Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

NAD Pathways in Diabetic Coronary Heart Disease: Unveiling the Key Players

Author(s): Yuan Liu, Wenjing Zhan, Lexun Wang and Weixuan Wang*

Volume 32, Issue 11, 2025

Published on: 22 February, 2024

Page: [2202 - 2218] Pages: 17

DOI: 10.2174/0109298673293982240221050207

Price: $65

TIMBC 2026
Abstract

Diabetic coronary heart disease is a global medical problem that poses a serious threat to human health, and its pathogenesis is complex and interconnected. Nicotinamide adenine dinucleotide (NAD) is an important small molecule used in the body that serves as a coenzyme in redox reactions and as a substrate for non-redox processes. NAD levels are highly controlled by various pathways, and increasing evidence has shown that NAD pathways, including NAD precursors and key enzymes involved in NAD synthesis and catabolism, exert both positive and negative effects on the pathogenesis of diabetic coronary heart disease. Thus, the mechanisms by which the NAD pathway acts in diabetic coronary heart disease require further investigation. This review first briefly introduces the current understanding of the intertwined pathological mechanisms of diabetic coronary heart disease, including insulin resistance, dyslipidemia, oxidative stress, chronic inflammation, and intestinal flora dysbiosis. Then, we mainly review the relationships between NAD pathways, such as nicotinic acid, tryptophan, the kynurenine pathway, nicotinamide phosphoribosyltransferase, and sirtuins, and the pathogenic mechanisms of diabetic coronary heart disease. Moreover, we discuss the potential of targeting NAD pathways in the prevention and treatment of diabetic coronary heart disease, which may provide important strategies to modulate its progression.

Keywords: NAD pathways, diabetic coronary heart disease, insulin resistance, dyslipidemia, oxidative stress, chronic inflammation.

[1]
Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, 2021.
[2]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[3]
Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol., 2018, 17(1), 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[4]
Sarwar, N.; Gao, P.; Seshasai, S.R.K.; GobinE, R.; Kaptoge, S.; Angelantonio, D.; Ingelsson, E; Lawlor, D.A.; Selvin, E.; Stampfer, M.; Stehouwer, C.D.A.; Lewington, S.; Pennells, L.; Thompson, A.; Sattar, N.; White, I.R.; Ray, K.K.; Danesh, J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 2010, 375, 2215-2222.
[5]
Wang, Y.; Yu, Q.; Fan, D.; Cao, F. Coronary heart disease in Type 2 diabetes: mechanisms and comprehensive prevention strategies. Expert Rev. Cardiovasc. Ther., 2012, 10(8), 1051-1060.
[http://dx.doi.org/10.1586/erc.12.52] [PMID: 23030294]
[6]
Jansson, P.A. Endothelial dysfunction in insulin resistance and type 2 diabetes. J. Intern. Med., 2007, 262(2), 173-183.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01830.x] [PMID: 17645585]
[7]
Katsiki, N.; Tentolouris, N.; Mikhailidis, D.P. Dyslipidaemia in type 2 diabetes mellitus. Curr. Opin. Cardiol., 2017, 32(4), 422-429.
[http://dx.doi.org/10.1097/HCO.0000000000000407] [PMID: 28362666]
[8]
Tibaut, M.; Petrovič, D. Oxidative stress genes, antioxidants and coronary artery disease in type 2 diabetes mellitus. Cardiovasc. Hematol. Agents Med. Chem., 2016, 14(1), 23-38.
[http://dx.doi.org/10.2174/1871525714666160407143416] [PMID: 27052028]
[9]
Smani, T.; Gallardo-Castillo, I.; Ávila-Médina, J.; Jimenez-Navarro, M.F.; Ordoñez, A.; Hmadcha, A. Impact of diabetes on cardiac and vascular disease: Role of calcium signaling. Curr. Med. Chem., 2019, 26(22), 4166-4177.
[http://dx.doi.org/10.2174/0929867324666170523140925] [PMID: 28545369]
[10]
Navas, L.E.; Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct. Target. Ther., 2021, 6(1), 2.
[http://dx.doi.org/10.1038/s41392-020-00354-w] [PMID: 33384409]
[11]
Zapata-Pérez, R.; Wanders, R.J.A.; van Karnebeek, C.D.M.; Houtkooper, R.H. NAD+ homeostasis in human health and disease. EMBO Mol. Med., 2021, 13(7), e13943.
