Abstract
Among the naturally-occurring trichothecenes found in food and feed, T-2 toxin is the most potent and toxic mycotoxin. After ingestion of T-2 toxin into the organism, it is processed and eliminated. Some metabolites of this trichothecene are equally toxic or slightly more toxic than T-2 itself, and therefore, the metabolic fate of T-2 toxin has been of great concern. The main reactions in trichothecene metabolism are hydrolysis, hydroxylation and deep oxidation. Typical metabolites of T-2 toxin in an organism are HT-2 toxin, T- 2-triol, T-2-tetraol, 3-hydroxy-T-2, and 3-hydroxy-HT-2 toxin. There are significant differences in the metabolic pathways of T-2 toxin between ruminants and non-ruminants. Ruminants have been more resistant to the adverse effects of T-2 toxin due to microbial degradation within rumen microorganisms. Some plant species are resistant to T-2 toxin, while others are capable of its intake and metabolisation.
Keywords: T-2 toxin, trichotecene, metabolic pathways, biodegradation, Fusarium
Current Drug Metabolism
Title: Metabolic Pathways of T-2 Toxin
Volume: 9 Issue: 1
Author(s): Kamil Kuca, Vlastimil Dohnal, Alena Jezkova and Daniel Jun
Affiliation:
Keywords: T-2 toxin, trichotecene, metabolic pathways, biodegradation, Fusarium
Abstract: Among the naturally-occurring trichothecenes found in food and feed, T-2 toxin is the most potent and toxic mycotoxin. After ingestion of T-2 toxin into the organism, it is processed and eliminated. Some metabolites of this trichothecene are equally toxic or slightly more toxic than T-2 itself, and therefore, the metabolic fate of T-2 toxin has been of great concern. The main reactions in trichothecene metabolism are hydrolysis, hydroxylation and deep oxidation. Typical metabolites of T-2 toxin in an organism are HT-2 toxin, T- 2-triol, T-2-tetraol, 3-hydroxy-T-2, and 3-hydroxy-HT-2 toxin. There are significant differences in the metabolic pathways of T-2 toxin between ruminants and non-ruminants. Ruminants have been more resistant to the adverse effects of T-2 toxin due to microbial degradation within rumen microorganisms. Some plant species are resistant to T-2 toxin, while others are capable of its intake and metabolisation.
Export Options
About this article
Cite this article as:
Kuca Kamil, Dohnal Vlastimil, Jezkova Alena and Jun Daniel, Metabolic Pathways of T-2 Toxin, Current Drug Metabolism 2008; 9 (1) . https://dx.doi.org/10.2174/138920008783331176
DOI https://dx.doi.org/10.2174/138920008783331176 |
Print ISSN 1389-2002 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5453 |
Call for Papers in Thematic Issues
Impact of Brain Tissue Binding and Plasma Protein Binding of Drugs in DMPK
The impression of brain tissue binding (BTB) or plasma protein binding (PPB) in Drug Metabolism and Pharmacokinetics is critical to understanding the distribution, efficacy, and potential toxicity of drugs that target the central nervous system (CNS). BTB and high PPB influence the distribution of drugs in the body and their ...read more
Interaction Between Drugs and Endocrine Diseases
The introduction of highly active antiretroviral therapy accelerated studies and our understanding on the interaction between pharmacological therapies and endocrine diseases. Drugs can precipitate endocrine via different mechanisms, including direct alteration of hormone production and secretion, dysregulation of hormonal axis, effects on hormonal transport, receptor-binding, and cellular signalling. Common drug-induced ...read more
Metabolism-Mediated Xenobiotic Toxicity
Considering the potent modulation of biotransformation enzyme expression and activities by various therapeutic drugs and environmental chemicals, and the commonly combined exposure of humans to both drugs and the ever increasing environmental pollutants simultaneously, knowledge about the combined toxic effects by modulating biotransformation enzymes, such as P450s, UDP- glucuronosyltransferases, and ...read more
Safety evaluation of vaccine combination
Vaccine combination safety evaluation is a critical field within immunology and public health that focuses on assessing the safety and efficacy of combining different vaccines to maximize protection against various diseases while minimizing potential adverse effects. This process is significant because it ensures that vaccines can be administered together without ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements