Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Protein Microarrays: Valuable Tools for Ocular Diseases Research

Author(s): María Garranzo-Asensio, Ana Montero-Calle, Guillermo Solís-Fernández, Rodrigo Barderas and Ana Guzman-Aranguez*

Volume 27, Issue 27, 2020

Page: [4549 - 4566] Pages: 18

DOI: 10.2174/0929867326666190627131300

Price: $65

Abstract

The eye is a complex organ comprised of several compartments with exclusive and specialized properties that reflect their diverse functions. Although the prevalence of eye pathologies is increasing, mainly because of its correlation with aging and of generalized lifestyle changes, the pathogenic molecular mechanisms of many common ocular diseases remain poorly understood. Therefore, there is an unmet need to delve into the pathogenesis, diagnosis, and treatment of eye diseases to preserve ocular health and reduce the incidence of visual impairment or blindness. Proteomics analysis stands as a valuable tool for deciphering protein profiles related to specific ocular conditions. In turn, such profiles can lead to real breakthroughs in the fields of ocular science and ophthalmology. Among proteomics techniques, protein microarray technology stands out by providing expanded information using very small volumes of samples.

In this review, we present a brief summary of the main types of protein microarrays and their application for the identification of protein changes in chronic ocular diseases such as dry eye, glaucoma, age-related macular degeneration, or diabetic retinopathy. The validation of these specific protein alterations could provide new biomarkers, disclose eye diseases pathways, and help in the diagnosis and development of novel therapies for eye pathologies.

Keywords: Protein microarrays, ocular pathology, dry eye, glaucoma, age-related macular degeneration, diabetic retinopathy.

[1]
Akpek, E.K.; Smith, R.A. Overview of age-related ocular conditions. Am. J. Manag. Care, 2013, 19(5)(Suppl.), S67-S75.
[PMID: 23725498]
[2]
Klein, R.; Klein, B.E. The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest. Ophthalmol. Vis. Sci., 2013, 54(14), ORSF5-ORSF13.
[http://dx.doi.org/10.1167/iovs.13-12789] [PMID: 24335069]
[3]
Ahmad, M.T.; Zhang, P.; Dufresne, C.; Ferrucci, L.; Semba, R.D. The human eye proteome project: updates on an emerging proteome. Proteomics, 2018, 18(5-6) e1700394.
[http://dx.doi.org/10.1002/pmic.201700394] [PMID: 29356342]
[4]
Azkargorta, M.; Soria, J.; Acera, A.; Iloro, I.; Elortza, F. Human tear proteomics and peptidomics in ophthalmology: toward the translation of proteomic biomarkers into clinical practice. J. Proteomics, 2017, 150, 359-367.
[http://dx.doi.org/10.1016/j.jprot.2016.05.006] [PMID: 27184738]
[5]
Rocha, A.S.; Santos, F.M.; Monteiro, J.P.; Castro-de-Sousa, J.P.; Queiroz, J.A.; Tomaz, C.T.; Passarinha, L.A. Trends in proteomic analysis of human vitreous humor samples. Electrophoresis, 2014, 35(17), 2495-2508.
[http://dx.doi.org/10.1002/elps.201400049] [PMID: 24825767]
[6]
Lam, T.C.; Chun, R.K.; Li, K.K.; To, C.H. Application of proteomic technology in eye research: a mini review. Clin. Exp. Optom., 2008, 91(1), 23-33.
[http://dx.doi.org/10.1111/j.1444-0938.2007.00194.x] [PMID: 18045249]
[7]
Semba, R.D.; Enghild, J.J. Proteomics and the eye. Proteomics Clin. Appl., 2014, 8(3-4), 127-129.
[http://dx.doi.org/10.1002/prca.201470024] [PMID: 24729286]
[8]
Fortmann, S.D.; Lorenc, V.E.; Shen, J.; Hackett, S.F.; Campochiaro, P.A. Mousetap, a novel technique to collect uncontaminated vitreous or aqueous and expand usefulness of mouse models. Sci. Rep., 2018, 8(1), 6371.
[http://dx.doi.org/10.1038/s41598-018-24197-2] [PMID: 29686307]
[9]
Gonzalez-Gonzalez, M.; Bartolome, R.; Jara-Acevedo, R.; Casado-Vela, J.; Dasilva, N.; Matarraz, S.; Garcia, J.; Alcazar, J.A.; Sayagues, J.M.; Orfao, A.; Fuentes, M. Evaluation of homo- and hetero-functionally activated glass surfaces for optimized antibody arrays. Anal. Biochem., 2014, 450, 37-45.
[http://dx.doi.org/10.1016/j.ab.2014.01.002] [PMID: 24440232]
[10]
Fasolo, J.; Im, H.; Snyder, M.P. Probing high-density functional protein microarrays to detect protein-protein interactions. J. Vis. Exp., 2015, (102) e51872.
[http://dx.doi.org/10.3791/51872] [PMID: 26274875]
[11]
LaBaer, J.; Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol., 2005, 9(1), 14-19.
[http://dx.doi.org/10.1016/j.cbpa.2004.12.006] [PMID: 15701447]
[12]
Babel, I.; Barderas, R.; Diaz-Uriarte, R.; Moreno, V.; Suarez, A.; Fernandez-Acenero, M.J.; Salazar, R.; Capella, G.; Casal, J.I. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol. Cell. Proteomics, 2011, 10(3), 001784.
[http://dx.doi.org/10.1074/mcp.M110.001784] [PMID: 21228115]
[13]
Chatterjee, M.; Ionan, A.; Draghici, S.; Tainsky, M.A. Epitomics: global profiling of immune response to disease using protein microarrays. OMICS, 2006, 10(4), 499-506.
[http://dx.doi.org/10.1089/omi.2006.10.499] [PMID: 17233560]
[14]
Chatterjee, M.; Mohapatra, S.; Ionan, A.; Bawa, G.; Ali-Fehmi, R.; Wang, X.; Nowak, J.; Ye, B.; Nahhas, F.A.; Lu, K.; Witkin, S.S.; Fishman, D.; Munkarah, A.; Morris, R.; Levin, N.K.; Shirley, N.N.; Tromp, G.; Abrams, J.; Draghici, S.; Tainsky, M.A. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res., 2006, 66(2), 1181-1190.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2962] [PMID: 16424057]
[15]
Wang, X.; Yu, J.; Sreekumar, A.; Varambally, S.; Shen, R.; Giacherio, D.; Mehra, R.; Montie, J.E.; Pienta, K.J.; Sanda, M.G.; Kantoff, P.W.; Rubin, M.A.; Wei, J.T.; Ghosh, D.; Chinnaiyan, A.M. Autoantibody signatures in prostate cancer. N. Engl. J. Med., 2005, 353(12), 1224-1235.
[http://dx.doi.org/10.1056/NEJMoa051931] [PMID: 16177248]
[16]
Nagele, E.; Han, M.; Demarshall, C.; Belinka, B.; Nagele, R. Diagnosis of Alzheimer’s disease based on disease specific autoantibody profiles in human sera. PLoS One, 2011, 6(8), e23112.
[http://dx.doi.org/10.1371/journal.pone.0023112] [PMID: 21826230]
[17]
Nagele, E.P.; Han, M.; Acharya, N.K.; DeMarshall, C.; Kosciuk, M.C.; Nagele, R.G. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One, 2013, 8(4), e60726.
[http://dx.doi.org/10.1371/journal.pone.0060726] [PMID: 23589757]
[18]
DeMarshall, C.; Sarkar, A.; Nagele, E.P.; Goldwaser, E.; Godsey, G.; Acharya, N.K.; Nagele, R.G. Utility of autoantibodies as biomarkers for diagnosis and staging of neurodegenerative diseases. Int. Rev. Neurobiol., 2015, 122, 1-51.
[http://dx.doi.org/10.1016/bs.irn.2015.05.005] [PMID: 26358889]
[19]
Han, M.; Nagele, E.; DeMarshall, C.; Acharya, N.; Nagele, R. Diagnosis of Parkinson’s disease based on disease specific autoantibody profiles in human sera. PLoS One, 2012, 7(2), e32383.
[http://dx.doi.org/10.1371/journal.pone.0032383] [PMID: 22384236]
[20]
Barderas, R.; Babel, I.; Diaz-Uriarte, R.; Moreno, V.; Suarez, A.; Bonilla, F.; Villar-Vazquez, R.; Capella, G.; Casal, J.I. An optimized predictor panel for colorectal cancer diagnosis based on the combination of tumor-associated antigens obtained from protein and phage microarrays. J. Proteomics, 2012, 75(15), 4647-4655.
[http://dx.doi.org/10.1016/j.jprot.2012.03.004] [PMID: 22465712]
[21]
Barderas, R.; Villar-Vazquez, R.; Fernandez-Acenero, M.J.; Babel, I.; Pelaez-Garcia, A.; Torres, S.; Casal, J.I. Sporadic colon cancer murine models demonstrate the value of autoantibody detection for preclinical cancer diagnosis. Sci. Rep., 2013, 3, 2938.
[http://dx.doi.org/10.1038/srep02938] [PMID: 24126910]
[22]
Babel, I.; Barderas, R.; Diaz-Uriarte, R.; Martinez-Torrecuadrada, J.L.; Sanchez-Carbayo, M.; Casal, J.I. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol. Cell. Proteomics, 2009, 8(10), 2382-2395.
[http://dx.doi.org/10.1074/mcp.M800596-MCP200] [PMID: 19638618]
[23]
Cox, E.; Uzoma, I.; Guzzo, C.; Jeong, J.S.; Matunis, M.; Blackshaw, S.; Zhu, H. Identification of SUMO E3 ligase specific substrates using the HuProt human proteome microarray. Methods Mol. Biol., 2015, 1295, 455-463.
[http://dx.doi.org/10.1007/978-1-4939-2550-6_32] [PMID: 25820740]
[24]
Ayoglu, B.; Haggmark, A.; Khademi, M.; Olsson, T.; Uhlen, M.; Schwenk, J.M.; Nilsson, P. Autoantibody profiling in multiple sclerosis using arrays of human protein fragments. Mol. Cell. Proteomics, 2013, 12(9), 2657-2672.
[http://dx.doi.org/10.1074/mcp.M112.026757] [PMID: 23732997]
[25]
Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Szigyarto, C.A.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P.H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Ponten, F. Proteomics. Tissue-based map of the human proteome. Science, 2015, 347(6220), 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[26]
Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; Wernerus, H.; Bjorling, L.; Ponten, F. Towards a knowledge-based human protein atlas. Nat. Biotechnol., 2010, 28(12), 1248-1250.
[http://dx.doi.org/10.1038/nbt1210-1248] [PMID: 21139605]
[27]
Garranzo-Asensio, M.; San Segundo-Acosta, P.; Martinez-Useros, J.; Montero-Calle, A.; Fernandez-Acenero, M.J.; Haggmark-Manberg, A.; Pelaez-Garcia, A.; Villalba, M.; Rabano, A.; Nilsson, P.; Barderas, R. Identification of prefrontal cortex protein alterations in Alzheimer’s disease. Oncotarget, 2018, 9(13), 10847-10867.
[http://dx.doi.org/10.18632/oncotarget.24303] [PMID: 29541381]
[28]
Ahn, S.B.; Khan, A. Detection and quantitation of twenty seven cytokines, chemokines and growth factors pre- and post-high abundance protein depletion in human plasma. EuPA Open Proteom., 2014, 3, 78-84.
[http://dx.doi.org/10.1016/j.euprot.2014.02.012]
[29]
Stampolidis, P.; Ullrich, A.; Iacobelli, S. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, promotes oncogenic cellular events impeded by antibody intervention. Oncogene, 2015, 34(1), 39-52.
[http://dx.doi.org/10.1038/onc.2013.548] [PMID: 24362527]
[30]
Yu, X.; Wallstrom, G.; Magee, D.M.; Qiu, J.; Mendoza, D.E.A.; Wang, J.; Bian, X.; Graves, M.; LaBaer, J. Quantifying antibody binding on protein microarrays using microarray nonlinear calibration. Biotechniques, 2013, 54(5), 257-264.
[http://dx.doi.org/10.2144/000114028] [PMID: 23662896]
[31]
Hospach, I.; Joseph, Y.; Mai, M.K.; Krasteva, N.; Nelles, G. Fabrication of homogeneous high-density antibody microarrays for cytokine detection. Microarrays (Basel), 2014, 3(4), 282-301.
[http://dx.doi.org/10.3390/microarrays3040282] [PMID: 27600349]
[32]
Barderas, R.; Bartolome, R.A.; Fernandez-Acenero, M.J.; Torres, S.; Casal, J.I. High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res., 2012, 72(11), 2780-2790.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4090] [PMID: 22505647]
[33]
Huang, R.P. Detection of multiple proteins in an antibody based protein microarray system. J. Immunol. Methods, 2001, 255(1-2), 1-13.
[http://dx.doi.org/10.1016/S0022-1759(01)00394-5] [PMID: 11470281]
[34]
Jaeger, P.A.; Lucin, K.M.; Britschgi, M.; Vardarajan, B.; Huang, R.P.; Kirby, E.D.; Abbey, R.; Boeve, B.F.; Boxer, A.L.; Farrer, L.A.; Finch, N.; Graff-Radford, N.R.; Head, E.; Hofree, M.; Huang, R.; Johns, H.; Karydas, A.; Knopman, D.S.; Loboda, A.; Masliah, E.; Narasimhan, R.; Petersen, R.C.; Podtelezhnikov, A.; Pradhan, S.; Rademakers, R.; Sun, C.H.; Younkin, S.G.; Miller, B.L.; Ideker, T.; Wyss-Coray, T. Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol. Neurodegener., 2016, 11, 31.
[http://dx.doi.org/10.1186/s13024-016-0095-2] [PMID: 27112350]
[35]
Madoz-Gurpide, J.; Canamero, M.; Sanchez, L.; Solano, J.; Alfonso, P.; Casal, J.I. A proteomics analysis of cell signaling alterations in colorectal cancer. Mol. Cell. Proteomics, 2007, 6(12), 2150-2164.
[http://dx.doi.org/10.1074/mcp.M700006-MCP200] [PMID: 17848589]
[36]
Pena, C.; Garcia, J.M.; Larriba, M.J.; Barderas, R.; Gomez, I.; Herrera, M.; Garcia, V.; Silva, J.; Dominguez, G.; Rodriguez, R.; Cuevas, J.; de Herreros, A.G.; Casal, J.I.; Munoz, A.; Bonilla, F. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene, 2009, 28(49), 4375-4385.
[http://dx.doi.org/10.1038/onc.2009.285] [PMID: 19802011]
[37]
Babel, I.; Barderas, R.; Pelaez-Garcia, A.; Casal, J.I. Antibodies on demand: a fast method for the production of human scFvs with minimal amounts of antigen. BMC Biotechnol., 2011, 11, 61.
[http://dx.doi.org/10.1186/1472-6750-11-61] [PMID: 21635725]
[38]
Delfani, P.; Dexlin Mellby, L.; Nordstrom, M.; Holmer, A.; Ohlsson, M.; Borrebaeck, C.A.; Wingren, C. Technical advances of the recombinant antibody microarray technology platform for clinical immunoproteomics. PLoS One, 2016, 11(7), e0159138.
[http://dx.doi.org/10.1371/journal.pone.0159138] [PMID: 27414037]
[39]
Borrebaeck, C.A.; Wingren, C. Design of high-density antibody microarrays for disease proteomics: key technological issues. J. Proteomics, 2009, 72(6), 928-935.
[http://dx.doi.org/10.1016/j.jprot.2009.01.027] [PMID: 19457338]
[40]
Ekins, R.; Chu, F. Immunoassay and other ligand assays: present status and future trends. J. Int. Fed. Clin. Chem., 1997, 9(3), 100-109.
[PMID: 10174621]
[41]
Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; Uchino, Y.; Yokoi, N.; Zoukhri, D.; Sullivan, D.A. TFOS DEWS II pathophysiology report. Ocul. Surf., 2017, 15(3), 438-510.
[http://dx.doi.org/10.1016/j.jtos.2017.05.011] [PMID: 28736340]
[42]
Nelson, J.D.; Craig, J.P.; Akpek, E.K.; Azar, D.T.; Belmonte, C.; Bron, A.J.; Clayton, J.A.; Dogru, M.; Dua, H.S.; Foulks, G.N.; Gomes, J.A.P.; Hammitt, K.M.; Holopainen, J.; Jones, L.; Joo, C.K.; Liu, Z.; Nichols, J.J.; Nichols, K.K.; Novack, G.D.; Sangwan, V.; Stapleton, F.; Tomlinson, A.; Tsubota, K.; Willcox, M.D.P.; Wolffsohn, J.S.; Sullivan, D.A. TFOS DEWS II Introduction. Ocul. Surf., 2017, 15(3), 269-275.
[http://dx.doi.org/10.1016/j.jtos.2017.05.005] [PMID: 28736334]
[43]
Hessen, M.; Akpek, E.K. Dry eye: an inflammatory ocular disease. J. Ophthalmic Vis. Res., 2014, 9(2), 240-250.
[PMID: 25279127]
[44]
Stevenson, W.; Chauhan, S.K.; Dana, R. Dry eye disease: an immune-mediated ocular surface disorder. Arch. Ophthalmol., 2012, 130(1), 90-100.
[http://dx.doi.org/10.1001/archophthalmol.2011.364] [PMID: 22232476]
[45]
Begley, C.G.; Chalmers, R.L.; Abetz, L.; Venkataraman, K.; Mertzanis, P.; Caffery, B.A.; Snyder, C.; Edrington, T.; Nelson, D.; Simpson, T. The relationship between habitual patient-reported symptoms and clinical signs among patients with dry eye of varying severity. Invest. Ophthalmol. Vis. Sci., 2003, 44(11), 4753-4761.
[http://dx.doi.org/10.1167/iovs.03-0270] [PMID: 14578396]
[46]
Nichols, K.K.; Nichols, J.J.; Mitchell, G.L. The lack of association between signs and symptoms in patients with dry eye disease. Cornea, 2004, 23(8), 762-770.
[http://dx.doi.org/10.1097/01.ico.0000133997.07144.9e] [PMID: 15502475]
[47]
Hu, S.; Loo, J.A.; Wong, D.T. Human body fluid proteome analysis. Proteomics, 2006, 6(23), 6326-6353.
[http://dx.doi.org/10.1002/pmic.200600284] [PMID: 17083142]
[48]
Li, S.; Sack, R.; Vijmasi, T.; Sathe, S.; Beaton, A.; Quigley, D.; Gallup, M.; McNamara, N.A. Antibody protein array analysis of the tear film cytokines. Optom. Vis. Sci., 2008, 85(8), 653-660.
[http://dx.doi.org/10.1097/OPX.0b013e3181824e20] [PMID: 18677223]
[49]
Dionne, K.; Redfern, R.L.; Nichols, J.J.; Nichols, K.K. Analysis of tear inflammatory mediators: a comparison between the microarray and Luminex methods. Mol. Vis., 2016, 22, 177-188.
[PMID: 26957901]
[50]
Boehm, N.; Riechardt, A.I.; Wiegand, M.; Pfeiffer, N.; Grus, F.H. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Invest. Ophthalmol. Vis. Sci., 2011, 52(10), 7725-7730.
[http://dx.doi.org/10.1167/iovs.11-7266] [PMID: 21775656]
[51]
Lam, H.; Bleiden, L.; de Paiva, C.S.; Farley, W.; Stern, M.E.; Pflugfelder, S.C.; Farley, W.; Stern, M.E.; Pflugfelder, S.C. Tear cytokine profiles in dysfunctional tear syndrome. Am. J. Ophthalmol., 2009, 147(2), 198-205.
[http://dx.doi.org/10.1016/j.ajo.2008.08.032] [PMID: 18992869]
[52]
Massingale, M.L.; Li, X.; Vallabhajosyula, M.; Chen, D.; Wei, Y.; Asbell, P.A. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea, 2009, 28(9), 1023-1027.
[http://dx.doi.org/10.1097/ICO.0b013e3181a16578] [PMID: 19724208]
[53]
Na, K.S.; Mok, J.W.; Kim, J.Y.; Rho, C.R.; Joo, C.K. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease. Invest. Ophthalmol. Vis. Sci., 2012, 53(9), 5443-5450.
[http://dx.doi.org/10.1167/iovs.11-9417] [PMID: 22789923]
[54]
Huang, J.F.; Zhang, Y.; Rittenhouse, K.D.; Pickering, E.H.; McDowell, M.T. Evaluations of tear protein markers in dry eye disease: repeatability of measurement and correlation with disease. Invest. Ophthalmol. Vis. Sci., 2012, 53(8), 4556-4564.
[http://dx.doi.org/10.1167/iovs.11-9054] [PMID: 22695964]
[55]
Enriquez-de-Salamanca, A.; Castellanos, E.; Stern, M.E.; Fernandez, I.; Carreno, E.; Garcia-Vazquez, C.; Herreras, J.M.; Calonge, M. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol. Vis., 2010, 16, 862-873.
[PMID: 20508732]
[56]
Meadows, J.F.; Dionne, K.; Nichols, K.K. Differential profiling of T-cell cytokines as measured by protein microarray across dry eye subgroups. Cornea, 2016, 35(3), 329-335.
[http://dx.doi.org/10.1097/ICO.0000000000000721] [PMID: 26751989]
[57]
VanDerMeid, K.R.; Su, S.P.; Ward, K.W.; Zhang, J.Z. Correlation of tear inflammatory cytokines and matrix metalloproteinases with four dry eye diagnostic tests. Invest. Ophthalmol. Vis. Sci., 2012, 53(3), 1512-1518.
[http://dx.doi.org/10.1167/iovs.11-7627] [PMID: 22323462]
[58]
Lopez-Miguel, A.; Teson, M.; Martin-Montanez, V.; Enriquez-de-Salamanca, A.; Stern, M.E.; Gonzalez-Garcia, M.J.; Calonge, M. Clinical and molecular inflammatory response in sjogren syndrome-associated dry eye patients under desiccating stress. Am. J. Ophthalmol., 2016, 161, 133-141.
[http://dx.doi.org/10.1016/j.ajo.2015.09.039] [PMID: 26456254]
[59]
Teson, M.; Gonzalez-Garcia, M.J.; Lopez-Miguel, A.; Enriquez-de-Salamanca, A.; Martin-Montanez, V.; Benito, M.J.; Mateo, M.E.; Stern, M.E.; Calonge, M. Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease. Invest. Ophthalmol. Vis. Sci., 2013, 54(3), 2093-2099.
[http://dx.doi.org/10.1167/iovs.12-11361] [PMID: 23412090]
[60]
Lee, S.Y.; Han, S.J.; Nam, S.M.; Yoon, S.C.; Ahn, J.M.; Kim, T.I.; Kim, E.K.; Seo, K.Y. Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. Am. J. Ophthalmol., 2013, 156(2), 247-253.
[http://dx.doi.org/10.1016/j.ajo.2013.04.003] [PMID: 23752063]
[61]
Liu, R.; Gao, C.; Chen, H.; Li, Y.; Jin, Y.; Qi, H. Analysis of Th17-associated cytokines and clinical correlations in patients with dry eye disease. PLoS One, 2017, 12(4), e0173301.
[http://dx.doi.org/10.1371/journal.pone.0173301] [PMID: 28379971]
[62]
Szodoray, P.; Alex, P.; Brun, J.G.; Centola, M.; Jonsson, R. Circulating cytokines in primary Sjogren’s syndrome determined by a multiplex cytokine array system. Scand. J. Immunol., 2004, 59(6), 592-599.
[http://dx.doi.org/10.1111/j.0300-9475.2004.01432.x] [PMID: 15182255]
[63]
Giron-Gonzalez, J.A.; Baturone, R.; Soto, M.J.; Marquez, M.; Macias, I.; Montes de Oca, M.; Medina, F.; Chozas, N.; Garcia-Perez, S. Implications of immunomodulatory interleukins for the hyperimmunoglobulinemia of Sjogren’s syndrome. Cell. Immunol., 2009, 259(1), 56-60.
[http://dx.doi.org/10.1016/j.cellimm.2009.05.013] [PMID: 19540455]
[64]
Ali, M.; Shah, D.; Pasha, Z.; Jassim, S.H.; Jassim Jaboori, A.; Setabutr, P.; Aakalu, V.K. Evaluation of accessory lacrimal gland in Muller’s muscle conjunctival resection specimens for precursor cell markers and biological markers of dry eye disease. Curr. Eye Res., 2017, 42(4), 491-497.
[http://dx.doi.org/10.1080/02713683.2016.1214966] [PMID: 27612554]
[65]
Li, Z.; Woo, J.M.; Chung, S.W.; Kwon, M.Y.; Choi, J.S.; Oh, H.J.; Yoon, K.C. Therapeutic effect of topical adiponectin in a mouse model of desiccating stress-induced dry eye. Invest. Ophthalmol. Vis. Sci., 2013, 54(1), 155-162.
[http://dx.doi.org/10.1167/iovs.12-10648] [PMID: 23211823]
[66]
Huang, J.F.; Yafawi, R.; Zhang, M.; McDowell, M.; Rittenhouse, K.D.; Sace, F.; Liew, S.H.; Cooper, S.R.; Pickering, E.H. Immunomodulatory effect of the topical ophthalmic Janus kinase inhibitor tofacitinib (CP-690,550) in patients with dry eye disease. Ophthalmology, 2012, 119(7), e43-e50.
[http://dx.doi.org/10.1016/j.ophtha.2012.03.017] [PMID: 22607938]
[67]
Lee, H.; Min, K.; Kim, E.K.; Kim, T.I. Minocycline controls clinical outcomes and inflammatory cytokines in moderate and severe meibomian gland dysfunction. Am. J. Ophthalmol., 2012, 154(6), 949-957.
[http://dx.doi.org/10.1016/j.ajo.2012.06.009]
[68]
Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol., 1998, 42(4), 297-319.
[http://dx.doi.org/10.1016/S0039-6257(97)00119-7] [PMID: 9493273]
[69]
Balasubramanian, S.A.; Mohan, S.; Pye, D.C.; Willcox, M.D. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol., 2012, 90(4), e303-e309.
[http://dx.doi.org/10.1111/j.1755-3768.2011.02369.x] [PMID: 22413749]
[70]
Pannebaker, C.; Chandler, H.L.; Nichols, J.J. Tear proteomics in keratoconus. Mol. Vis., 2010, 16, 1949-1957.
[PMID: 21031023]
[71]
Cheung, I.M.; McGhee, C.Nj.; Sherwin, T. Deficient repair regulatory response to injury in keratoconic stromal cells. Clin. Exp. Optom., 2014, 97(3), 234-239.
[http://dx.doi.org/10.1111/cxo.12118] [PMID: 24147544]
[72]
Quigley, H.A. Glaucoma. Lancet, 2011, 377(9774), 1367-1377.
[http://dx.doi.org/10.1016/S0140-6736(10)61423-7] [PMID: 21453963]
[73]
Sun, X.; Dai, Y.; Chen, Y.; Yu, D.Y.; Cringle, S.J.; Chen, J.; Kong, X.; Wang, X.; Jiang, C. Primary angle closure glaucoma: what we know and what we don’t know. Prog. Retin. Eye Res., 2017, 57, 26-45.
[http://dx.doi.org/10.1016/j.preteyeres.2016.12.003] [PMID: 28039061]
[74]
Bucolo, C.; Platania, C.B.; Reibaldi, M.; Bonfiglio, V.; Longo, A.; Salomone, S.; Drago, F. Controversies in glaucoma: current medical treatment and drug development. Curr. Pharm. Des., 2015, 21(32), 4673-4681.
[http://dx.doi.org/10.2174/1381612821666150909095553] [PMID: 26350532]
[75]
Izzotti, A.; Longobardi, M.; Cartiglia, C.; Sacca, S.C. Proteome alterations in primary open angle glaucoma aqueous humor. J. Proteome Res., 2010, 9(9), 4831-4838.
[http://dx.doi.org/10.1021/pr1005372] [PMID: 20666514]
[76]
Micera, A.; Quaranta, L.; Esposito, G.; Floriani, I.; Pocobelli, A.; Sacca, S.C.; Riva, I.; Manni, G.; Oddone, F. Differential protein expression profiles in glaucomatous trabecular meshwork: an evaluation study on a small primary open angle glaucoma population. Adv. Ther., 2016, 33(2), 252-267.
[http://dx.doi.org/10.1007/s12325-016-0285-x] [PMID: 26820987]
[77]
Kuchtey, J.; Rezaei, K.A.; Jaru-Ampornpan, P.; Sternberg, P., Jr; Kuchtey, R.W. Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. Invest. Ophthalmol. Vis. Sci., 2010, 51(12), 6441-6447.
[http://dx.doi.org/10.1167/iovs.10-5216] [PMID: 20592224]
[78]
Boehm, N.; Wolters, D.; Thiel, U.; Lossbrand, U.; Wiegel, N.; Pfeiffer, N.; Grus, F.H. New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav. Immun., 2012, 26(1), 96-102.
[http://dx.doi.org/10.1016/j.bbi.2011.07.241] [PMID: 21843631]
[79]
Dervan, E.W.; Chen, H.; Ho, S.L.; Brummel, N.; Schmid, J.; Toomey, D.; Haralambova, M.; Gould, E.; Wallace, D.M.; Prehn, J.H.; O’Brien, C.J.; Murphy, D. Protein macroarray profiling of serum autoantibodies in pseudoexfoliation glaucoma. Invest. Ophthalmol. Vis. Sci., 2010, 51(6), 2968-2975.
[http://dx.doi.org/10.1167/iovs.09-4898] [PMID: 20107165]
[80]
Gramlich, O.W.; Beck, S.; von Thun Und Hohenstein-Blaul, N.; Boehm, N.; Ziegler, A.; Vetter, J.M.; Pfeiffer, N.; Grus, F.H. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro inflammatory conditions in human glaucomatous retina. PLoS One, 2013, 8(2), e57557.
[http://dx.doi.org/10.1371/journal.pone.0057557] [PMID: 23451242]
[81]
Lorenz, K.; Beck, S.; Keilani, M.M.; Wasielica-Poslednik, J.; Pfeiffer, N.; Grus, F.H. Course of serum autoantibodies in patients after acute angle-closure glaucoma attack. Clin. Exp. Ophthalmol., 2017, 45(3), 280-287.
[http://dx.doi.org/10.1111/ceo.12864] [PMID: 27758063]
[82]
Gramlich, O.W.; Teister, J.; Neumann, M.; Tao, X.; Beck, S.; von Pein, H.D.; Pfeiffer, N.; Grus, F.H. Immune response after intermittent minimally invasive intraocular pressure elevations in an experimental animal model of glaucoma. J. Neuroinflammation, 2016, 13(1), 82.
[http://dx.doi.org/10.1186/s12974-016-0542-6] [PMID: 27090083]
[83]
Kim, J.M.; Kyung, H.; Azarbod, P.; Lee, J.M.; Caprioli, J. Disc haemorrhage is associated with the fast component, but not the slow component, of visual field decay rate in glaucoma. Br. J. Ophthalmol., 2014, 98(11), 1555-1559.
[http://dx.doi.org/10.1136/bjophthalmol-2013-304584] [PMID: 24990873]
[84]
Lorenz, K.; Beck, S.; Keilani, M.M.; Wasielica-Poslednik, J.; Pfeiffer, N.; Grus, F.H. Longitudinal analysis of serum autoantibody-reactivities in patients with primary open angle glaucoma and optic disc hemorrhage. PLoS One, 2016, 11(12), e0166813.
[http://dx.doi.org/10.1371/journal.pone.0166813] [PMID: 28030545]
[85]
Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health, 2014, 2(2), e106-e116.
[http://dx.doi.org/10.1016/S2214-109X(13)70145-1] [PMID: 25104651]
[86]
Lambert, N.G.; ElShelmani, H.; Singh, M.K.; Mansergh, F.C.; Wride, M.A.; Padilla, M.; Keegan, D.; Hogg, R.E.; Ambati, B.K. Risk factors and biomarkers of age-related macular degeneration. Prog. Retin. Eye Res., 2016, 54, 64-102.
[http://dx.doi.org/10.1016/j.preteyeres.2016.04.003] [PMID: 27156982]
[87]
Campa, C.; Harding, S.P. Anti-VEGF compounds in the treatment of neovascular age related macular degeneration. Curr. Drug Targets, 2011, 12(2), 173-181.
[http://dx.doi.org/10.2174/138945011794182674] [PMID: 20887245]
[88]
Takeda, A.; Baffi, J.Z.; Kleinman, M.E.; Cho, W.G.; Nozaki, M.; Yamada, K.; Kaneko, H.; Albuquerque, R.J.; Dridi, S.; Saito, K.; Raisler, B.J.; Budd, S.J.; Geisen, P.; Munitz, A.; Ambati, B.K.; Green, M.G.; Ishibashi, T.; Wright, J.D.; Humbles, A.A.; Gerard, C.J.; Ogura, Y.; Pan, Y.; Smith, J.R.; Grisanti, S.; Hartnett, M.E.; Rothenberg, M.E.; Ambati, J. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature, 2009, 460(7252), 225-230.
[http://dx.doi.org/10.1038/nature08151] [PMID: 19525930]
[89]
Saint-Geniez, M.; Maharaj, A.S.; Walshe, T.E.; Tucker, B.A.; Sekiyama, E.; Kurihara, T.; Darland, D.C.; Young, M.J.; D’Amore, P.A. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One, 2008, 3(11), e3554.
[http://dx.doi.org/10.1371/journal.pone.0003554] [PMID: 18978936]
[90]
Cha, D.M.; Woo, S.J.; Kim, H.J.; Lee, C.; Park, K.H. Comparative analysis of aqueous humor cytokine levels between patients with exudative age-related macular degeneration and normal controls. Invest. Ophthalmol. Vis. Sci., 2013, 54(10), 7038-7044.
[http://dx.doi.org/10.1167/iovs.13-12730] [PMID: 24106111]
[91]
Liu, F.; Ding, X.; Yang, Y.; Li, J.; Tang, M.; Yuan, M.; Hu, A.; Zhan, Z.; Li, Z.; Lu, L. Aqueous humor cytokine profiling in patients with wet AMD. Mol. Vis., 2016, 22, 352-361.
[PMID: 27122966]
[92]
Sung, H.J.; Han, J.I.; Lee, J.W.; Uhm, K.B.; Heo, K. TCCR/WSX-1 is a novel angiogenic factor in age-related macular degeneration. Mol. Vis., 2012, 18, 234-240.
[PMID: 22312192]
[93]
Wilkinson-Berka, J.L.; Wraight, C.; Werther, G. The role of growth hormone, insulin-like growth factor and somatostatin in diabetic retinopathy. Curr. Med. Chem., 2006, 13(27), 3307-3317.
[http://dx.doi.org/10.2174/092986706778773086] [PMID: 17168853]
[94]
Ecker, S.M.; Pfahler, S.M.; Hines, J.C.; Lovelace, A.S.; Glaser, B.M. Sequential in-office vitreous aspirates demonstrate vitreous matrix metalloproteinase 9 levels correlate with the amount of subretinal fluid in eyes with wet age-related macular degeneration. Mol. Vis., 2012, 18, 1658-1667.
[PMID: 22773904]
[95]
Davuluri, G.; Espina, V.; Petricoin, E.F., III; Ross, M.; Deng, J.; Liotta, L.A.; Glaser, B.M. Activated VEGF receptor shed into the vitreous in eyes with wet AMD: a new class of biomarkers in the vitreous with potential for predicting the treatment timing and monitoring response. Arch. Ophthalmol., 2009, 127(5), 613-621.
[http://dx.doi.org/10.1001/archophthalmol.2009.88] [PMID: 19433709]
[96]
Biasutto, L.; Chiechi, A.; Couch, R.; Liotta, L.A.; Espina, V. Retinal pigment epithelium (RPE) exosomes contain signaling phosphoproteins affected by oxidative stress. Exp. Cell Res., 2013, 319(13), 2113-2123.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.005] [PMID: 23669273]
[97]
Frederick, P.A.; Kleinman, M.E. The immune system and AMD. Curr. Ophthalmol. Rep., 2014, 2(1), 14-19.
[http://dx.doi.org/10.1007/s40135-013-0037-x] [PMID: 25110625]
[98]
Morohoshi, K.; Goodwin, A.M.; Ohbayashi, M.; Ono, S.J. Autoimmunity in retinal degeneration: autoimmune retinopathy and age-related macular degeneration. J. Autoimmun., 2009, 33(3-4), 247-254.
[http://dx.doi.org/10.1016/j.jaut.2009.09.003] [PMID: 19846275]
[99]
Morohoshi, K.; Patel, N.; Ohbayashi, M.; Chong, V.; Grossniklaus, H.E.; Bird, A.C.; Ono, S.J. Serum autoantibody biomarkers for age-related macular degeneration and possible regulators of neovascularization. Exp. Mol. Pathol., 2012, 92(1), 64-73.
[http://dx.doi.org/10.1016/j.yexmp.2011.09.017] [PMID: 22001380]
[100]
Damico, F.M. [Angiogenesis and retinal diseases]. Arq. Bras. Oftalmol., 2007, 70(3), 547-553.
[http://dx.doi.org/10.1590/S0004-27492007000300030] [PMID: 17768570]
[101]
Lee, Y.M.; Lee, Y.R.; Kim, C.S.; Jo, K.; Sohn, E.; Kim, J.S.; Kim, J. Effect of guibi-tang, a traditional herbal formula, on retinal neovascularization in a mouse model of proliferative retinopathy. Int. J. Mol. Sci., 2015, 16(12), 29900-29910.
[http://dx.doi.org/10.3390/ijms161226211] [PMID: 26694358]
[102]
Lee, Y.M.; Lee, Y.R.; Kim, C.S.; Jo, K.; Sohn, E.; Kim, J.S.; Kim, J. Cnidium officinale extract and butylidenephthalide inhibits retinal neovascularization in vitro and in vivo. BMC Complement. Altern. Med., 2016, 16, 231.
[http://dx.doi.org/10.1186/s12906-016-1216-8] [PMID: 27435599]
[103]
Or, C.; Cui, J.; Matsubara, J.; Forooghian, F. Pro-inflammatory and anti-angiogenic effects of bisphosphonates on human cultured retinal pigment epithelial cells. Br. J. Ophthalmol., 2013, 97(8), 1074-1078.
[http://dx.doi.org/10.1136/bjophthalmol-2013-303355] [PMID: 23766431]
[104]
Wong, T.Y.; Cheung, C.M.; Larsen, M.; Sharma, S.; Simo, R. Diabetic retinopathy. Nat. Rev. Dis. Primers, 2016, 2, 16012.
[http://dx.doi.org/10.1038/nrdp.2016.12] [PMID: 27159554]
[105]
Ola, M.S.; Nawaz, M.I.; Siddiquei, M.M.; Al-Amro, S.; Abu El-Asrar, A.M. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J. Diabetes Complications, 2012, 26(1), 56-64.
[http://dx.doi.org/10.1016/j.jdiacomp.2011.11.004] [PMID: 22226482]
[106]
Cai, X.; McGinnis, J.F. Diabetic retinopathy: animal models, therapies, and perspectives. J. Diabetes Res., 2016, 2016, 3789217.
[http://dx.doi.org/10.1155/2016/3789217] [PMID: 26881246]
[107]
VanGuilder, H.D.; Bixler, G.V.; Kutzler, L.; Brucklacher, R.M.; Bronson, S.K.; Kimball, S.R.; Freeman, W.M. Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy. PLoS One, 2011, 6(1)e16271
[http://dx.doi.org/10.1371/journal.pone.0016271] [PMID: 21249158]
[108]
Kim, L.A.; Wong, L.L.; Amarnani, D.S.; Bigger-Allen, A.A.; Hu, Y.; Marko, C.K.; Eliott, D.; Shah, V.A.; McGuone, D.; Stemmer-Rachamimov, A.O.; Gai, X.; D’Amore, P.A.; Arboleda-Velasquez, J.F. Characterization of cells from patient-derived fibrovascular membranes in proliferative diabetic retinopathy. Mol. Vis., 2015, 21, 673-687.
[PMID: 26120272]
[109]
Sun, Y.; Wang, D.; Ye, F.; Hu, D.N.; Liu, X.; Zhang, L.; Gao, L.; Song, E.; Zhang, D.Y. Elevated cell proliferation and VEGF production by high-glucose conditions in Muller cells involve XIAP. Eye (Lond.), 2013, 27(11), 1299-1307.
[http://dx.doi.org/10.1038/eye.2013.158] [PMID: 23928877]
[110]
Tonade, D.; Liu, H.; Palczewski, K.; Kern, T.S. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia, 2017, 60(10), 2111-2120.
[http://dx.doi.org/10.1007/s00125-017-4381-5] [PMID: 28755268]
[111]
Mugisho, O.O.; Green, C.R.; Kho, D.T.; Zhang, J.; Graham, E.S.; Acosta, M.L.; Rupenthal, I.D. The inflammasome pathway is amplified and perpetuated in an autocrine manner through connexin43 hemichannel mediated ATP release. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(3), 385-393.
[http://dx.doi.org/10.1016/j.bbagen.2017.11.015] [PMID: 29158134]
[112]
Vujosevic, S.; Micera, A.; Bini, S.; Berton, M.; Esposito, G.; Midena, E. Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol., 2016, 94(1), 56-64.
[http://dx.doi.org/10.1111/aos.12812] [PMID: 26268591]
[113]
Khuu, L.A.; Tayyari, F.; Sivak, J.M.; Flanagan, J.G.; Singer, S.; Brent, M.H.; Huang, D.; Tan, O.; Hudson, C. Aqueous humour concentrations of TGF-β, PLGF and FGF-1 and total retinal blood flow in patients with early non-proliferative diabetic retinopathy. Acta Ophthalmol., 2017, 95(3), e206-e211.
[http://dx.doi.org/10.1111/aos.13230] [PMID: 27678201]
[114]
Oh, I.K.; Kim, S.W.; Oh, J.; Lee, T.S.; Huh, K. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Curr. Eye Res., 2010, 35(12), 1116-1127.
[http://dx.doi.org/10.3109/02713683.2010.510257] [PMID: 21121809]
[115]
Dong, N.; Xu, B.; Chu, L.; Tang, X. Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema. PLoS One, 2015, 10(4), e0125329.
[http://dx.doi.org/10.1371/journal.pone.0125329] [PMID: 25923230]
[116]
Jonas, J.B.; Tao, Y.; Neumaier, M.; Findeisen, P. Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol., 2012, 90(5), e381-e388.
[http://dx.doi.org/10.1111/j.1755-3768.2012.02414.x] [PMID: 22490043]
[117]
Lange, C.A.K.; Stavrakas, P.; Luhmann, U.F.O.; de Silva, D.J.; Ali, R.R.; Gregor, Z.J.; Bainbridge, J.W.B. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. Am. J. Ophthalmol., 2011, 152(3), 406-412.
[http://dx.doi.org/10.1016/j.ajo.2011.02.014] [PMID: 21723532]
[118]
Suzuki, Y.; Nakazawa, M.; Suzuki, K.; Yamazaki, H.; Miyagawa, Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn. J. Ophthalmol., 2011, 55(3), 256-263.
[http://dx.doi.org/10.1007/s10384-011-0004-8] [PMID: 21538000]
[119]
Reverter, J.L.; Nadal, J.; Fernandez-Novell, J.M.; Ballester, J.; Ramio-Lluch, L.; Rivera, M.M.; Elizalde, J.; Abengoechea, S.; Guinovart, J.J.; Rodriguez-Gil, J.E. Tyrosine phosphorylation of vitreous inflammatory and angiogenic peptides and proteins in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2009, 50(3), 1378-1382.
[http://dx.doi.org/10.1167/iovs.08-2736] [PMID: 18978347]
[120]
Klaassen, I.; de Vries, E.W.; Vogels, I.M.C.; van Kampen, A.H.C.; Bosscha, M.I.; Steel, D.H.W.; Van Noorden, C.J.F.; Lesnik-Oberstein, S.Y.; Schlingemann, R.O. Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes. PLoS One, 2017, 12(11), e0187304.
[http://dx.doi.org/10.1371/journal.pone.0187304] [PMID: 29095861]
[121]
Roh, M.I.; Kim, H.S.; Song, J.H.; Lim, J.B.; Kwon, O.W. Effect of intravitreal bevacizumab injection on aqueous humor cytokine levels in clinically significant macular edema. Ophthalmology, 2009, 116(1), 80-86.
[http://dx.doi.org/10.1016/j.ophtha.2008.09.036] [PMID: 19118699]
[122]
Forooghian, F.; Kertes, P.J.; Eng, K.T.; Agron, E.; Chew, E.Y. Alterations in the intraocular cytokine milieu after intravitreal bevacizumab. Invest. Ophthalmol. Vis. Sci., 2010, 51(5), 2388-2392.
[http://dx.doi.org/10.1167/iovs.09-4065] [PMID: 20007836]
[123]
Sohn, H.J.; Han, D.H.; Kim, I.T.; Oh, I.K.; Kim, K.H.; Lee, D.Y.; Nam, D.H. Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema. Am. J. Ophthalmol., 2011, 152(4), 686-694.
[http://dx.doi.org/10.1016/j.ajo.2011.03.033] [PMID: 21782151]
[124]
Yu, S.Y.; Nam, D.H.; Lee, D.Y. Changes in aqueous concentrations of various cytokines after intravitreal bevacizumab and subtenon triamcinolone injection for diabetic macular edema. Graefes Arch. Clin. Exp. Ophthalmol., 2018, 256(1), 39-47.
[http://dx.doi.org/10.1007/s00417-017-3819-2] [PMID: 29030692]
[125]
Jeon, S.; Lee, W.K. Effect of intravitreal triamcinolone in diabetic macular edema unresponsive to intravitreal bevacizumab. Retina, 2014, 34(8), 1606-1611.
[http://dx.doi.org/10.1097/IAE.0000000000000109] [PMID: 24553409]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy