Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Erythrocyte-cancer Hybrid Membrane-camouflaged Mesoporous Silica Nanoparticles Loaded with Gboxin for Glioma-targeting Therapy

Author(s): Xiuxiu Jiao, Xiaoyan Yu, Chunai Gong, Hao Zhu, Bin Zhang, Rong Wang and Yongfang Yuan*

Volume 23, Issue 6, 2022

Published on: 19 July, 2021

Page: [835 - 846] Pages: 12

DOI: 10.2174/1389201022666210719164538

Price: $65

Abstract

Objective: The purpose of this research is to formulate a biomimetic drug delivery system, which can selectively target glioblastoma (GBM) to deliver the antitumor agent, Gboxin, a novel Complex V inhibitor. Gboxin can specifically inhibit GBM cell growth but not normal cells.

Methods: In the present study, we utilized red blood cell (RBC) membrane and U251 cell membrane to obtain a hybrid biomimetic membrane (RBC-U), and prepared RBC-U coated Gboxin-loaded mesoporous silica nanoparticles ((MSNs/Gboxin)@[RBC-U]) for GBM chemotherapy. The zeta potential, particle size, and morphology of (MSNs/Gboxin)@[RBC-U] were characterized. The cellular uptake, effect of cells growth inhibition, biocompatibility, and specific self-recognition of nanoparticles were evaluated.

Results: The (MSNs/Gboxin)@[RBC-U] was successfully fabricated and possessed high stability in the circulation system. The drug loading of Gboxin was 13.9%. (MSNs/Gboxin)@ [RBC-U] could effectively retain drugs in the physiological environment and released Gboxin rapidly in the tumor cells. Compared to the MSNs/Gboxin, the (MSNs/Gboxin)@[RBC-U] exhibit highly specific self-recognition to the source cell line. Additionally, the (MSNs/Gboxin) @[RBC-U] showed excellent anti-proliferation efficiency (IC50 = 0.21 μg/mL) in the tumor cell model and few side effects in normal cels in vitro.

Conclusion: The (MSNs/Gboxin)@[RBC-U] exhibited significant anti-cancer effects in vitro and the specific self-recognition to GBM cells. Hence, (MSNs/Gboxin)@[RBC-U] could be a promising delivery system for GBM targeted therapy.

Keywords: Glioblastoma (GBM), hybrid membrane, biomimetic nanoparticles, homotypic targeting, gboxin, mesoporous silica nanoparticles (MSNs).

Graphical Abstract
[1]
Alexander, B.M.; Ba, S.; Berger, M.S.; Berry, D.A.; Cavenee, W.K.; Chang, S.M.; Cloughesy, T.F.; Jiang, T.; Khasraw, M.; Li, W.; Mittman, R.; Poste, G.H.; Wen, P.Y.; Yung, W.K.A.; Barker, A.D. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin. Cancer Res., 2018, 24(4), 737-743.
[2]
Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA, 2013, 310(17), 1842-1850.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[3]
Shergalis, A.; Bankhead, A., III; Luesakul, U.; Muangsin, N.; Neamati, N. Current challenges and opportunities in treating Glioblastoma. Pharmacol. Rev., 2018, 70(3), 412-445.
[http://dx.doi.org/10.1124/pr.117.014944] [PMID: 29669750]
[4]
Taylor, M.A.; Das, B.C.; Ray, S.K. Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis, 2018, 23(11-12), 563-575.
[http://dx.doi.org/10.1007/s10495-018-1480-9] [PMID: 30171377]
[5]
Viale, A.; Draetta, G.F. Metabolic features of cancer treatment resistance. Recent Results Cancer Res., 2016, 207, 135-156.
[http://dx.doi.org/10.1007/978-3-319-42118-6_6] [PMID: 27557537]
[6]
Chen, J.; Li, Y.; Yu, T.S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 2012, 488(7412), 522-526.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[7]
Suryaprakash, S.; Lao, Y.H.; Cho, H.Y.; Li, M.; Ji, H.Y.; Shao, D.; Hu, H.; Quek, C.H.; Huang, D.; Mintz, R.L.; Bagó, J.R.; Hingtgen, S.D.; Lee, K.B.; Leong, K.W. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett., 2019, 19(3), 1701-1705.
[http://dx.doi.org/10.1021/acs.nanolett.8b04697] [PMID: 30773888]
[8]
Banks, W.A. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov., 2016, 15(4), 275-292.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[9]
Shi, Y.; Lim, S.K.; Liang, Q.; Iyer, S.V.; Wang, H.Y.; Wang, Z.; Xie, X.; Sun, D.; Chen, Y.J.; Tabar, V.; Gutin, P.; Williams, N.; De Brabander, J.K.; Parada, L.F. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature, 2019, 567(7748), 341-346.
[http://dx.doi.org/10.1038/s41586-019-0993-x] [PMID: 30842654]
[10]
Elbehairi, S.E.I.; Alfaifi, M.Y.; Shati, A.A.; Alshehri, M.A.; Elshaarawy, R.F.M.; Hafez, H.S. Role of Pd(II)-chitooligosaccharides-Gboxin analog in oxidative phosphorylation inhibition and energy depletion: Targeting mitochondrial dynamics. Chem. Biol. Drug Des., 2020, 96(4), 1148-1161.
[http://dx.doi.org/10.1111/cbdd.13703] [PMID: 32400098]
[11]
Chen, X.; Jia, F.; Li, Y.; Deng, Y.; Huang, Y.; Liu, W.; Jin, Q.; Ji, J. Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials, 2020, 246, 119999.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119999] [PMID: 32247201]
[12]
Farzin, A.; Etesami, S.A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater., 2020, 9(9), e1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[13]
Wang, L.H.; Liu, J.Y.; Sui, L.; Zhao, P.H.; Ma, H.D.; Wei, Z.; Wang, Y.L. Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr. Pharm. Biotechnol., 2020, 21(11), 1088-1098.
[http://dx.doi.org/10.2174/1389201021666200226122742] [PMID: 32101121]
[14]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[15]
Martin, J.D.; Cabral, H.; Stylianopoulos, T.; Jain, R.K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol., 2020, 17(4), 251-266.
[http://dx.doi.org/10.1038/s41571-019-0308-z] [PMID: 32034288]
[16]
Jiang, Q.; Liu, Y.; Guo, R.; Yao, X.; Sung, S.; Pang, Z.; Yang, W. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials, 2019, 192, 292-308.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.021] [PMID: 30465973]
[17]
Li, B.; Wang, F.; Gui, L.; He, Q.; Yao, Y.; Chen, H. The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine (Lond.), 2018, 13(16), 2099-2118.
[http://dx.doi.org/10.2217/nnm-2018-0017] [PMID: 30226404]
[18]
Wang, P.; Jiang, F.; Chen, B.; Tang, H.; Zeng, X.; Cai, D.; Zhu, M.; Long, R.; Yang, D.; Kankala, R.K.; Wang, S.; Liu, Y. Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids Surf. B Biointerfaces, 2020, 189, 110842.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110842] [PMID: 32058253]
[19]
Song, Y.; Huang, Z.; Liu, X.; Pang, Z.; Chen, J.; Yang, H.; Zhang, N.; Cao, Z.; Liu, M.; Cao, J.; Li, C.; Yang, X.; Gong, H.; Qian, J.; Ge, J. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice. Nanomedicine (Lond.), 2019, 15(1), 13-24.
[http://dx.doi.org/10.1016/j.nano.2018.08.002] [PMID: 30171903]
[20]
Wang, Y.; Luan, Z.; Zhao, C.; Bai, C.; Yang, K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur. J. Pharm. Sci., 2020, 142, 105136.
[21]
Liu, X.; Zhang, L.; Jiang, W.; Yang, Z.; Gan, Z.; Yu, C.; Tao, R.; Chen, H. In vitro and in vivo evaluation of liposomes modified with polypeptides and red cell membrane as a novel drug delivery system for myocardium targeting. Drug Deliv., 2020, 27(1), 599-606.
[http://dx.doi.org/10.1080/10717544.2020.1754525] [PMID: 32308051]
[22]
Li, R.; He, Y.; Zhang, S.; Qin, J.; Wang, J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B, 2018, 8(1), 14-22.
[http://dx.doi.org/10.1016/j.apsb.2017.11.009] [PMID: 29872619]
[23]
Li, H.; Jin, K.; Luo, M.; Wang, X.; Zhu, X.; Liu, X.; Jiang, T.; Zhang, Q.; Wang, S.; Pang, Z. Size Dependency of circulation and biodistribution of biomimetic nanoparticles: red blood cell membrane-coated nanoparticles. Cells, 2019, 8(8), E881.
[http://dx.doi.org/10.3390/cells8080881] [PMID: 31412631]
[24]
Wang, X.; Li, H.; Liu, X.; Tian, Y.; Guo, H.; Jiang, T.; Luo, Z.; Jin, K.; Kuai, X.; Liu, Y.; Pang, Z.; Yang, W.; Shen, S. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials, 2017, 143, 130-141.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.004] [PMID: 28800434]
[25]
Jiang, T.; Zhang, B.; Shen, S.; Tuo, Y.; Luo, Z.; Hu, Y.; Pang, Z.; Jiang, X. Tumor microenvironment modulation by cyclopamine improved photothermal therapy of biomimetic gold nanorods for pancreatic ductal adenocarcinomas. ACS Appl. Mater. Interfaces, 2017, 9(37), 31497-31508.
[http://dx.doi.org/10.1021/acsami.7b09458] [PMID: 28849917]
[26]
Jiang, Q.; Luo, Z.; Men, Y.; Yang, P.; Peng, H.; Guo, R.; Tian, Y.; Pang, Z.; Yang, W. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials, 2017, 143, 29-45.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.027] [PMID: 28756194]
[27]
Rao, L.; Bu, L.L.; Cai, B.; Xu, J.H.; Li, A.; Zhang, W.F.; Sun, Z.J.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater., 2016, 28(18), 3460-3466.
[http://dx.doi.org/10.1002/adma.201506086] [PMID: 26970518]
[28]
Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; Cui, H.; Ma, Y.; Cai, L. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 2016, 10(11), 10049-10057.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]
[29]
Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation Life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano, 2018, 12(6), 5241-5252.
[http://dx.doi.org/10.1021/acsnano.7b08355] [PMID: 29800517]
[30]
Li, T.; Shi, S.; Goel, S.; Shen, X.; Xie, X.; Chen, Z.; Zhang, H.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Liu, Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater., 2019, 89, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2019.02.031] [PMID: 30797106]
[31]
Liu, Y.; Dai, R.; Wei, Q.; Li, W.; Zhu, G.; Chi, H.; Guo, Z.; Wang, L.; Cui, C.; Xu, J.; Ma, K. Dual-functionalized janus mesoporous silica nanoparticles with active targeting and charge reversal for synergistic tumor-targeting therapy. ACS Appl. Mater. Interfaces, 2019, 11(47), 44582-44592.
[http://dx.doi.org/10.1021/acsami.9b15434] [PMID: 31682097]
[32]
Wang, Z.; Chang, Z.; Lu, M.; Shao, D.; Yue, J.; Yang, D.; Zheng, X.; Li, M.; He, K.; Zhang, M.; Chen, L.; Dong, W.F. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018, 154, 147-157.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.047] [PMID: 29128843]
[33]
Chen, C.; Tang, W.; Jiang, D.; Yang, G.; Wang, X.; Zhou, L.; Zhang, W.; Wang, P. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 2019, 11(22), 11012-11024.
[http://dx.doi.org/10.1039/C9NR01385G] [PMID: 31140527]
[34]
Wang, L.S.; Wu, L.C.; Lu, S.Y.; Chang, L.L.; Teng, I.T.; Yang, C.M.; Ho, J.A. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: Improved water suspensibility and decreased nonspecific protein binding. ACS Nano, 2010, 4(8), 4371-4379.
[http://dx.doi.org/10.1021/nn901376h] [PMID: 20731423]
[35]
Liu, H.J.; Xu, P. Smart Mesoporous Silica nanoparticles for protein delivery. Nanomaterials (Basel), 2019, 9(4), E511.
[http://dx.doi.org/10.3390/nano9040511] [PMID: 30986952]
[36]
Zhao, Q.; Liu, J.; Zhu, W.; Sun, C.; Di, D.; Zhang, Y.; Wang, P.; Wang, Z.; Wang, S. Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells. Acta Biomater., 2015, 23, 147-156.
[http://dx.doi.org/10.1016/j.actbio.2015.05.010] [PMID: 25985912]
[37]
Rao, L.; Bu, L.L.; Xu, J.H.; Cai, B.; Yu, G.T.; Yu, X.; He, Z.; Huang, Q.; Li, A.; Guo, S.S.; Zhang, W.F.; Liu, W.; Sun, Z.J.; Wang, H.; Wang, T.H.; Zhao, X.Z. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small (Weinheim an der Bergstrasse, Germany), 2015, 11(46), 6225-6236.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy