.F.J.; Howell, S.; Merkel, E.; Ghandi, M.; Garraway, L.A.; Root, D.E.; Golub, T.R.; Boehm, J.S.; Hahn, W.C. Defining a cancer dependency map. Cell, 2017, 170(3), 564-576.e16. [http://dx.doi.org/10.1016/j.cell.2017.06.010]. [PMID: 28753430].
[45]
Oh, C.; Park, S.; Lee, E.K.; Yoo, Y.J. Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci. Rep., 2013, 3, 2623. [http://dx.doi.org/10.1038/srep02623]. [PMID: 24022007].
[46]
Loeffler, D.A.; Klaver, A.C.; Coffey, M.P.; Aasly, J.O.; LeWitt, P.A. Age-related decrease in heat shock 70-kDa protein 8 in cerebrospinal fluid is associated with increased oxidative stress. Front. Aging Neurosci., 2016, 8(178), 178. [http://dx.doi.org/10.3389/fnagi.2016.00178]. [PMID: 27507943].
[47]
Tian, Y.; Xu, H.; Farooq, A.A.; Nie, B.; Chen, X.; Su, S.; Yuan, R.; Qiao, G.; Li, C.; Li, X.; Liu, X.; Lin, X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother. Res., 2018, 32(7), 1320-1331. [http://dx.doi.org/10.1002/ptr.6064]. [PMID: 29516568].
[48]
Azuma, K.; Shichijo, S.; Takedatsu, H.; Komatsu, N.; Sawamizu, H.; Itoh, K. Heat shock cognate protein 70 encodes antigenic epitopes recognised by HLA-B4601-restricted cytotoxic T lymphocytes from cancer patients. Br. J. Cancer, 2003, 89(6), 1079-1085. [http://dx.doi.org/10.1038/sj.bjc.6601203]. [PMID: 12966429].
[49]
Kubota, H.; Yamamoto, S.; Itoh, E.; Abe, Y.; Nakamura, A.; Izumi, Y.; Okada, H.; Iida, M.; Nanjo, H.; Itoh, H.; Yamamoto, Y. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones, 2010, 15(6), 1003-1011. [http://dx.doi.org/10.1007/s12192-010-0211-0]. [PMID: 20617406].
[50]
Spalinger, M.R.; Lang, S.; Vavricka, S.R.; Fried, M.; Rogler, G.; Scharl, M. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy. PLoS One, 2013, 8(8), e72384. [http://dx.doi.org/10.1371/journal.pone.0072384]. [PMID: 23991106].
[51]
Nowakowska, D.J.; Kissler, S. PTPN22 modifies regulatory T cell homeostasis via GITR upregulation. J. Immunol., 2016, 196(5), 2145-2152. [http://dx.doi.org/10.4049/jimmunol.1501877]. [PMID: 26810223].
[52]
Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ., 2013, 20(1), 21-30. [http://dx.doi.org/10.1038/cdd.2012.72]. [PMID: 22722335].
[53]
Zhou, H.; Yuan, M.; Yu, Q.; Zhou, X.; Min, W.; Gao, D. Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark., 2016, 17(1), 1-10. [http://dx.doi.org/10.3233/CBM-160613]. [PMID: 27314289].
[54]
Ågesen, T.H.; Sveen, A.; Merok, M.A.; Lind, G.E.; Nesbakken, A.; Skotheim, R.I.; Lothe, R.A. ColoGuideEx: A robust gene classifier specific for stage II colorectal cancer prognosis. Gut, 2012, 61(11), 1560-1567. [http://dx.doi.org/10.1136/gutjnl-2011-301179]. [PMID: 22213796].
[55]
Clark-Langone, K.M.; Sangli, C.; Krishnakumar, J.; Watson, D. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX Colon Cancer Assay. BMC Cancer, 2010, 10, 691. [http://dx.doi.org/10.1186/1471-2407-10-691]. [PMID: 21176237].
[56]
Levin, A.A. Targeting therapeutic oligonucleotides. N. Engl. J. Med., 2017, 376(1), 86-88. [http://dx.doi.org/10.1056/NEJMcibr1613559]. [PMID: 28052219].
[57]
Farhan, M.; Wang, H.; Gaur, U.; Little, P.J.; Xu, J.; Zheng, W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int. J. Biol. Sci., 2017, 13(7), 815-827. [http://dx.doi.org/10.7150/ijbs.20052]. [PMID: 28808415].
[58]
Shan, N.; Zhou, W.; Zhang, S.; Zhang, Y. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. OncoTargets Ther., 2016, 9, 2169-2179. [https://doi.org/10.2147/OTT.S97983]. [PMID: 27110132]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy