Abstract
In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate.
Keywords: mitochondria, autophagy, necrosis, apoptosis, Calcium
Current Molecular Medicine
Title: Ca2+ Signaling, Mitochondria and Cell Death
Volume: 8 Issue: 2
Author(s): Paolo Pinton, Anna Romagnoli, Rosario Rizzuto and Carlotta Giorgi
Affiliation:
Keywords: mitochondria, autophagy, necrosis, apoptosis, Calcium
Abstract: In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate.
Export Options
About this article
Cite this article as:
Pinton Paolo, Romagnoli Anna, Rizzuto Rosario and Giorgi Carlotta, Ca2+ Signaling, Mitochondria and Cell Death, Current Molecular Medicine 2008; 8 (2) . https://dx.doi.org/10.2174/156652408783769571
DOI https://dx.doi.org/10.2174/156652408783769571 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
Call for Papers in Thematic Issues
Molecular and Cellular Mechanisms in Vertigo / Vestibular Disorders
Vertigo and vestibular diseases are common among middle-aged and older adults, significantly increasing the risk of falls and leading to injuries and disabilities. Despite their prevalence, therapeutic advancements are hindered by a limited understanding of the underlying molecular and cellular mechanisms. This Special Issue is dedicated to bridging this gap ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Pathogenetic Pathways of Cardiorenal Syndrome and their Possible Therapeutic Implications
Current Pharmaceutical Design Regulatory Role of Chinese Herbal Medicine in Regulated Neuronal Death
CNS & Neurological Disorders - Drug Targets SS31, a Small Molecule Antioxidant Peptide, Attenuates β-Amyloid Elevation, Mitochondrial/Synaptic Deterioration and Cognitive Deficit in SAMP8 Mice
Current Alzheimer Research p38 Mitogen-Activated Protein Kinase: A Critical Node Linking Insulin Resistance and Cardiovascular Diseases in Type 2 Diabetes Mellitus
Endocrine, Metabolic & Immune Disorders - Drug Targets Induced Adaptive Resistance to Nitrooxidative Stress in the CNS: Therapeutic Implications
Central Nervous System Agents in Medicinal Chemistry Potential Therapeutic Effects of Na+/Ca2+ Exchanger Inhibition in Cardiac Diseases
Current Medicinal Chemistry Reactive Oxygen Species, Cancer and Anti-Cancer Therapies
Current Chemical Biology Human Adipose-Derived Stem Cells Delay Retinal Degeneration in Royal College of Surgeons Rats Through Anti-Apoptotic and VEGF-Mediated Neuroprotective Effects
Current Molecular Medicine NADPH and Iron May Have an Important Role in Attenuated Mucosal Defense in Helicobacter pylori Infection?
Mini-Reviews in Medicinal Chemistry Current Understanding of Inflammatory Responses in Acute Kidney Injury
Current Gene Therapy Recent Patents Concerning Modulators of Protein Kinase C
Recent Patents on DNA & Gene Sequences Hypoxia Upregulates MAPK<sup>p38</sup>/MAPK<sup>ERK</sup> Phosphorylation In Vitro: Neuroimmunological Differential Time-Dependent Expression of MAPKs
Protein & Peptide Letters Neuronal Nicotinic Receptors and Neuroprotection: Newer Ligands May Help us Understand their Role in Neurodegeneration
Medicinal Chemistry Reviews - Online (Discontinued) Coronary Atherosclerosis and Acute Coronary Syndrome: New Insights from Angioscopic Viewpoints
Vascular Disease Prevention (Discontinued) Tracking the Mesenchymal Stem Cell Fate After Transplantation Into the Infarcted Myocardium
Current Stem Cell Research & Therapy Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review
Current Diabetes Reviews Understanding and Modulating the Toll Like Receptors (TLRs) and NOD Like Receptors (NLRs) Cross Talk in Type 2 Diabetes
Current Diabetes Reviews 1, 2-Benzisoxazole: A Privileged Structure with a Potential for Polypharmacology
Current Pharmaceutical Design Research Progress of Mechanisms of Ceftriaxone Associated Nephrolithiasis
Mini-Reviews in Medicinal Chemistry Innovation in Contrast Agents for Magnetic Resonance Imaging
Current Medical Imaging