Abstract
Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington’s disease, Multiple Sclerosis and Ischemic stroke have become a major health problem worldwide. Pre-clinical studies have demonstrated the beneficial effects of flavonoids on neurodegenerative diseases and suggest them to be used as therapeutic agents. Kaempferol is found in many plants such as tea, beans, broccoli, strawberries, and neuroprotective effects against the development of many neurodegenerative diseases such as Parkinson, Alzheimer's disease and Huntington's disease. The present study summarizes the neuroprotective effects of kaempferol in various models of neurodegenerative diseases. Kaempferol delays the initiation as well as the progression of neurodegenerative disorders by acting as a scavenger of free radicals and preserving the activity of various antioxidant enzymes. Kaempferol can cross the Blood-Brain Barrier (BBB), and therefore results in an enhanced protective effect. The multi-target property of kaempferol makes it a potential dietary supplement in preventing and treating neurodegenerative diseases.
Keywords: Neurodegenerative diseases, kaempferol, Parkinson's disease, flavonoid, blood-brain barrier, Alzheimer's disease.
CNS & Neurological Disorders - Drug Targets
Title:Neurodegenerative Diseases and Flavonoids: Special Reference to Kaempferol
Volume: 20 Issue: 4
Author(s): Rahul and Yasir H. Siddique*
Affiliation:
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh,India
Keywords: Neurodegenerative diseases, kaempferol, Parkinson's disease, flavonoid, blood-brain barrier, Alzheimer's disease.
Abstract: Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington’s disease, Multiple Sclerosis and Ischemic stroke have become a major health problem worldwide. Pre-clinical studies have demonstrated the beneficial effects of flavonoids on neurodegenerative diseases and suggest them to be used as therapeutic agents. Kaempferol is found in many plants such as tea, beans, broccoli, strawberries, and neuroprotective effects against the development of many neurodegenerative diseases such as Parkinson, Alzheimer's disease and Huntington's disease. The present study summarizes the neuroprotective effects of kaempferol in various models of neurodegenerative diseases. Kaempferol delays the initiation as well as the progression of neurodegenerative disorders by acting as a scavenger of free radicals and preserving the activity of various antioxidant enzymes. Kaempferol can cross the Blood-Brain Barrier (BBB), and therefore results in an enhanced protective effect. The multi-target property of kaempferol makes it a potential dietary supplement in preventing and treating neurodegenerative diseases.
Export Options
About this article
Cite this article as:
Rahul and Siddique H. Yasir *, Neurodegenerative Diseases and Flavonoids: Special Reference to Kaempferol, CNS & Neurological Disorders - Drug Targets 2021; 20 (4) . https://dx.doi.org/10.2174/1871527320666210129122033
| DOI https://dx.doi.org/10.2174/1871527320666210129122033 |
Print ISSN 1871-5273 |
| Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Big Data Mining for CNS Diseases Analysis and Treatment: Focusing on Drug Target Discovery
Central nervous system (CNS) diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, represent a major global health challenge. Despite significant research efforts, the complexity and multifactorial nature of these diseases hinder the development of effective treatments. The rise of big data analytics and high-throughput technologies ...read more
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently, there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system and neurological disorders. The purpose ...read more
Innovative Therapeutics in Demyelinating CNS- Disorders: Immune Modulation, Antibody Therapy, Kinase Inhibition and Remyeliation Strategies
Demyelinating disorders, particularly multiple sclerosis represent chronic disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. This thematic issue will present a comprehensive overview of novel therapeutic advances targeting these processes. In addition to dissecting the roles of innate versus adaptive immunity, antibody therapies, and tyrosine kinase ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Tetramethylpyrazine Facilitates Functional Recovery after Spinal Cord Injury by Inhibiting MMP2, MMP9, and Vascular Endothelial Cell Apoptosis
Current Neurovascular Research S-nitrosation/Denitrosation in Cardiovascular Pathologies: Facts and Concepts for the Rational Design of S-nitrosothiols
Current Pharmaceutical Design Recent Advances in Synthesis of PAR Ligands as Therapeutic Strategy for Inflammatory Diseases
Mini-Reviews in Medicinal Chemistry Mitochondria as an Easy Target to Oxidative Stress Events in Parkinson's Disease
CNS & Neurological Disorders - Drug Targets Supplementation of Creatine and Ribose Prevents Apoptosis and Right Ventricle Hypertrophy in Hypoxic Hearts
Current Pharmaceutical Design Experimental Brain Ischemic Preconditioning: A Concept to Putative Targets
CNS & Neurological Disorders - Drug Targets Oxidative Stress and its Clinical Consequences: Relationship between Diabetes and Cancer
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Mechanisms of Oxidative Glutamate Toxicity: The Glutamate/Cystine Antiporter System xc¯ as a Neuroprotective Drug Target
CNS & Neurological Disorders - Drug Targets Extracellular Vesicles as Therapeutics for Brain Injury and Disease
Current Pharmaceutical Design Mineralocorticoid Receptor Blockade in the Protection of Target Organ Damage
Cardiovascular & Hematological Agents in Medicinal Chemistry Single Photon Emission Tomography in the Diagnostic Assessment of Cardiac and Vascular Infectious Diseases
Current Radiopharmaceuticals Reactive Oxygen Species in the Initiation of IL-4 Driven Autoimmunity as a Potential Therapeutic Target
Current Pharmaceutical Design Role of Ca2+-Sensitive K+ Currents in Controlling Ventricular Repolarization: Possible Implications for Future Antiarrhytmic Drug Therapy
Current Medicinal Chemistry Ca2+ Signaling, Mitochondria and Cell Death
Current Molecular Medicine Statins in Acute Coronary Syndromes
Current Pharmaceutical Design 1, 2-Benzisoxazole: A Privileged Structure with a Potential for Polypharmacology
Current Pharmaceutical Design Effective Agents Targeting the Mitochondria and Apoptosis to Protect the Heart
Current Pharmaceutical Design Inflammatory Events Following Subarachnoid Hemorrhage (SAH)
Current Neuropharmacology Low Lymphocyte Count and Cardiovascular Diseases
Current Medicinal Chemistry Current Status of Pharmacological Thrombolytic Therapy and Mechanical Thrombectomy for the Treatment of Acute Deep Venous Thrombosis
Cardiovascular & Hematological Agents in Medicinal Chemistry