[http://dx.doi.org/10.15252/emmm.202113943] [PMID: 34041853]
[12]
Abdellatif, M.; Sedej, S.; Kroemer, G. NAD+ metabolism in cardiac health, aging, and disease. Circulation, 2021, 144(22), 1795-1817.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.056589] [PMID: 34843394]
[13]
Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol., 2014, 24(8), 464-471.
[http://dx.doi.org/10.1016/j.tcb.2014.04.002] [PMID: 24786309]
[14]
Bogan, K.L.; Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr., 2008, 28(1), 115-130.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155443] [PMID: 18429699]
[15]
Dong, Y.; Chen, H.; Gao, J.; Liu, Y.; Li, J.; Wang, J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell. Cardiol., 2019, 136, 27-41.
[http://dx.doi.org/10.1016/j.yjmcc.2019.09.001] [PMID: 31505198]
[16]
Freeman, A.M.; Raman, S.V.; Aggarwal, M.; Maron, D.J.; Bhatt, D.L.; Parwani, P.; Osborne, J.; Earls, J.P.; Min, J.K.; Bax, J.J.; Shapiro, M.D. Integrating coronary atherosclerosis burden and progression with coronary artery disease risk factors to guide therapeutic decision making. Am. J. Med., 2023, 136(3), 260-269.e7.
[http://dx.doi.org/10.1016/j.amjmed.2022.10.021] [PMID: 36509122]
[17]
American diabetes association professional practice committee. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care, 2022, 45(S1), S17-S38.
[http://dx.doi.org/10.2337/dc22-S002] [PMID: 34964875]
[18]
Gonna, H.; Ray, K.K. The importance of dyslipidaemia in the pathogenesis of cardiovascular disease in people with diabetes. Diabetes Obes. Metab., 2019, 21(S1), 6-16.
[http://dx.doi.org/10.1111/dom.13691] [PMID: 31002453]
[19]
Aronson, D. Hyperglycemia and the pathobiology of diabetic complications. Adv. Cardiol., 2008, 45, 1-16.
[http://dx.doi.org/10.1159/000115118] [PMID: 18230953]
[20]
Rashid, S.; Uffelman, K.D.; Lewis, G.F. The mechanism of HDL lowering in hypertriglyceridemic, insulin-resistant states. J. Diabetes Complications, 2002, 16(1), 24-28.
[http://dx.doi.org/10.1016/S1056-8727(01)00191-X] [PMID: 11872362]
[21]
Nicholls, S.J.; Zheng, L.; Hazen, S.L. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc. Med., 2005, 15(6), 212-219.
[http://dx.doi.org/10.1016/j.tcm.2005.06.004] [PMID: 16182131]
[22]
Rizzo, M.; Berneis, K. Low-density lipoprotein size and cardiovascular risk assessment. QJM, 2006, 99(1), 1-14.
[http://dx.doi.org/10.1093/qjmed/hci154] [PMID: 16371404]
[23]
Carmena, R. Type 2 diabetes, dyslipidemia, and vascular risk: Rationale and evidence for correcting the lipid imbalance. Am. Heart J., 2005, 150(5), 859-870.
[http://dx.doi.org/10.1016/j.ahj.2005.04.027] [PMID: 16290951]
[24]
Otani, H. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid. Redox Signal., 2011, 15(7), 1911-1926.
[http://dx.doi.org/10.1089/ars.2010.3739] [PMID: 21126197]
[25]
Andreadi, A.; Bellia, A.; Di Daniele, N.; Meloni, M.; Lauro, R.; Della-Morte, D.; Lauro, D. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr. Opin. Pharmacol., 2022, 62, 85-96.
[http://dx.doi.org/10.1016/j.coph.2021.11.010] [PMID: 34959126]
[26]
Vekic, J.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; Memon, L.; Zeljkovic, A.; Bogavac-Stanojevic, N.; Spasic, S. High serum uric acid and low-grade inflammation are associated with smaller LDL and HDL particles. Atherosclerosis, 2009, 203(1), 236-242.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.05.047] [PMID: 18603253]
[27]
Katakami, N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J. Atheroscler. Thromb., 2018, 25(1), 27-39.
[http://dx.doi.org/10.5551/jat.RV17014] [PMID: 28966336]
[28]
Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med., 2011, 17(2), 179-188.
[http://dx.doi.org/10.1038/nm.2279] [PMID: 21217695]
[29]
Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; Daiber, A. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/7092151] [PMID: 31341533]
[30]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.W.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[31]
Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells, 2021, 10(11), 3164.
[http://dx.doi.org/10.3390/cells10113164] [PMID: 34831387]
[32]
Amyot, J.; Semache, M.; Ferdaoussi, M.; Fontés, G.; Poitout, V. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PLoS One, 2012, 7(4), e36200.
[http://dx.doi.org/10.1371/journal.pone.0036200] [PMID: 22558381]
[33]
Saad, M.J.A.; Santos, A.; Prada, P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology, 2016, 31(4), 283-293.
[http://dx.doi.org/10.1152/physiol.00041.2015] [PMID: 27252163]
[34]
Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc., 2021, 80(1), 37-49.
[http://dx.doi.org/10.1017/S0029665120006916] [PMID: 32238208]
[35]
Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 119-141.
[http://dx.doi.org/10.1038/s41580-020-00313-x] [PMID: 33353981]
[36]
Khaidizar, F.D.; Bessho, Y.; Nakahata, Y. Nicotinamide phosphoribosyltransferase as a key molecule of the aging/senescence process. Int. J. Mol. Sci., 2021, 22(7), 3709.
[http://dx.doi.org/10.3390/ijms22073709] [PMID: 33918226]
[37]
Castro-Portuguez, R.; Sutphin, G.L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol., 2020, 132, 110841.
[http://dx.doi.org/10.1016/j.exger.2020.110841] [PMID: 31954874]
[38]
Landay, A.L.; Paddy, W.G.M. HIV and comorbidities - the importance of gut inflammation and the kynurenine pathway. Curr. Opin. HIV AIDS, 2023, 18(2), 102-110.
[39]
Yang, S.J.; Choi, J.M.; Kim, L.; Park, S.E.; Rhee, E.J.; Lee, W.Y.; Oh, K.W.; Park, S.W.; Park, C.Y. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem., 2014, 25(1), 66-72.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.004] [PMID: 24314867]
[40]
Amé, J.C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. BioEssays, 2004, 26(8), 882-893.
[http://dx.doi.org/10.1002/bies.20085] [PMID: 15273990]
[41]
Szántó, M.; Gupte, R.; Kraus, W.L.; Pacher, P.; Bai, P. PARPs in lipid metabolism and related diseases. Prog. Lipid Res., 2021, 84, 101117.
[http://dx.doi.org/10.1016/j.plipres.2021.101117] [PMID: 34450194]
[42]
Bai, P.; Cantó, C.; Oudart, H.; Brunyánszki, A.; Cen, Y.; Thomas, C.; Yamamoto, H.; Huber, A.; Kiss, B.; Houtkooper, R.H.; Schoonjans, K.; Schreiber, V.; Sauve, A.A.; Menissier-de Murcia, J.; Auwerx, J. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab., 2011, 13(4), 461-468.
[http://dx.doi.org/10.1016/j.cmet.2011.03.004] [PMID: 21459330]
[43]
Ying, W.; Garnier, P.; Swanson, R.A. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem. Biophys. Res. Commun., 2003, 308(4), 809-813.
[http://dx.doi.org/10.1016/S0006-291X(03)01483-9] [PMID: 12927790]
[44]
Fehr, A.R.; Singh, S.A.; Kerr, C.M.; Mukai, S.; Higashi, H.; Aikawa, M. The impact of PARPs and ADP-ribosylation on inflammation and host–pathogen interactions. Genes Dev., 2020, 34(5-6), 341-359.
[http://dx.doi.org/10.1101/gad.334425.119] [PMID: 32029454]
[45]
Malavasi, F.; Deaglio, S.; Ferrero, E.; Funaro, A.; Sancho, J.; Ausiello, C.M.; Ortolan, E.; Vaisitti, T.; Zubiaur, M.; Fedele, G.; Aydin, S.; Tibaldi, E.V.; Durelli, I.; Lusso, R.; Cozno, F.; Horenstein, A.L. CD38 and CD157 as receptors of the immune system: A bridge between innate and adaptive immunity. Mol. Med., 2006, 12(11-12), 334-341.
[http://dx.doi.org/10.2119/2006-00094.Malavasi] [PMID: 17380201]
[46]
Malavasi, F.; Deaglio, S.; Funaro, A.; Ferrero, E.; Horenstein, A.L.; Ortolan, E.; Vaisitti, T.; Aydin, S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev., 2008, 88(3), 841-886.
[http://dx.doi.org/10.1152/physrev.00035.2007] [PMID: 18626062]
[47]
Barbosa, M.T.P.; Soares, S.M.; Novak, C.M.; Sinclair, D.; Levine, J.A.; Aksoy, P.; Chini, E.N. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J., 2007, 21(13), 3629-3639.
[http://dx.doi.org/10.1096/fj.07-8290com] [PMID: 17585054]
[48]
Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschöp, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev., 2012, 92(3), 1479-1514.
[http://dx.doi.org/10.1152/physrev.00022.2011] [PMID: 22811431]
[49]
Dryden, S.C.; Nahhas, F.A.; Nowak, J.E.; Goustin, A.S.; Tainsky, M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003, 23(9), 3173-3185.
[http://dx.doi.org/10.1128/MCB.23.9.3173-3185.2003] [PMID: 12697818]
[50]
Verdin, E.; Hirschey, M.D.; Finley, L.W.S.; Haigis, M.C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem. Sci., 2010, 35(12), 669-675.
[http://dx.doi.org/10.1016/j.tibs.2010.07.003] [PMID: 20863707]
[51]
D’Onofrio, N.; Servillo, L.; Balestrieri, M.L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal, 2018, 28, 711-732.
[52]
Kashyap, S.R.; Defronzo, R.A. The insulin resistance syndrome: Physiological considerations. Diab. Vasc. Dis. Res., 2007, 4(1), 13-19.
[http://dx.doi.org/10.3132/dvdr.2007.001] [PMID: 17469039]
[53]
Rachdaoui, N. Insulin: The friend and the foe in the development of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(5), 1770.
[http://dx.doi.org/10.3390/ijms21051770] [PMID: 32150819]
[54]
Khalilov, R.; Abdullayeva, Sh. Mechanisms of insulin action and insulin resistance. ABES, 2023, 8, 165-179.
[55]
Reaven, G. Insulin resistance and coronary heart disease in nondiabetic individuals. Arterioscler. Thromb. Vasc. Biol., 2012, 32(8), 1754-1759.
[http://dx.doi.org/10.1161/ATVBAHA.111.241885] [PMID: 22815340]
[56]
Stout, R.W.; Vallance-Owen, J. Insulin and atheroma. Lancet, 1969, 293(7605), 1078-1080.
[http://dx.doi.org/10.1016/S0140-6736(69)91711-5] [PMID: 4181737]
[57]
Reusch, J.E.B. Current concepts in insulin resistance, type 2 diabetes mellitus, and the metabolic syndrome. Am. J. Cardiol., 2002, 90(5), 19-26.
[http://dx.doi.org/10.1016/S0002-9149(02)02555-9] [PMID: 12231075]
[58]
Yoshino, M.; Yoshino, J.; Kayser, B.D.; Patti, G.J.; Franczyk, M.P.; Mills, K.F.; Sindelar, M.; Pietka, T.; Patterson, B.W.; Imai, S.I.; Klein, S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science, 2021, 372(6547), 1224-1229.
[http://dx.doi.org/10.1126/science.abe9985] [PMID: 33888596]
[59]
Zhou, S.; Tang, X.; Chen, H.Z. Sirtuins and insulin resistance. Front. Endocrinol., 2018, 9, 748.
[http://dx.doi.org/10.3389/fendo.2018.00748] [PMID: 30574122]
[60]
Fröjdö, S.; Durand, C.; Molin, L.; Carey, A.L.; El-Osta, A.; Kingwell, B.A.; Febbraio, M.A.; Solari, F.; Vidal, H.; Pirola, L. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol. Cell. Endocrinol., 2011, 335(2), 166-176.
[http://dx.doi.org/10.1016/j.mce.2011.01.008] [PMID: 21241768]
[61]
Alam, F.; Syed, H.; Amjad, S.; Baig, M.; Khan, T.A.; Rehman, R. Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Curr. Res. Physiol., 2021, 4, 119-124.
[http://dx.doi.org/10.1016/j.crphys.2021.03.002] [PMID: 34746831]
[62]
Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1145-1154.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013] [PMID: 25445538]
[63]
Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia, 2003, 46(6), 733-749.
[http://dx.doi.org/10.1007/s00125-003-1111-y] [PMID: 12774165]
[64]
Ginsberg, H.N. New perspectives on atherogenesis: Role of abnormal triglyceride-rich lipoprotein metabolism. Circulation, 2002, 106(16), 2137-2142.
[http://dx.doi.org/10.1161/01.CIR.0000035280.64322.31] [PMID: 12379586]
[65]
Digby, J.E.; Lee, J.M.S.; Choudhury, R.P. Nicotinic acid and the prevention of coronary artery disease. Curr. Opin. Lipidol., 2009, 20(4), 321-326.
[http://dx.doi.org/10.1097/MOL.0b013e32832d3b9d] [PMID: 19494772]
[66]
Julius, U.; Fischer, S. Nicotinic acid as a lipid-modifying drug - A review. Atheroscler. Suppl., 2013, 14(1), 7-13.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2012.10.036] [PMID: 23357134]
[67]
Poynten, A.M.; Khee Gan, S.; Kriketos, A.D.; O’Sullivan, A.; Kelly, J.J.; Ellis, B.A.; Chisholm, D.J.; Campbell, L.V. Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metabolism, 2003, 52(6), 699-704.
[http://dx.doi.org/10.1016/S0026-0495(03)00030-1] [PMID: 12800094]
[68]
Murr, C.; Grammer, T.B.; Kleber, M.E.; Meinitzer, A.; März, W.; Fuchs, D. Low serum tryptophan predicts higher mortality in cardiovascular disease. Eur. J. Clin. Invest., 2015, 45(3), 247-254.
[http://dx.doi.org/10.1111/eci.12402] [PMID: 25586781]
[69]
Zhang, L.; Ovchinnikova, O.; Jönsson, A.; Lundberg, A.M.; Berg, M.; Hansson, G.K.; Ketelhuth, D.F.J. The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. Eur. Heart J., 2012, 33(16), 2025-2034.
[http://dx.doi.org/10.1093/eurheartj/ehs175] [PMID: 22711758]
[70]
Chang, M.Y.; Smith, C.; DuHadaway, J.B.; Pyle, J.R.; Boulden, J.; Soler, A.P.; Muller, A.J.; Laury-Kleintop, L.D.; Prendergast, G.C. Cardiac and gastrointestinal liabilities caused by deficiency in the immune modulatory enzyme indoleamine 2,3-dioxygenase. Cancer Biol. Ther., 2011, 12(12), 1050-1058.
[http://dx.doi.org/10.4161/cbt.12.12.18142] [PMID: 22157149]
[71]
Matsuda, H.; Sato, M.; Yakushiji, M.; Koshiguchi, M.; Hirai, S.; Egashira, Y. Regulation of rat hepatic α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan-NAD pathway, by dietary cholesterol and sterol regulatory element-binding protein-2. Eur. J. Nutr., 2014, 53(2), 469-477.
[http://dx.doi.org/10.1007/s00394-013-0547-1] [PMID: 25289390]
[72]
Winnik, S.; Auwerx, J.; Sinclair, D.A.; Matter, C.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur. Heart J., 2015, 36(48), 3404-3412.
[http://dx.doi.org/10.1093/eurheartj/ehv290] [PMID: 26112889]
[73]
Hirschey, M.D.; Shimazu, T.; Goetzman, E.; Jing, E.; Schwer, B.; Lombard, D.B.; Grueter, C.A.; Harris, C.; Biddinger, S.; Ilkayeva, O.R.; Stevens, R.D.; Li, Y.; Saha, A.K.; Ruderman, N.B.; Bain, J.R.; Newgard, C.B.; Farese, R.V., Jr; Alt, F.W.; Kahn, C.R.; Verdin, E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464(7285), 121-125.
[http://dx.doi.org/10.1038/nature08778] [PMID: 20203611]
[74]
Tao, R.; Xiong, X.; DePinho, R.A.; Deng, C.X.; Dong, X.C. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J. Biol. Chem., 2013, 288(41), 29252-29259.
[http://dx.doi.org/10.1074/jbc.M113.481473] [PMID: 23974119]
[75]
Hertiš Petek, T.; Petek, T.; Močnik, M.; Marčun Varda, N. Systemic inflammation, oxidative stress and cardiovascular health in children and adolescents: A systematic review. Antioxidants, 2022, 11(5), 894.
[http://dx.doi.org/10.3390/antiox11050894] [PMID: 35624760]
[76]
Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab., 2013, 17(1), 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[77]
Ighodaro, O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother., 2018, 108, 656-662.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]
[78]
Yang, X.; He, T.; Han, S.; Zhang, X.; Sun, Y.; Xing, Y.; Shang, H. The role of traditional chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxid Med Cell Longev, 2019, 2019, 3231424.
[79]
Zhang, W.; Huang, Q.; Zeng, Z.; Wu, J.; Zhang, Y.; Chen, Z. Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/7543973] [PMID: 28546854]
[80]
Meng, T.; Qin, W.; Liu, B. SIRT1 antagonizes oxidative stress in diabetic vascular complication. Front. Endocrinol., 2020, 11, 568861.
[http://dx.doi.org/10.3389/fendo.2020.568861] [PMID: 33304318]
[81]
Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal, 2018, 28, 643-661.
[82]
Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep., 2013, 13(3), 435-444.
[http://dx.doi.org/10.1007/s11892-013-0375-y] [PMID: 23494755]
[83]
Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res., 2021, 117(13), cvab303.
[http://dx.doi.org/10.1093/cvr/cvab303] [PMID: 34550337]
[84]
Hoffman, W.H.; Whelan, S.A.; Lee, N. Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes. PLoS One, 2021, 16(7), e0254116.
[http://dx.doi.org/10.1371/journal.pone.0254116] [PMID: 34280211]
[85]
Ketelhuth, D.F.J. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: Immune homeostatic mechanisms in the artery wall. Cardiovasc. Res., 2019, 115(9), 1408-1415.
[http://dx.doi.org/10.1093/cvr/cvz067] [PMID: 30847484]
[86]
Sudar-Milovanovic, E.; Gluvic, Z.; Obradovic, M.; Zaric, B.; Isenovic, E.R. Tryptophan metabolism in atherosclerosis and diabetes. Curr. Med. Chem., 2022, 29(1), 99-113.
[http://dx.doi.org/10.2174/0929867328666210714153649] [PMID: 34269660]
[87]
Konje, V.C.; Rajendiran, T.M.; Bellovich, K.; Gadegbeku, C.A.; Gipson, D.S.; Afshinnia, F.; Mathew, A.V. Tryptophan levels associate with incident cardiovascular disease in chronic kidney disease. Clin. Kidney J., 2021, 14(4), 1097-1105.
[http://dx.doi.org/10.1093/ckj/sfaa031] [PMID: 34094518]
[88]
Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; McNiece, I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol., 1994, 14(2), 1431-1437.
[PMID: 8289818]
[89]
Kim, S.R.; Bae, Y.H.; Bae, S.K.; Choi, K.S.; Yoon, K.H.; Koo, T.H.; Jang, H.O.; Yun, I.; Kim, K.W.; Kwon, Y.G.; Yoo, M.A.; Bae, M.K. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κB activation in endothelial cells. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(5), 886-895.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.004] [PMID: 18241674]
[90]
Blankenberg, S.; Rupprecht, H.J.; Bickel, C.; Peetz, D.; Hafner, G.; Tiret, L.; Meyer, J. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation, 2001, 104(12), 1336-1342.
[http://dx.doi.org/10.1161/hc3701.095949] [PMID: 11560847]
[91]
Kong, Y.; Li, G.; Zhang, W.; Hua, X.; Zhou, C.; Xu, T.; Li, Z.; Wang, P.; Miao, C. Nicotinamide phosphoribosyltransferase aggravates inflammation and promotes atherosclerosis in ApoE knockout mice. Acta Pharmacol. Sin., 2019, 40(9), 1184-1192.
[http://dx.doi.org/10.1038/s41401-018-0207-3] [PMID: 30833708]
[92]
Bai, X.; He, T.; Liu, Y.; Zhang, J.; Li, X.; Shi, J.; Wang, K.; Han, F.; Zhang, W.; Zhang, Y.; Cai, W.; Hu, D. Acetylation-dependent regulation of notch signaling in macrophages by SIRT1 affects sepsis development. Front. Immunol., 2018, 9, 762.
[http://dx.doi.org/10.3389/fimmu.2018.00762] [PMID: 29867921]
[93]
Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and its roles in inflammation. Front. Immunol., 2022, 13, 831168.
[http://dx.doi.org/10.3389/fimmu.2022.831168] [PMID: 35359990]
[94]
Chan, S.H.; Hung, C.H.; Shih, J.Y.; Chu, P.M.; Cheng, Y.H.; Lin, H.C.; Tsai, K.L. SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease. Redox Biol., 2017, 13, 301-309.
[http://dx.doi.org/10.1016/j.redox.2017.05.027] [PMID: 28601780]
[95]
Lee, C.B.; Chae, S.U.; Jo, S.J.; Jerng, U.M.; Bae, S.K. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus. Int. J. Mol. Sci., 2021, 22(7), 3566.
[http://dx.doi.org/10.3390/ijms22073566] [PMID: 33808194]
[96]
Iatcu, C.O.; Steen, A.; Covasa, M. Gut microbiota and complications of type-2 diabetes. Nutrients, 2021, 14(1), 166.
[http://dx.doi.org/10.3390/nu14010166] [PMID: 35011044]
[97]
Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol., 2018, 8, 13.
[http://dx.doi.org/10.3389/fcimb.2018.00013] [PMID: 29468141]
[98]
Leustean, A.M.; Ciocoiu, M.; Sava, A.; Costea, C.F.; Floria, M.; Tarniceriu, C.C.; Tanase, D.M. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. J. Diabetes Res., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5205126] [PMID: 30539026]
[99]
Liu, N.; Sun, S.; Wang, P.; Sun, Y.; Hu, Q.; Wang, X. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int. J. Mol. Sci., 2021, 22(15), 7931.
[http://dx.doi.org/10.3390/ijms22157931] [PMID: 34360695]
[100]
Hodge, S.; Bunting, B.P.; Carr, E.; Strain, J.J.; Stewart- Knox, B.J. Obesity, whole blood serotonin and sex differences in healthy volunteers. Obes. Facts, 2012, 5(3), 399-407.
[http://dx.doi.org/10.1159/000339981] [PMID: 22797367]
[101]
Arnold, S.V.; Bhatt, D.L.; Barsness, G.W.; Beatty, A.L.; Deedwania, P.C.; Inzucchi, S.E.; Kosiborod, M.; Leiter, L.A.; Lipska, K.J.; Newman, J.D.; Welty, F.K. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: A scientific statement from the American heart association. Circulation, 2020, 141(19), e779-e806.
[http://dx.doi.org/10.1161/CIR.0000000000000766] [PMID: 32279539]
[102]
Horodinschi, R-N.; Stanescu, A.M.A.; Bratu, O.G.; Pantea Stoian, A.; Radavoi, D.G.; Diaconu, C.C. Treatment with statins in elderly patients. Medicina, 2019, 55(11), 721.
[103]
Baran, A.; Fırat Baran, M.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; İrtegün Kandemir, S.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; Rosić, G.; Selakovic, D.; Eftekhari, A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from cicer arietinum L. green leaf extract. Front. Bioeng. Biotechnol., 2022, 10, 855136.
[http://dx.doi.org/10.3389/fbioe.2022.855136] [PMID: 35330628]
[104]
Gunashova, G.Y. Synthesis of silver nanoparticles usıng a thermophilic bacterium strain isolated from the spring Yukhari Istisu of the Kalbajar region (Azerbaijan). Adv. Biol. Earth Sci., 2022, 7, 198-204.
[105]
Jagtap, R.R.; Garud, A.; Warude, B.; Puranik, S.S. Embelin isolated from Embelia ribes derived silver nanoparticles and its application in breast cancer nanomedicine. Mater. Today Proc., 2023, 73, 403-411.
[http://dx.doi.org/10.1016/j.matpr.2022.09.265]
[106]
Alkaladi, A.; Abdelazim, A.; Afifi, M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci., 2014, 15(2), 2015-2023.
[http://dx.doi.org/10.3390/ijms15022015] [PMID: 24477262]
[107]
Choudhury, H.; Pandey, M.; Lim, Y.Q.; Low, C.Y.; Lee, C.T.; Marilyn, T.C.L.; Loh, H.S.; Lim, Y.P.; Lee, C.F.; Bhattamishra, S.K.; Kesharwani, P.; Gorain, B. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Mater. Sci. Eng. C., 2020, 112, 110925.
[http://dx.doi.org/10.1016/j.msec.2020.110925] [PMID: 32409075]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy