Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness

Author(s): Claudia Nowozin , Amely Wahnschaffe, Andrea Rodenbeck , Jan de Zeeuw, Sven Hädel , Ruslan Kozakov , Heinz Schöpp, Mirjam Münch* and Dieter Kunz*

Volume 14, Issue 10, 2017

Page: [1042 - 1052] Pages: 11

DOI: 10.2174/1567205014666170523094526

Price: $65

Abstract

Objective: At the beginning of this century, a novel photopigment, melanopsin, was discovered in a sub-class of retinal ganglion cells and its action spectrum was described. Shortly after, it became evident that melanopsin is a major contributor to non-visual eye-mediated effects of light on e.g. the circadian, neuroendocrine and neurobehavioral systems. First applied studies pointed out that these non-visual effects of light are relevant for wellbeing, performance and general health. A standardized measurement metric for these nonvisual effects does not exist, but would ease application. Such a metric termed as ‘melanopic lux’ has been recently introduced and was shown to be superior to describe non-visual effects in animal studies compared to standard metrics.

Methods: We aimed at showing some validity of melanopic lux in humans using a seminaturalistic setting. Therefore, we analyzed the impact of different lighting conditions on melatonin suppression and subjective sleepiness by calculating effective illuminance based on single photopigment sensitivities. We retrospectively analyzed data from our laboratory, where young participants were exposed to a total of 19 different polychromatic lighting conditions, for 30 minutes in the evening, one hour prior to habitual bedtime. Saliva samples for melatonin concentration measures and subjective sleepiness were regularly assessed. The photopic illuminance of all lighting conditions ranged from 3 to 604 lx. Stepwise for- and backward regression analyses showed that melanopic lux was the best predictor for changes in melatonin concentrations (but not subjective sleepiness); R²=0.16 (p<0.05). In addition, we found a significant dose-response relationship between melanopic lux and changes in melatonin concentrations for 18 different lighting conditions (adjusted R²=0.52; p=0.004), similarly to what was previously reported for photopic lux.

Results: Our results indicate some new relevance for the application of melanopic lux as an additional metric to predict non-visual light effects of electrical light sources for nursing homes, work places, and homes.

Keywords: Melatonin suppression, short-term light exposure, light perception, subjective sleepiness, ganglion cells, Alzheimer’s disease.

[1]
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95(1): 340-5. (1998).
[2]
Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557): 1070-3. (2002).
[3]
Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557): 1065-70. (2002).
[4]
Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, et al. Role of melanopsin in circadian responses to light. Science 298(5601): 2211-3. (2002).
[5]
Revell V, Arendt J, Fogg L, Skene D. Alerting effects of light are sensitive to very short wavelengths. Neurosci Lett 399(1-2): 96-100. (2006).
[6]
Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, et al. High sensitivity of human melatonin, alertness, thermoregulation and heart rate to short wavelength light. J Clin Endocrinol Metab 90: 1311-6. (2005).
[7]
Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299: 245-7. (2003).
[8]
Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9): 4502-5. (2003).
[9]
Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21(16): 6405-12. (2001).
[10]
Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4(6): 621-6. (2001).
[11]
Dacey D, Liao H, Peterson B, Robinson F, Smith V, Pokorny J, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027): 749-54. (2005).
[12]
Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47(7): 946-54. (2007).
[13]
Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453(7191): 102-5. (2008).
[14]
Belenky M, Smeraski C, Provencio I, Sollars P, Pickard G. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460(3): 380-93. (2003).
[15]
Weng S, Estevez M, Berson D. Mouse ganglion-cell photo-receptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 8(6)e66480 (2013).
[16]
Wong K, Dunn F, Graham D, Berson D. Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582(1): 279-96. (2007).
[17]
Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13(9): 1107-12. (2010).
[18]
Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105(50): 19998-20003. (2008).
[19]
Enezi J, Revell V, Brown T, Wynne J, Schlangen L, Lucas RA. “melanopic” spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. J Biol Rhythms 26(4): 314-23. (2011).
[20]
Gall D. Circadiane Lichtgrößen und deren meßtechnische Ermittlung. Licht 54: 1292-7. (2002).
[21]
Gall DL. V. Beleuchtungsrelevante Aspekte bei der Auswahl eines förderlichen Lampenspektrums. Licht 54: 860-71. (2002).
[22]
Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, et al. Measuring and using light in the melanopsin age. Trends Neurosci 37(1): 1-9. (2014).
[23]
Rea MS, Figueiro MG, Bullough JD, Bierman A. A model of phototransduction by the human circadian system. Brain Res Brain Res Rev 50(2): 213-28. (2005).
[24]
Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science 210(4475): 1267-9. (1980).
[25]
Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535(Pt 1): 261-7. (2001).
[26]
Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526(Pt 3): 695-702. (2000).
[27]
Chang AM, Scheer FA, Czeisler CA. The human circadian system adapts to prior photic history. J Physiol 589(Pt 5): 1095-102. (2011).
[28]
Hebert M, Martin SK, Lee C, Eastman CI. The effects of prior light history on the suppression of melatonin by light in humans. J Pineal Res 33(4): 198-203. (2002).
[29]
Smith KA, Schoen MW, Czeisler CA. Adaptation of human pineal melatonin suppression by recent photic history. J Clin Endocrinol Metab 89(7): 3610-4. (2004).
[30]
Santhi N, Thorne HC, van der Veen DR, Johnsen S, Mills SL, Hommes V, et al. The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans. J Pineal Res 53(1): 47-59. (2012).
[31]
Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry 27(6): 563-72. (1990).
[32]
Ancoli-Israel S, Gehrman P, Martin JL, Shochat T, Marler M, Corey-Bloom J, et al. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med 1(1): 22-36. (2003).
[33]
Ancoli-Israel S, Martin JL, Gehrman P, Shochat T, Corey-Bloom J, Marler M, et al. Effect of light on agitation in institutionalized patients with severe Alzheimer disease. Am J Geriatr Psychiatry 11(2): 194-203. (2003).
[34]
Burns A, Allen H, Tomenson B, Duignan D, Byrne J. Bright light therapy for agitation in dementia: a randomized controlled trial. Int Psychogeriatr 21(4): 711-21. (2009).
[35]
Dowling GA, Hubbard EM, Mastick J, Luxenberg JS, Burr RL, Van Someren EJ. Effect of morning bright light treatment for rest-activity disruption in institutionalized patients with severe Alzheimer’s disease. Int Psychogeriatr 17(2): 221-36. (2005).
[36]
Fetveit A, Bjorvatn B. Bright-light treatment reduces actigraphic-measured daytime sleep in nursing home patients with dementia: a pilot study. Am J Geriatr Psychiatry 13(5): 420-3. (2005).
[37]
Figueiro MG, Plitnick BA, Lok A, Jones GE, Higgins P, Hornick TR, et al. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities. Clin Interv Aging 9: 1527-37. (2014).
[38]
Lovell BB, Ancoli-Israel S, Gevirtz R. Effect of bright light treatment on agitated behavior in institutionalized elderly subjects. Psychiatry Res 57(1): 7-12. (1995).
[39]
Lyketsos CG, Lindell Veiel L, Baker A, Steele C. A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care. Int J Geriatr Psychiatry 14(7): 520-5. (1999).
[40]
Mishima K, Hishikawa Y, Okawa M. Randomized, dim light controlled, crossover test of morning bright light therapy for rest-activity rhythm disorders in patients with vascular dementia and dementia of Alzheimer’s type. Chronobiol Int 15(6): 647-54. (1998).
[41]
Mishima K, Okawa M, Hishikawa Y, Hozumi S, Hori H, Takahashi K. Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand 89(1): 1-7. (1994).
[42]
Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299(22): 2642-55. (2008).
[43]
Satlin A, Volicer L, Ross V, Herz L, Campbell S. Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. Am J Psychiatry 149(8): 1028-32. (1992).
[44]
Skjerve A, Holsten F, Aarsland D, Bjorvatn B, Nygaard HA, Johansen IM. Improvement in behavioral symptoms and advance of activity acrophase after short-term bright light treatment in severe dementia. Psychiatry Clin Neurosci 58(4): 343-7. (2004).
[45]
Sloane PD, Williams CS, Mitchell CM, Preisser JS, Wood W, Barrick AL, et al. High-intensity environmental light in dementia: effect on sleep and activity. J Am Geriatr Soc 55(10): 1524-33. (2007).
[46]
Forbes D, Culum I, Lischka AR, Morgan DG, Peacock S, Forbes J, et al. Light therapy for managing cognitive, sleep, functional, behavioural, or psychiatric disturbances in dementia. Cochrane Database Syst Rev (4): CD003946 (2009).
[47]
Lucas R. Measuring melanopic illuminance. 2014 [cited 2015 13.02.1015]; Available from: http://lucasgroup.lab.ls. manchester.ac.uk/research/measuringmelanopicilluminance/.
[48]
Munch M, Linhart F, Borisuit A, Jaeggi SM, Scartezzini JL. Effects of prior light exposure on early evening performance, subjective sleepiness, and hormonal secretion. Behav Neurosci 126(1): 196-203. (2012).
[49]
Mistlberger RE, Skene DJ. Nonphotic entrainment in humans? J Biol Rhythms 20(4): 339-52. (2005).
[50]
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2): 193-213. (1989).
[51]
Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4(2): 97-110. (1976).
[52]
Kozakov R, Schöpp H, Franke S, Stoll C, Kunz D. Modification of light sources for appropriate biological action. J Phys D Appl Phys 43: 1-7. (2010).
[53]
Benloucif S, Burgess HJ, Klerman EB, Lewy AJ, Middleton B, Murphy PJ, et al. Measuring melatonin in humans. J Clin Sleep Med 4(1): 66-9. (2008).
[54]
Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br J Med Psychol 47: 211-8. (1974).
[55]
Wahnschaffe A, Haedel S, Rodenbeck A, Stoll C, Rudolph H, Kozakov R, et al. Out of the lab and into the bathroom: evening short-term exposure to conventional light suppresses melatonin and increases alertness perception. Int J Mol Sci 14(2): 2573-89. (2013).
[56]
Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab 96(3): E463-72. (2011).
[57]
West KE, Jablonski MR, Warfield B, Cecil KS, James M, Ayers MA, et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol 110(3): 619-26. (2011).
[58]
Papamichael C, Skene DJ, Revell VL. Human nonvisual responses to simultaneous presentation of blue and red monochromatic light. J Biol Rhythms 27(1): 70-8. (2012).
[59]
Cajochen C, Zeitzer JM, Czeisler CA, Dijk DJ. Dose-response relationship for light intensity and ocular and electro-encephalographic correlates of human alertness. Behav Brain Res 115(1): 75-83. (2000).
[60]
Rahman SA, Flynn-Evans EE, Aeschbach D, Brainard GC, Czeisler CA, Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep 37(2): 271-81. (2014).
[61]
Dijk DJ, Czeisler CA. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166(1): 63-8. (1994).
[62]
Lavie P. Ultrashort sleep-waking schedule III. “Gates” and “forbidden zones” for sleep. Electroencephalogr Clin Neurophysiol 63: 414-25. (1986).
[63]
Clarke R, Ikeda H. Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies with steady luminance levels. Exp Brain Res 57(2): 224-32. (1985).
[64]
Deacon S, Arendt J. Posture influences melatonin concentrations in plasma and saliva in humans. Neurosci Lett 167(1-2): 191-4. (1994).
[65]
Krauchi K, Cajochen C, Wirz-Justice A. A relationship between heat loss and sleepiness: effects of postural change and melatonin administration. J Appl Physiol 83(1): 134-9. (1997).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy