Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Effects of Resveratrol Supplementation on the Metabolism of Lipids in Metabolic Disorders

Author(s): Farideh Ghavidel, Seyed Isaac Hashemy, Mahdeyeh Aliari, Arezoo Rajabian, Masoud Homayouni Tabrizi, Stephen L. Atkin, Tannaz Jamialahmadi, Hossein Hosseini* and Amirhossein Sahebkar*

Volume 32, Issue 11, 2025

Published on: 11 October, 2023

Page: [2219 - 2234] Pages: 16

DOI: 10.2174/0109298673255218231005062112

Price: $65

TIMBC 2026
Abstract

Lipids are stored energy sources in animals, and disturbance of lipid metabolism is associated with metabolic disorders, including cardiovascular diseases, obesity, nonalcoholic fatty liver disease, and diabetes. Modifying dysregulated lipid metabolism homeostasis can lead to enhanced therapeutic benefits, such as the use of statin therapy in cardiovascular disease. However, many natural compounds may have therapeutic utility to improve lipid metabolism. Resveratrol is a polyphenol extracted from dietary botanicals, including grapes and berries, which has been reported to affect many biological processes, including lipid metabolism. This review evaluates the effects of resveratrol on lipid metabolism dysregulation affecting atherosclerosis, diabetes, and nonalcoholic fatty liver disease (NAFLD). In addition, it details the mechanisms by which resveratrol may improve lipid metabolism homeostasis.

Keywords: Lipids, cardiovascular diseases, resveratrol, dyslipidemia, metabolism, phytomedicine.

[1]
Parhofer, K.G. The treatment of disorders of lipid metabolism. Dtsch. Arztebl. Int., 2016, 113(15), 261-268.
[http://dx.doi.org/10.3238/arztebl.2016.0261] [PMID: 27151464]
[2]
Ophardt, C. Overview of lipid function. 2003. Available from:http://chemistry elmhurst edu/vchembook/620fattyacid html
[3]
Delitala, A.P.; Fanciulli, G.; Maioli, M.; Delitala, G. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur. J. Intern. Med., 2017, 38, 17-24.
[http://dx.doi.org/10.1016/j.ejim.2016.12.015] [PMID: 28040402]
[4]
Scorletti, E.; Byrne, C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr., 2013, 33(1), 231-248.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161230] [PMID: 23862644]
[5]
Monguchi, T.; Ishida, T.; Nakajima, H.; Hasokawa, M.; Kondo, K.; Yasuda, T. Trans fatty acids induce systemic inflammation and atherosclerosis through toll-like receptor- mediated pathway in ldl receptor knockout mice. Am. Heart Assoc., 2013, 128(22), 14652.
[6]
Engeli, S.; Stinkens, R.; Heise, T.; May, M.; Goossens, G.H.; Blaak, E.E.; Havekes, B.; Jax, T.; Albrecht, D.; Pal, P.; Tegtbur, U.; Haufe, S.; Langenickel, T.H.; Jordan, J. Effect of sacubitril/valsartan on exercise-induced lipid metabolism in patients with obesity and hypertension. Hypertension, 2018, 71(1), 70-77.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10224] [PMID: 29180454]
[7]
Hou, C.; Zhang, W.; Li, J.; Du, L.; Lv, O.; Zhao, S.; Li, J. Beneficial effects of pomegranate on lipid metabolism in metabolic disorders. Mol. Nutr. Food Res., 2019, 63(16), 1800773.
[http://dx.doi.org/10.1002/mnfr.201800773] [PMID: 30677224]
[8]
Gómez-Zorita, S.; Fernández-Quintela, A.; Macarulla, M.T.; Aguirre, L.; Hijona, E.; Bujanda, L.; Milagro, F.; Martínez, J.A.; Portillo, M.P. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br. J. Nutr., 2012, 107(2), 202-210.
[http://dx.doi.org/10.1017/S0007114511002753] [PMID: 21733326]
[9]
Cao, K.; Xu, J.; Zou, X.; Li, Y.; Chen, C.; Zheng, A.; Li, H.; Li, H.; Szeto, I.M.Y.; Shi, Y.; Long, J.; Liu, J.; Feng, Z. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med., 2014, 67, 396-407.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.029] [PMID: 24316371]
[10]
Al-Gubory, K.H.; Blachier, F.; Faure, P.; Garrel, C. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes. J. Sci. Food Agric., 2016, 96(10), 3462-3468.
[http://dx.doi.org/10.1002/jsfa.7529] [PMID: 26564426]
[11]
Li, S.; Xu, Y.; Guo, W.; Chen, F.; Zhang, C.; Tan, H.Y.; Wang, N.; Feng, Y. The impacts of herbal medicines and natural products on regulating the hepatic lipid metabolism. Front. Pharmacol., 2020, 11, 351.
[http://dx.doi.org/10.3389/fphar.2020.00351] [PMID: 32265720]
[12]
Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr., 2018, 6(8), 2473-2490.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[13]
Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol., 2019, 66(1), 13-21.
[PMID: 30816367]
[14]
Mikulski, D.; Górniak, R.; Molski, M. A theoretical study of the structure-radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. Eur. J. Med. Chem., 2010, 45(3), 1015-1027.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.044] [PMID: 20004046]
[15]
Boocock, D.J.; Patel, K.R.; Faust, G.E.S.; Normolle, D.P.; Marczylo, T.H.; Crowell, J.A.; Brenner, D.E.; Booth, T.D.; Gescher, A.; Steward, W.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(2), 182-187.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.017] [PMID: 17097357]
[16]
Brown, V.A.; Patel, K.R.; Viskaduraki, M.; Crowell, J.A.; Perloff, M.; Booth, T.D.; Vasilinin, G.; Sen, A.; Schinas, A.M.; Piccirilli, G.; Brown, K.; Steward, W.P.; Gescher, A.J.; Brenner, D.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res., 2010, 70(22), 9003-9011.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2364] [PMID: 20935227]
[17]
Yu, C.; Shin, Y.G.; Chow, A.; Li, Y.; Kosmeder, J.W.; Lee, Y.S.; Hirschelman, W.H.; Pezzuto, J.M.; Mehta, R.G.; van Breemen, R.B. Human, rat, and mouse metabolism of resveratrol. Pharm. Res., 2002, 19(12), 1907-1914.
[http://dx.doi.org/10.1023/A:1021414129280] [PMID: 12523673]
[18]
Wenzel, E.; Somoza, V. Metabolism and bioavailability oftrans-resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481.
[http://dx.doi.org/10.1002/mnfr.200500010] [PMID: 15779070]
[19]
Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 161-169.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05853.x] [PMID: 21261655]
[20]
Cheng, C.K.; Luo, J.Y.; Lau, C.W.; Chen, Z.Y.; Tian, X.Y.; Huang, Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br. J. Pharmacol., 2020, 177(6), 1258-1277.
[http://dx.doi.org/10.1111/bph.14801] [PMID: 31347157]
[21]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[22]
Gorabi, A.M.; Aslani, S.; Imani, D.; Razi, B.; Sathyapalan, T.; Sahebkar, A. Effect of resveratrol on C-reactive protein: An updated meta-analysis of randomized controlled trials. Phytother. Res., 2021, 35(12), 6754-6767.
[http://dx.doi.org/10.1002/ptr.7262] [PMID: 34472150]
[23]
Kumar, S.; Chang, Y.C.; Lai, K.H.; Hwang, T.L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis. Curr. Med. Chem., 2021, 28(19), 3773-3786.
[http://dx.doi.org/10.2174/1875533XMTEwrMDQh5] [PMID: 32957870]
[24]
Omraninava, M.; Razi, B.; Aslani, S.; Imani, D.; Jamialahmadi, T.; Sahebkar, A. Effect of resveratrol on inflammatory cytokines: A meta-analysis of randomized controlled trials. Eur. J. Pharmacol., 2021, 908, 174380.
[http://dx.doi.org/10.1016/j.ejphar.2021.174380] [PMID: 34303665]
[25]
Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; Shen, J.Q.; Rajput, S.A.; Li, J.H. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother., 2021, 143, 112164.
[http://dx.doi.org/10.1016/j.biopha.2021.112164] [PMID: 34649335]
[26]
Xu, N.; Wang, L.; Fu, S.; Jiang, B. Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch. Med. Sci., 2021, 17(1), 166-176.
[http://dx.doi.org/10.5114/aoms.2020.100777] [PMID: 33488869]
[27]
Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; Pintus, G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci., 2020, 21(6), 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[28]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors - Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189, 47-55.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.008] [PMID: 25885871]
[29]
Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835.
[http://dx.doi.org/10.1111/nure.12081] [PMID: 24111838]
[30]
Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res., 2016, 118(4), 535-546.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611] [PMID: 26892956]
[31]
Prasad, K. Resveratrol, wine, and atherosclerosis. Int. J. Angiol., 2012, 21(1), 7-18.
[http://dx.doi.org/10.1007/s00547-004-1060-4] [PMID: 23450206]
[32]
Ichiki, T.; Izumi, R.; Cataliotti, A.; Larsen, A.M.; Sandberg, S.M.; Burnett, J.C., Jr Endothelial permeability in vitro and in vivo: Protective actions of ANP and omapatrilat in experimental atherosclerosis. Peptides, 2013, 48, 21-26.
[http://dx.doi.org/10.1016/j.peptides.2013.07.020] [PMID: 23927843]
[33]
Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med., 2011, 17(11), 1410-1422.
[http://dx.doi.org/10.1038/nm.2538] [PMID: 22064431]
[34]
Zhou, L.; Long, J.; Sun, Y.; Chen, W.; Qiu, R.; Yuan, D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE−/− mice and inhibits the activation of CD4+ T cells. Nutr. Metab., 2020, 17(1), 41.
[http://dx.doi.org/10.1186/s12986-020-00461-z] [PMID: 32508962]
[35]
Jawień, J.; Nastałek, P.; Korbut, R. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol., 2004, 55(3), 503-517.
[PMID: 15381823]
[36]
Do, G.M.; Kwon, E.Y.; Kim, H.J.; Jeon, S.M.; Ha, T.Y.; Park, T.; Choi, M.S. Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem. Biophys. Res. Commun., 2008, 374(1), 55-59.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.113] [PMID: 18611391]
[37]
Chassot, L.N.; Scolaro, B.; Roschel, G.G.; Cogliati, B.; Cavalcanti, M.F.; Abdalla, D.S.P.; Castro, I.A. Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr (−/−) mice. J. Nutr. Biochem., 2018, 61, 48-55.
[http://dx.doi.org/10.1016/j.jnutbio.2018.07.014] [PMID: 30184518]
[38]
Shetty, N.P.; Bhatt, P.; Neelwarne, B.; Nambiar, S.S. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis. Pharmacogn. Mag., 2014, 10(38)(Suppl. 2), 240.
[http://dx.doi.org/10.4103/0973-1296.133241] [PMID: 24991098]
[39]
Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/152786] [PMID: 23935243]
[40]
Zhang, H.; Zheng, F.; Zhao, J.; Guo, D.; Chen, X. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Arch. Med. Res., 2013, 44(1), 13-20.
[http://dx.doi.org/10.1016/j.arcmed.2012.12.001] [PMID: 23291378]
[41]
Zhong, Y.; Liu, T.; Guo, Z. Curcumin inhibits ox-LDL-induced MCP-1 expression by suppressing the p38MAPK and NF-κB pathways in rat vascular smooth muscle cells. Inflamm. Res., 2012, 61(1), 61-67.
[http://dx.doi.org/10.1007/s00011-011-0389-3] [PMID: 22005927]
[42]
Boyle, J. Macrophage activation in atherosclerosis: Pathogenesis and pharmacology of plaque rupture. Curr. Vasc. Pharmacol., 2005, 3(1), 63-68.
[http://dx.doi.org/10.2174/1570161052773861] [PMID: 15638783]
[43]
Go, G.W.; Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med., 2012, 85(1), 19-28.
[PMID: 22461740]
[44]
Herijgers, N.; Van Eck, M.; Groot, P.H.E.; Hoogerbrugge, P.M.; Van Berkel, T.J.C. Low density lipoprotein receptor of macrophages facilitates atherosclerotic lesion formation in C57Bl/6 mice. Arterioscler. Thromb. Vasc. Biol., 2000, 20(8), 1961-1967.
[http://dx.doi.org/10.1161/01.ATV.20.8.1961] [PMID: 10938018]
[45]
Mitra, S.; Goyal, T.; Mehta, J.L. Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc. Drugs Ther., 2011, 25(5), 419-429.
[http://dx.doi.org/10.1007/s10557-011-6341-5] [PMID: 21947818]
[46]
Sukhorukov, V.N.; Khotina, V.A.; Chegodaev, Y.S.; Ivanova, E.; Sobenin, I.A.; Orekhov, A.N. Lipid metabolism in macrophages: Focus on atherosclerosis. Biomedicines, 2020, 8(8), 262.
[http://dx.doi.org/10.3390/biomedicines8080262] [PMID: 32752275]
[47]
Liu, X.; Wu, J.; Tian, R.; Su, S.; Deng, S.; Meng, X. Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb. Biomed. Pharmacother., 2020, 129, 110433.
[http://dx.doi.org/10.1016/j.biopha.2020.110433] [PMID: 32768936]
[48]
Fan, E.; Zhang, L.; Jiang, S.; Bai, Y. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food, 2008, 11(4), 610-614.
[http://dx.doi.org/10.1089/jmf.2007.0091] [PMID: 19053850]
[49]
Chen, C.; Zou, L.X.; Lin, Q.Y.; Yan, X.; Bi, H.L.; Xie, X.; Wang, S.; Wang, Q.S.; Zhang, Y.L.; Li, H.H. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol., 2019, 20, 390-401.
[http://dx.doi.org/10.1016/j.redox.2018.10.021] [PMID: 30412827]
[50]
Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol. Res., 2022, 184, 106414.
[http://dx.doi.org/10.1016/j.phrs.2022.106414] [PMID: 36028188]
[51]
Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and endothelial function: A literature review. Pharmacol. Res., 2021, 170, 105725.
[http://dx.doi.org/10.1016/j.phrs.2021.105725] [PMID: 34119624]
[52]
Rocha, K.K.R.; Souza, G.A.; Ebaid, G.X.; Seiva, F.R.F.; Cataneo, A.C.; Novelli, E.L.B. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem. Toxicol., 2009, 47(6), 1362-1367.
[http://dx.doi.org/10.1016/j.fct.2009.03.010] [PMID: 19298841]
[53]
Chen, Y-J.; Wang, J-S.; Chow, S-E. Resveratrol protects vascular endothelial cell from ox-LDL-induced reduction in antithrombogenic activity. Chin. J. Physiol., 2007, 50(1), 22-28.
[PMID: 17593799]
[54]
Pandey, K.B.; Rizvi, S.I. Protective effect of resveratrol on formation of membrane protein carbonyls and lipid peroxidation in erythrocytes subjected to oxidative stress. Appl. Physiol. Nutr. Metab., 2009, 34(6), 1093-1097.
[http://dx.doi.org/10.1139/H09-115] [PMID: 20029519]
[55]
Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; García-Almagro, F.J.; Avilés-Plaza, F.; Parra, S.; Yáñez-Gascón, M.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res., 2012, 56(5), 810-821.
[http://dx.doi.org/10.1002/mnfr.201100673] [PMID: 22648627]
[56]
Voloshyna, I.; Hussaini, S.M.; Reiss, A.B. Resveratrol in cholesterol metabolism and atherosclerosis. J. Med. Food, 2012, 15(9), 763-773.
[http://dx.doi.org/10.1089/jmf.2012.0025] [PMID: 22856383]
[57]
Li, A.C.; Binder, C.J.; Gutierrez, A.; Brown, K.K.; Plotkin, C.R.; Pattison, J.W.; Valledor, A.F.; Davis, R.A.; Willson, T.M.; Witztum, J.L.; Palinski, W.; Glass, C.K. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J. Clin. Invest., 2004, 114(11), 1564-1576.
[http://dx.doi.org/10.1172/JCI18730] [PMID: 15578089]
[58]
Chawla, A.; Boisvert, W.A.; Lee, C.H.; Laffitte, B.A.; Barak, Y.; Joseph, S.B.; Liao, D.; Nagy, L.; Edwards, P.A.; Curtiss, L.K.; Evans, R.M.; Tontonoz, P. A PPAR γ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell, 2001, 7(1), 161-171.
[http://dx.doi.org/10.1016/S1097-2765(01)00164-2] [PMID: 11172721]
[59]
Zhang, Y.; Luo, Z.; Ma, L.; Xu, Q.; Yang, Q.; Si, L. Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for AGE via peroxisome proliferator-activated receptor gamma activation. Int. J. Mol. Med., 2010, 25(5), 729-734.
[PMID: 20372816]
[60]
Trasino, S; Kim, YS; Wang, TT Cancer preventive phytochemicals uniquely activate liver X receptor responsive genes through receptor dependent and independent mechanisms in prostate cancer cells. FASEB J., 2009, 23, 717.7-7.
[http://dx.doi.org/10.1096/fasebj.23.1_supplement.717.7]
[61]
Berrougui, H.; Grenier, G.; Loued, S.; Drouin, G.; Khalil, A. A new insight into resveratrol as an atheroprotective compound: Inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis, 2009, 207(2), 420-427.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.05.017] [PMID: 19552907]
[62]
Reiss Allison, B; DeLeon, J; Carsons Steven, E; Mounessa, J; Littlefield Michael, J; Voloshyna, I. A theroprotective effects of adalimumab and resveratrol in THP-1 human macrophages: Changes in expression of proteins involved in lipid efflux. J. Am. College Cardiol., 2014, 63(S12), A2049-A.
[63]
Sevov, M.; Elfineh, L.; Cavelier, L.B. Resveratrol regulates the expression of LXR-α in human macrophages. Biochem. Biophys. Res. Commun., 2006, 348(3), 1047-1054.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.155] [PMID: 16901463]
[64]
Teimouri, M.; Hosseini, H. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J. Physiol. Biochem., 2022, 78(2), 1-16.
[65]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[66]
Bahiru, E.; Hsiao, R.; Phillipson, D.; Watson, K.E. Mechanisms and treatment of dyslipidemia in diabetes. Curr. Cardiol. Rep., 2021, 23(4), 26.
[http://dx.doi.org/10.1007/s11886-021-01455-w] [PMID: 33655372]
[67]
Batista-Jorge, G.C.; Barcala-Jorge, A.S.; Silveira, M.F.; Lelis, D.F.; Andrade, J.M.O.; de Paula, A.M.B.; Guimarães, A.L.S.; Santos, S.H.S. Oral resveratrol supplementation improves Metabolic Syndrome features in obese patients submitted to a lifestyle-changing program. Life Sci., 2020, 256, 117962.
[http://dx.doi.org/10.1016/j.lfs.2020.117962] [PMID: 32534040]
[68]
Abbasi Oshaghi, E.; Goodarzi, M.T.; Higgins, V.; Adeli, K. Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action. Crit. Rev. Clin. Lab. Sci., 2017, 54(4), 267-293.
[http://dx.doi.org/10.1080/10408363.2017.1343274] [PMID: 28704113]
[69]
El-Bidawy, M.H.; Omar Hussain, A.B.; Al-Ghamdi, S.; Aldossari, K.K.; Haidara, M.A.; Al-Ani, B. Resveratrol ameliorates type 2 diabetes mellitus-induced alterations to the knee joint articular cartilage ultrastructure in rats. Ultrastruct. Pathol., 2021, 45(2), 92-101.
[http://dx.doi.org/10.1080/01913123.2021.1882629] [PMID: 33567949]
[70]
Simental-Mendía, L.E.; Guerrero-Romero, F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo- controlled trial. Nutrition, 2019, 58, 7-10.
[http://dx.doi.org/10.1016/j.nut.2018.06.015] [PMID: 30278430]
[71]
Yang, D.K.; Kang, H.S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther., 2018, 26(2), 130-138.
[http://dx.doi.org/10.4062/biomolther.2017.254] [PMID: 29462848]
[72]
Mohamad Shahi, M.; Haidari, F.; Shiri, M.R. Comparison of effect of resveratrol and vanadium on diabetes related dyslipidemia and hyperglycemia in streptozotocin induced diabetic rats. Adv. Pharm. Bull., 2011, 1(2), 81-86.
[PMID: 24312761]
[73]
Vilas-Boas, E.A.; Almeida, D.C.; Roma, L.P.; Ortis, F.; Carpinelli, A.R. Lipotoxicity and β-cell failure in type 2 diabetes: Oxidative stress linked to NADPH oxidase and ER stress. Cells, 2021, 10(12), 3328.
[http://dx.doi.org/10.3390/cells10123328] [PMID: 34943836]
[74]
Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet, 2005, 365(9467), 1333-1346.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[75]
Amélie, I.SS.; Claudia, A.B.; Alan, J.S. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients, 2019, 11(9), 2022.
[76]
Szkudelska, K.; Okulicz, M.; Hertig, I.; Szkudelski, T. Resveratrol ameliorates inflammatory and oxidative stress in type 2 diabetic Goto-Kakizaki rats. Biomed. Pharmacother., 2020, 125, 110026.
[http://dx.doi.org/10.1016/j.biopha.2020.110026] [PMID: 32092822]
[77]
Szkudelska, K.; Deniziak, M.; Hertig, I.; Wojciechowicz, T.; Tyczewska, M.; Jaroszewska, M.; Szkudelski, T. Effects of resveratrol in goto-kakizaki rat, a model of type 2 diabetes. Nutrients, 2019, 11(10), 2488.
[http://dx.doi.org/10.3390/nu11102488] [PMID: 31623226]
[78]
Szkudelska, K.; Nogowski, L.; Szkudelski, T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J. Steroid Biochem. Mol. Biol., 2009, 113(1-2), 17-24.
[http://dx.doi.org/10.1016/j.jsbmb.2008.11.001] [PMID: 19041941]
[79]
Srikanta, A.H.; Kumar, A.; Sukhdeo, S.V.; Peddha, M.S.; Govindaswamy, V. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats. Food Funct., 2016, 7(10), 4422-4431.
[http://dx.doi.org/10.1039/C6FO00372A] [PMID: 27711821]
[80]
Lee, Y.E.; Kim, J.W.; Lee, E.M.; Ahn, Y.B.; Song, K.H.; Yoon, K.H.; Kim, H.W.; Park, C.W.; Li, G.; Liu, Z.; Ko, S.H. Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice. PLoS One, 2012, 7(11), e50412.
[http://dx.doi.org/10.1371/journal.pone.0050412] [PMID: 23226280]
[81]
Zhang, J.; Chen, L.; Zheng, J.; Zeng, T.; Li, H.; Xiao, H.; Deng, X.; Hu, X. The protective effect of resveratrol on islet insulin secretion and morphology in mice on a high- fat diet. Diabetes Res. Clin. Pract., 2012, 97(3), 474-482.
[http://dx.doi.org/10.1016/j.diabres.2012.02.029] [PMID: 22497970]
[82]
Liu, C.W.; Huang, C.C.; Hsu, C.F.; Li, T.H.; Tsai, Y.L.; Lin, M.W.; Tsai, H.C.; Huang, S.F.; Yang, Y.Y.; Hsieh, Y.C.; Lee, T.Y.; Tsai, C.Y.; Huang, Y.H.; Hou, M.C.; Lin, H.C. SIRT1-dependent mechanisms and effects of resveratrol for amelioration of muscle wasting in NASH mice. BMJ Open Gastroenterol., 2020, 7(1), e000381.
[http://dx.doi.org/10.1136/bmjgast-2020-000381] [PMID: 32371503]
[83]
Zhao, W.; Li, A.; Feng, X.; Hou, T.; Liu, K.; Liu, B.; Zhang, N. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell. Signal., 2016, 28(9), 1401-1411.
[http://dx.doi.org/10.1016/j.cellsig.2016.06.018] [PMID: 27343375]
[84]
Chang, C.C.; Lin, K.Y.; Peng, K.Y.; Day, Y.J.; Hung, L.M. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr. J., 2016, 63(2), 169-178.
[http://dx.doi.org/10.1507/endocrj.EJ15-0545] [PMID: 26698690]
[85]
Li, Y.; Zhong, S.; Yan, H.; Wang, K.; Chen, L.; Zhou, M.; Li, Y. Resveratrol reverts Streptozotocin-induced diabetic nephropathy. Front. Biosci., 2020, 25(4), 699-709.
[http://dx.doi.org/10.2741/4829] [PMID: 31585912]
[86]
Meex, R.C.R.; Blaak, E.E.; Loon, L.J.C. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes. Rev., 2019, 20(9), 1205-1217.
[http://dx.doi.org/10.1111/obr.12862] [PMID: 31240819]
[87]
Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol., 2021, 17(5), 276-295.
[http://dx.doi.org/10.1038/s41574-021-00471-8] [PMID: 33627836]
[88]
Milton-Laskibar, I.; Gómez-Zorita, S.; Aguirre, L.; Fernández-Quintela, A.; González, M.; Portillo, M. Resveratrol-induced effects on body fat differ depending on feeding conditions. Molecules, 2017, 22(12), 2091.
[http://dx.doi.org/10.3390/molecules22122091] [PMID: 29186045]
[89]
Jimenez-Gomez, Y.; Mattison, J.A.; Pearson, K.J.; Martin-Montalvo, A.; Palacios, H.H.; Sossong, A.M.; Ward, T.M.; Younts, C.M.; Lewis, K.; Allard, J.S.; Longo, D.L.; Belman, J.P.; Malagon, M.M.; Navas, P.; Sanghvi, M.; Moaddel, R.; Tilmont, E.M.; Herbert, R.L.; Morrell, C.H.; Egan, J.M.; Baur, J.A.; Ferrucci, L.; Bogan, J.S.; Bernier, M.; de Cabo, R. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab., 2013, 18(4), 533-545.
[http://dx.doi.org/10.1016/j.cmet.2013.09.004] [PMID: 24093677]
[90]
Ku, C.R.; Cho, Y.H.; Hong, Z.Y.; Lee, H.; Lee, S.J.; Hong, S.; Lee, E.J. The effects of high fat diet and resveratrol on mitochondrial activity of brown adipocytes. Endocrinol. Metab., 2016, 31(2), 328-335.
[http://dx.doi.org/10.3803/EnM.2016.31.2.328] [PMID: 27077216]
[91]
Asadi, S.; Rahimi, Z.; Saidijam, M.; Shabab, N.; Goodarzi, M.T. Effects of resveratrol on FOXO1 and FOXO3a genes expression in adipose tissue, serum insulin, insulin resistance and serum SOD activity in type 2 diabetic rats. Int. J. Mol. Cell. Med., 2018, 7(3), 176-184.
[PMID: 31565649]
[92]
Zhao, W.; Li, A.; Feng, X.; Hou, T.; Liu, K.; Liu, B.; Zhang, N. Data on biochemical indexes of HFD-fed mice treatment with metformin or resveratrol. Data Brief, 2016, 8, 1190-1193.
[http://dx.doi.org/10.1016/j.dib.2016.07.049] [PMID: 27547796]
[93]
Baile, C.A.; Yang, J.Y.; Rayalam, S.; Hartzell, D.L.; Lai, C.Y.; Andersen, C.; Della-Fera, M.A. Effect of resveratrol on fat mobilization. Ann. N. Y. Acad. Sci., 2011, 1215(1), 40-47.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05845.x] [PMID: 21261640]
[94]
Fernández-Quintela, A.; Milton-Laskibar, I.; González, M.; Portillo, M.P. Antiobesity effects of resveratrol: Which tissues are involved? Ann. N. Y. Acad. Sci., 2017, 1403(1), 118-131.
[http://dx.doi.org/10.1111/nyas.13413] [PMID: 28796895]
[95]
Kra, G.; Daddam, J.R.; Gabay, H.; Yosefi, S.; Zachut, M. Antioxidant resveratrol increases lipolytic and reduces lipogenic gene expression under in vitro heat stress conditions in dedifferentiated adipocyte-derived progeny cells from dairy cows. Antioxidants, 2021, 10(6), 905.
[http://dx.doi.org/10.3390/antiox10060905] [PMID: 34205039]
[96]
Lasa, A.; Schweiger, M.; Kotzbeck, P.; Churruca, I.; Simón, E.; Zechner, R.; Portillo, M.P. Resveratrol regulates lipolysis via adipose triglyceride lipase. J. Nutr. Biochem., 2012, 23(4), 379-384.
[http://dx.doi.org/10.1016/j.jnutbio.2010.12.014] [PMID: 21543206]
[97]
Cui, J.; Bai, Y.; Wu, L.; Sun, M.; Lin, C.; Zhang, H.; Su, M.; Song, W. Effects of exercise and resveratrol on retinol binding protein 4, blood glucose and insulin sensitivity in aged obese rats. Wei Sheng Yen Chiu, 2017, 46(4), 602-609.
[PMID: 29903183]
[98]
Cui, J.Q.; Bai, Y.P.; Su, M.; Song, W.W.; Lin, C.; Wu, L.; Zhang, H.Y. Effects of different intensities exercise combined with resveratrol on RBP4 in aged obese rats. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2017, 33(5), 461-465.
[PMID: 29926594]
[99]
Rosenow, A.; Noben, J.P.; Jocken, J.; Kallendrusch, S.; Fischer-Posovszky, P.; Mariman, E.C.M.; Renes, J. Resveratrol-induced changes of the human adipocyte secretion profile. J. Proteome Res., 2012, 11(9), 4733-4743.
[http://dx.doi.org/10.1021/pr300539b] [PMID: 22905912]
[100]
Song, Y-J; Zhong, C-B; Wu, W Resveratrol and diabetic cardiomyopathy: Focusing on the protective signaling mechanisms. Oxidative Med. Cell. Longevity, 2020, 2020, 7051845.
[http://dx.doi.org/10.1155/2020/7051845]
[101]
Sowton, A.P.; Griffin, J.L.; Murray, A.J. Metabolic profiling of the diabetic heart: Toward a richer picture. Front. Physiol., 2019, 10, 639.
[http://dx.doi.org/10.3389/fphys.2019.00639] [PMID: 31214041]
[102]
Li, W.; Yao, M.; Wang, R.; Shi, Y.; Hou, L.; Hou, Z.; Lian, K.; Zhang, N.; Wang, Y.; Li, W.; Wang, W.; Jiang, L. Profile of cardiac lipid metabolism in STZ-induced diabetic mice. Lipids Health Dis., 2018, 17(1), 231.
[http://dx.doi.org/10.1186/s12944-018-0872-8] [PMID: 30301464]
[103]
Wang, L.; Cai, Y.; Jian, L.; Cheung, C.W.; Zhang, L.; Xia, Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc. Diabetol., 2021, 20(1), 2.
[http://dx.doi.org/10.1186/s12933-020-01188-0] [PMID: 33397369]
[104]
Bayeva, M.; Sawicki, K.T.; Ardehali, H. Taking diabetes to heart--deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J. Am. Heart Assoc., 2013, 2(6), e000433.
[http://dx.doi.org/10.1161/JAHA.113.000433] [PMID: 24275630]
[105]
Ahmad, I.; Hoda, M. Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy. Pharmacol. Res., 2020, 161, 105112.
[http://dx.doi.org/10.1016/j.phrs.2020.105112] [PMID: 32758636]
[106]
Dolinsky, V.W.; Jones, K.E.; Sidhu, R.S.; Haykowsky, M.; Czubryt, M.P.; Gordon, T.; Dyck, J.R.B. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. J. Physiol., 2012, 590(11), 2783-2799.
[http://dx.doi.org/10.1113/jphysiol.2012.230490] [PMID: 22473781]
[107]
Rimbaud, S.; Ruiz, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One, 2011, 6(10), e26391.
[http://dx.doi.org/10.1371/journal.pone.0026391] [PMID: 22028869]
[108]
Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones, 2018, 17(1), 61-67.
[http://dx.doi.org/10.1007/s42000-018-0014-8] [PMID: 29858856]
[109]
Lieben Louis, X.; Raj, P.; Meikle, Z.; Yu, L.; Susser, S.E.; MacInnis, S.; Duhamel, T.A.; Wigle, J.T.; Netticadan, T. Resveratrol prevents palmitic-acid-induced cardiomyocyte contractile impairment. Can. J. Physiol. Pharmacol., 2019, 97(12), 1132-1140.
[http://dx.doi.org/10.1139/cjpp-2019-0051] [PMID: 31374178]
[110]
Mantovani, A.; Scorletti, E.; Mosca, A.; Alisi, A.; Byrne, C.D.; Targher, G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism, 2020, 111, 154170.
[http://dx.doi.org/10.1016/j.metabol.2020.154170] [PMID: 32006558]
[111]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[112]
Smith, B.W.; Adams, L.A. Non-alcoholic fatty liver disease. Crit. Rev. Clin. Lab. Sci., 2011, 48(3), 97-113.
[http://dx.doi.org/10.3109/10408363.2011.596521] [PMID: 21875310]
[113]
Powell, E.E.; Wong, V.W.S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet, 2021, 397(10290), 2212-2224.
[http://dx.doi.org/10.1016/S0140-6736(20)32511-3] [PMID: 33894145]
[114]
Paul, S.B.; Dhamija, E.; Kedia, S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J. Med. Res., 2019, 149(1), 9-17.
[http://dx.doi.org/10.4103/ijmr.IJMR_1456_17] [PMID: 31115369]
[115]
Kneeman, J.M.; Misdraji, J.; Corey, K.E. Secondary causes of nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol., 2012, 5(3), 199-207.
[http://dx.doi.org/10.1177/1756283X11430859] [PMID: 22570680]
[116]
Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci., 2018, 75(18), 3313-3327.
[http://dx.doi.org/10.1007/s00018-018-2860-6] [PMID: 29936596]
[117]
Pei, K; Gui, T; Kan, D; Feng, H; Jin, Y; Yang, Y An overview of lipid metabolism and nonalcoholic fatty liver disease. BioMed. Res. Int., 2020, 2020, 4020249.
[http://dx.doi.org/10.1155/2020/4020249]
[118]
Huang, Y.; Lang, H.; Chen, K.; Zhang, Y.; Gao, Y.; Ran, L.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. Appl. Physiol. Nutr. Metab., 2020, 45(3), 227-239.
[http://dx.doi.org/10.1139/apnm-2019-0057] [PMID: 31173696]
[119]
Theodotou, M.; Fokianos, K.; Moniatis, D.; Kadlenic, R.; Chrysikou, A.; Aristotelous, A.; Mouzouridou, A.; Diakides, J.; Stavrou, E. Effect of resveratrol on non-alcoholic fatty liver disease. Exp. Ther. Med., 2019, 18(1), 559-565.
[http://dx.doi.org/10.3892/etm.2019.7607] [PMID: 31316594]
[120]
Heebøll, S.; Thomsen, K.L.; Pedersen, S.B.; Vilstrup, H.; George, J.; Grønbæk, H. Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease. World J. Hepatol., 2014, 6(4), 188-198.
[http://dx.doi.org/10.4254/wjh.v6.i4.188] [PMID: 24799987]
[121]
Shang, J.; Chen, L.; Xiao, F.; Sun, H.; Ding, H.; Xiao, H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol. Sin., 2008, 29(6), 698-706.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00807.x] [PMID: 18501116]
[122]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[123]
Alberdi, G.; Rodríguez, V.M.; Macarulla, M.T.; Miranda, J.; Churruca, I.; Portillo, M.P. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition, 2013, 29(3), 562-567.
[http://dx.doi.org/10.1016/j.nut.2012.09.011] [PMID: 23274094]
[124]
Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; Hubbard, B.P.; Varela, A.T.; Davis, J.G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A.P.; Coppari, R.; Palmeira, C.M.; de Cabo, R.; Baur, J.A.; Sinclair, D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab., 2012, 15(5), 675-690.
[http://dx.doi.org/10.1016/j.cmet.2012.04.003] [PMID: 22560220]
[125]
Shabani, M.; Sadeghi, A.; Hosseini, H.; Teimouri, M.; Babaei Khorzoughi, R.; Pasalar, P.; Meshkani, R. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Sci. Rep., 2020, 10(1), 3791.
[http://dx.doi.org/10.1038/s41598-020-60185-1] [PMID: 32123188]
[126]
Simmons, G., Jr; Pruitt, W.; Pruitt, K. Diverse roles of SIRT1 in cancer biology and lipid metabolism. Int. J. Mol. Sci., 2015, 16(1), 950-965.
[http://dx.doi.org/10.3390/ijms16010950] [PMID: 25569080]
[127]
Li, X. SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin., 2013, 45(1), 51-60.
[http://dx.doi.org/10.1093/abbs/gms108] [PMID: 23257294]
[128]
Ding, R.B.; Bao, J.; Deng, C.X. Emerging roles of SIRT1 in fatty liver diseases. Int. J. Biol. Sci., 2017, 13(7), 852-867.
[http://dx.doi.org/10.7150/ijbs.19370] [PMID: 28808418]
[129]
Colak, Y.; Ozturk, O.; Senates, E.; Tuncer, I.; Yorulmaz, E.; Adali, G.; Doganay, L.; Enc, F.Y. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Med. Sci. Monit., 2011, 17(5), HY5-HY9.
[http://dx.doi.org/10.12659/MSM.881749] [PMID: 21525818]
[130]
Gao, M.; Liu, D. Resveratrol suppresses T0901317-induced hepatic fat accumulation in mice. AAPS J., 2013, 15(3), 744-752.
[http://dx.doi.org/10.1208/s12248-013-9473-7] [PMID: 23591747]
[131]
Chen, S.; Li, J.; Zhang, Z.; Li, W.; Sun, Y.; Zhang, Q.; Feng, X.; Zhu, W. Effects of resveratrol on the amelioration of insulin resistance in KKAy mice. Can. J. Physiol. Pharmacol., 2012, 90(2), 237-242.
[http://dx.doi.org/10.1139/y11-123] [PMID: 22309033]
[132]
Hosseini, H.; Teimouri, M.; Shabani, M.; Koushki, M.; Babaei Khorzoughi, R.; Namvarjah, F.; Izadi, P.; Meshkani, R. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int. J. Biochem. Cell Biol., 2020, 119, 105667.
[http://dx.doi.org/10.1016/j.biocel.2019.105667] [PMID: 31838177]
[133]
Teimouri, M.; Hosseini, H.; Shabani, M.; Koushki, M.; Noorbakhsh, F.; Meshkani, R. Inhibiting miR-27a and miR-142-5p attenuate nonalcoholic fatty liver disease by regulating Nrf2 signaling pathway. IUBMB Life, 2020, 72(3), 361-372.
[http://dx.doi.org/10.1002/iub.2221] [PMID: 31889412]
[134]
Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab., 2011, 14(5), 612-622.
[http://dx.doi.org/10.1016/j.cmet.2011.10.002] [PMID: 22055504]
[135]
Poulsen, M.M.; Vestergaard, P.F.; Clasen, B.F.; Radko, Y.; Christensen, L.P.; Stødkilde-Jørgensen, H.; Møller, N.; Jessen, N.; Pedersen, S.B.; Jørgensen, J.O.L. High-dose resveratrol supplementation in obese men: An investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes, 2013, 62(4), 1186-1195.
[http://dx.doi.org/10.2337/db12-0975] [PMID: 23193181]
[136]
Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.; Schechtman, K.B.; Gu, C.; Kunz, I.; Fanelli, F.R.; Patterson, B.W.; Klein, S. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab., 2012, 16(5), 658-664.
[http://dx.doi.org/10.1016/j.cmet.2012.09.015] [PMID: 23102619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy