Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Preclinical Data Extrapolation to Clinical Reality: A Translational Approach

Author(s): Prakhar Varshney and Phool Chandra*

Volume 22, Issue 3, 2025

Published on: 25 April, 2024

Article ID: e250424229318 Pages: 13

DOI: 10.2174/0115701638302778240417045451

Price: $65

TIMBC 2026
Abstract

In vivo investigations are much more complex than trials conducted in a test tube; the results sometimes aren't as illuminating and could raise more questions than answers. Preclinical data projection into clinical truth is a transcriptional science that remains a compelling trial in drug development. Preclinical in vivo and in vitro education is important in novel drug's non-violent or active growth. Pharmacokinetic and metabolic research is necessary to better understand the chemical and biological effects of medicines and their metabolites. Information produced by such a policy can be used to progress Phase I studies, primarily for anticancer medication. Both living and deceased in vitro models are theoretically excellent preclinical tools for calculating the pharmacological action of counterparts from the same family, such as vinca alkaloids. The animal species most closely linked to humans are chosen based on metabolic patterns. The estimation of the duration of drug action, particularly for medicines with varied metabolic clearances (e.g., benzodiazepines); The empathetic or estimate of medicine relations, i.e., those defined for cyclosporin A and macrolide antibiotics; and Sclarification of the metabolic roots of individual inconsistencies in pharmaceutical action.

Keywords: In vivo study, in vitro study, extrapolation, preclinical studies, preclinical trials, test tube.

[1]
Sinha, K.; Ghosh, N.; Sil, P.C. A review on the recent applications of deep learning in predictive drug toxicological studies. Chem. Res. Toxicol., 2023, 36(8), 1174-1205.
[http://dx.doi.org/10.1021/acs.chemrestox.2c00375] [PMID: 37561655]
[2]
Askr, H.; Elgeldawi, E.; Aboul Ella, H.; Elshaier, Y.A.M.M.; Gomaa, M.M.; Hassanien, A.E. Deep learning in drug discovery: an integrative review and future challenges. Artif. Intell. Rev., 2023, 56(7), 5975-6037.
[http://dx.doi.org/10.1007/s10462-022-10306-1] [PMID: 36415536]
[3]
Luo, Y.; Abidian, M.R.; Ahn, J.H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; Chen, J.; Chen, P.; Cheng, W.; Cheng, X.; Choi, S.J.; Chortos, A.; Dagdeviren, C.; Dauskardt, R.H.; Di, C.; Dickey, M.D.; Duan, X.; Facchetti, A.; Fan, Z.; Fang, Y.; Feng, J.; Feng, X.; Gao, H.; Gao, W.; Gong, X.; Guo, C.F.; Guo, X.; Hartel, M.C.; He, Z.; Ho, J.S.; Hu, Y.; Huang, Q.; Huang, Y.; Huo, F.; Hussain, M.M.; Javey, A.; Jeong, U.; Jiang, C.; Jiang, X.; Kang, J.; Karnaushenko, D.; Khademhosseini, A.; Kim, D.H.; Kim, I.D.; Kireev, D.; Kong, L.; Lee, C.; Lee, N.E.; Lee, P.S.; Lee, T.W.; Li, F.; Li, J.; Liang, C.; Lim, C.T.; Lin, Y.; Lipomi, D.J.; Liu, J.; Liu, K.; Liu, N.; Liu, R.; Liu, Y.; Liu, Y.; Liu, Z.; Liu, Z.; Loh, X.J.; Lu, N.; Lv, Z.; Magdassi, S.; Malliaras, G.G.; Matsuhisa, N.; Nathan, A.; Niu, S.; Pan, J.; Pang, C.; Pei, Q.; Peng, H.; Qi, D.; Ren, H.; Rogers, J.A.; Rowe, A.; Schmidt, O.G.; Sekitani, T.; Seo, D.G.; Shen, G.; Sheng, X.; Shi, Q.; Someya, T.; Song, Y.; Stavrinidou, E.; Su, M.; Sun, X.; Takei, K.; Tao, X.M.; Tee, B.C.K.; Thean, A.V.Y.; Trung, T.Q.; Wan, C.; Wang, H.; Wang, J.; Wang, M.; Wang, S.; Wang, T.; Wang, Z.L.; Weiss, P.S.; Wen, H.; Xu, S.; Xu, T.; Yan, H.; Yan, X.; Yang, H.; Yang, L.; Yang, S.; Yin, L.; Yu, C.; Yu, G.; Yu, J.; Yu, S.H.; Yu, X.; Zamburg, E.; Zhang, H.; Zhang, X.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhao, S.; Zhao, X.; Zheng, Y.; Zheng, Y.Q.; Zheng, Z.; Zhou, T.; Zhu, B.; Zhu, M.; Zhu, R.; Zhu, Y.; Zhu, Y.; Zou, G.; Chen, X. Technology roadmap for flexible sensors. ACS Nano, 2023, 17(6), 5211-5295.
[http://dx.doi.org/10.1021/acsnano.2c12606] [PMID: 36892156]
[4]
Meaney, C. Applications of deep learning to differential equation models in oncology. UWSpace, 2023.
[5]
Bonate, P.L.; Barrett, J.S.; Ait-Oudhia, S. Training the next generation of pharmacometric modelers: A multisector perspective. J. Pharmacokinet. Pharmacodyn., 2024, 51(1), 5-31.
[http://dx.doi.org/10.1007/s10928-023-09844-0] [PMID: 37573528]
[6]
Amiri, Z.; Heidari, A.; Darbandi, M.; Yazdani, Y.; Jafari Navimipour, N.; Esmaeilpour, M.; Sheykhi, F.; Unal, M. The personal health applications of machine learning techniques in the internet of behaviors. Sustainability, 2023, 15(16), 12406.
[http://dx.doi.org/10.3390/su151612406]
[7]
Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.S.; Wu, Y.S.; Nagandran, S.; Batumalaie, K.; Gopinath, S.C.B.; John, O.D.; Sekar, M.; Saikia, T.; Karunanithi, P.; Hatta, M.H.M.; Akinyede, K.A. Microplastic sources, formation, toxicity and remediation: A review. Environ. Chem. Lett., 2023, 21(4), 2129-2169.
[http://dx.doi.org/10.1007/s10311-023-01593-3] [PMID: 37362012]
[8]
Fries, F.; Kany, A.; Rasheed, S.; Hirsch, A.; Müller, R.; Herrmann, J. Impact of drug administration routes on the in vivo efficacy of the natural product sorangicin a using a Staphylococcus aureus infection model in zebrafish embryos. Int. J. Mol. Sci., 2023, 24(16), 12791.
[http://dx.doi.org/10.3390/ijms241612791] [PMID: 37628971]
[9]
Zoe, L.H.; David, S.R.; Rajabalaya, R. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol. Rep., 2023, 11, 83-106.
[http://dx.doi.org/10.1016/j.toxrep.2023.06.012] [PMID: 38187113]
[10]
Nizamoglu, M.; Joglekar, M.M.; Almeida, C.R.; Larsson Callerfelt, A.K.; Dupin, I.; Guenat, O.T.; Henrot, P.; van Os, L.; Otero, J.; Elowsson, L.; Farre, R.; Burgess, J.K. Innovative three- dimensional models for understanding mechanisms underlying lung diseases: Powerful tools for translational research. Eur. Respir. Rev., 2023, 32(169), 230042.
[http://dx.doi.org/10.1183/16000617.0042-2023] [PMID: 37495250]
[11]
Fernández-Colino, A.; Kiessling, F.; Slabu, I.; De Laporte, L.; Akhyari, P.; Nagel, S.K.; Stingl, J.; Reese, S.; Jockenhoevel, S. Lifelike transformative materials for biohybrid implants: Inspired by nature, driven by technology. Adv. Healthc. Mater., 2023, 12(20), 2300991.
[http://dx.doi.org/10.1002/adhm.202300991] [PMID: 37290055]
[12]
Thépaut, E.; Brochot, C.; Chardon, K.; Personne, S.; Zeman, F.A. Pregnancy-PBPK models: How are biochemical and physiological processes integrated? Comput. Toxicol., 2023, 27, 100282.
[http://dx.doi.org/10.1016/j.comtox.2023.100282]
[13]
Tindall, A.J.; Du Pasquier, D.; Lemkine, G.F. Evaluation of the endocrine activity of surface water samples using aquatic eleuthero-embryos-A comparison with in vitro assays. Water Environ. Res., 2023, 95(8), e10911.
[http://dx.doi.org/10.1002/wer.10911] [PMID: 37475203]
[14]
Wang, H; Chen, X; Vital, N; Duffy, E; Razi, A. Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach. arXiv Prepr 2306. 13333., 2023.
[15]
Bekeschus, S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol., 2023, 65, 102798.
[http://dx.doi.org/10.1016/j.redox.2023.102798] [PMID: 37556976]
[16]
Amel, A.; Rossouw, S.; Goolam, M. Gastruloids: A novel system for disease modelling and drug testing. Stem Cell Rev. Rep., 2023, 19(1), 104-113.
[http://dx.doi.org/10.1007/s12015-022-10462-5] [PMID: 36308705]
[17]
Albuquerque de Almeida, F.; Ricardo, M. Different regulatory framework for medical devices and drugs in the European Union: Impact on clinical research and health technology assessments. Int. J. Health Plann. Manage., 2023, 38(5), 1420-1434.
[http://dx.doi.org/10.1002/hpm.3671] [PMID: 37316973]
[18]
Dhoundiyal, S.; Bisht, T.; Adhikari, A.; Patil, S. Unraveling drug safety: Importance of toxicological screening and animal models in pharmacokinetics studies for clinical medicinal impact. Int J Pharma Prof Res., 2023, 14(3), 118-140.
[19]
Jain, K.; Marwal, A.; Sharma, K.; Desai, N. Identification of etiological agent of telya disease of pomegranate, its pathogenesis and control using integrated management approach. Res J Biotechnol, 2023, 18, 1.
[20]
Reddy, N.; Lynch, B.; Gujral, J.; Karnik, K. Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments. Food Chem. Toxicol., 2023, 179, 113944.
[http://dx.doi.org/10.1016/j.fct.2023.113944] [PMID: 37453475]
[21]
Grigaitis, P; Széliová, D. What makes up a cell. Econ Princ Cell Biol, 2023.
[22]
Stout, C.N.; Wasfy, N.M.; Chen, F.; Renata, H. Charting the evolution of chemoenzymatic strategies in the syntheses of complex natural products. J. Am. Chem. Soc., 2023, 145(33), 18161-18181.
[http://dx.doi.org/10.1021/jacs.3c03422] [PMID: 37553092]
[23]
Frisch, E.; Clavier, L.; Belhamdi, A.; Vrana, N.E.; Lavalle, P.; Frisch, B.; Heurtault, B.; Gribova, V. Preclinical in vitro evaluation of implantable materials: Conventional approaches, new models and future directions. Front. Bioeng. Biotechnol., 2023, 11, 1193204.
[http://dx.doi.org/10.3389/fbioe.2023.1193204] [PMID: 37576997]
[24]
Garcia, J.M.; Burnett, C.E.; Roybal, K.T. Toward the clinical development of synthetic immunity to cancer. Immunol. Rev., 2023, 320(1), 83-99.
[http://dx.doi.org/10.1111/imr.13245] [PMID: 37491719]
[25]
Skvortsov, T.; Maillard, J-Y. Viruses and other acellular infectious agents: Characteristics and control; Hugo Russell’s Pharm Microbiol, 2023.
[26]
Zhu, W.S.; Wheeler, B.D.; Ansel, K.M. RNA circuits and RNA-binding proteins in T cells. Trends Immunol., 2023, 44(10), 792-806.
[http://dx.doi.org/10.1016/j.it.2023.07.006] [PMID: 37599172]
[27]
Long, Q.; Yan, K.; Wang, C.; Wen, Y.; Qi, F.; Wang, H.; Shi, P.; Liu, X.; Chan, W.Y.; Lu, X.; Zhao, H. Modification of maternally defined H3K4me3 regulates the inviability of interspecific Xenopus hybrids. Sci. Adv., 2023, 9(14), eadd8343.
[http://dx.doi.org/10.1126/sciadv.add8343] [PMID: 37027476]
[28]
Zhang, X.Q.; Song, Q.; Zeng, L.X. Circulating hsa_circ_0072309, acting via the miR -100/ACKR3 pathway, maybe a potential biomarker for the diagnosis, prognosis, and treatment of brain metastasis from non-small-cell lung cancer. Cancer Med., 2023, 12(17), 18005-18019.
[http://dx.doi.org/10.1002/cam4.6371] [PMID: 37496297]
[29]
Preiss, L.C. Exploration of Novel Hepatic in-vitro Systems for Drug Metabolism and Pharmacokinetic Studies. Karolinska Institutet: Sweden, 2023.
[30]
Margiotta-Casaluci, L.; Owen, S.F.; Winter, M.J. Cross-species extrapolation of biological data to guide the environmental safety assessment of pharmaceuticals-the state of the art and future priorities. Environ. Toxicol. Chem., 2024, 43(3), 513-25.
[PMID: 37067359]
[31]
Philip, S.J.; Luu, T.J.; Carte, T. There’s No place like home: Understanding users’ intentions toward securing internet-of-things (IoT) smart home networks. Comput. Human Behav., 2023, 139, 107551.
[http://dx.doi.org/10.1016/j.chb.2022.107551]
[32]
Davidsson, M; Sellnow, RC; Yonkers, R; Zador, AM; Manfredsson, FP Serotonergic hyperinnervation in non-motor circuits in the parkinsonian rat. Cell Transplant. , 2019, 28(4, SI), 465-466.
[33]
Reolizo, L.; Matsuda, M.; Seki, E. Experimental workflow for preclinical studies of human antifibrotic therapies. In: Hepatic Stellate Cells: Methods and Protocols; Springer, 2023; pp. 285-306.
[http://dx.doi.org/10.1007/978-1-0716-3207-9_18]
[34]
Valle-Simón, P.; Borobia, A.M.; Pérez-Martínez, A. Clinical research with targeted drugs in paediatric oncology. Drug Discov. Today, 2023, 28(8), 103672.
[http://dx.doi.org/10.1016/j.drudis.2023.103672] [PMID: 37330039]
[35]
Rowan, A.N. Use of animals in toxicity studies. In: Handbook of Bioethical Decisions ; Decisions at the Bench. Springer, 2023; 1, pp. 563-574.
[http://dx.doi.org/10.1007/978-3-031-29451-8_30]
[36]
Beardall, T.I.S. The sky really falling?: Myriad and its impact on therapeutic development. Stanford Law Pol. Rev., 2023, 34(2)
[37]
Mody, H.; Ogasawara, K.; Zhu, X.; Miles, D.; Shastri, P.N.; Gokemeijer, J.; Liao, M.Z.; Kasichayanula, S.; Yang, T.Y.; Chemuturi, N.; Gupta, S.; Jawa, V.; Upreti, V.V. Best practices and considerations for clinical pharmacology and pharmacometric aspects for optimal development of CAR-T and TCR-T cell therapies: An industry perspective. Clin. Pharmacol. Ther., 2023, 114(3), 530-557.
[http://dx.doi.org/10.1002/cpt.2986] [PMID: 37393588]
[38]
Yadav, R.; Sukumaran, S.; Lutman, J.; Mitra, M.S.; Halpern, W.; Sun, T.; Setiadi, A.F.; Neighbors, M.; Sheng, X.R.; Yip, V.; Shen, B-Q.; Liu, C.; Han, L.; Ovacik, A.M.; Wu, Y.; Glickstein, S.; Kunder, R.; Arron, J.R.; Pan, L.; Kamath, A.V.; Stefanich, E.G. Utilizing PK and PD biomarkers to guide the first-in-human starting dose selection of MTBT1466A: A novel humanized monoclonal anti-TGFβ3 antibody for the treatment of fibrotic diseases. J. Pharm. Sci., 2023, 112(11), 2910-2920.
[http://dx.doi.org/10.1016/j.xphs.2023.07.005]
[39]
Agathokleous, E.; Blande, J.D.; Masui, N.; Calabrese, E.J.; Zhang, J.; Sicard, P.; Guedes, R.N.C.; Benelli, G. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. Environ. Res., 2023, 237(Pt 1), 116876.
[http://dx.doi.org/10.1016/j.envres.2023.116876] [PMID: 37573021]
[40]
Lam, G.; Noirez, P.; Djemai, H.; Youssef, L.; Blanc, E.; Audouze, K.; Kim, M.J.; Coumoul, X.; Li, S.F.Y. The effects of pollutant mixture released from grafted adipose tissues on fatty acid and lipid metabolism in the skeletal muscles, kidney, heart, and lungs of male mice. Environ. Pollut., 2023, 336, 122387.
[http://dx.doi.org/10.1016/j.envpol.2023.122387] [PMID: 37591324]
[41]
Goudot, G.; Cheng, C.; Guédon, A.F.; Mirault, T.; Pedreira, O.; Dahan, A.; Wang, L.Z.; Pernot, M.; Messas, E. Methods: Aortic wall deformation assessment by ultrafast ultrasound imaging: Application to bicuspid aortic valve associated aortopathy. Front. Physiol., 2023, 14, 1128663.
[http://dx.doi.org/10.3389/fphys.2023.1128663] [PMID: 36935759]
[42]
Luffer-Atlas, D.; Obach, R.S.; Smith, D.A. A MIST conception: What has been learned from twenty years of human metabolite safety assessment? Med. Chem. Res., 2023, 32(9), 1933-1949.
[http://dx.doi.org/10.1007/s00044-023-03089-9]
[43]
Magurany, K.A.; Chang, X.; Clewell, R.; Coecke, S.; Haugabrooks, E.; Marty, S. A pragmatic framework for the application of new approach methodologies in one health toxicological risk assessment. Toxicol. Sci., 2023, 192(2), 155-177.
[http://dx.doi.org/10.1093/toxsci/kfad012] [PMID: 36782355]
[44]
Jacob, S.; Nair, A.B.; Morsy, M.A. Dose conversion between animals and humans: A practical solution. Indian J. Pharm. Educ. Res., 2022, 56(3), 600-607.
[http://dx.doi.org/10.5530/ijper.56.3.108]
[45]
Porras, K.D.L.; Alves, I.A.; Novoa, D.M.A. PBPK modeling as an alternative method of interspecies extrapolation that reduces the use of animals: A systematic review. Curr. Med. Chem., 2023, 31(1), 102-126.
[46]
Leach, M.W.; Clarke, D.O.; Dudal, S.; Han, C.; Li, C.; Yang, Z.; Brennan, F.R.; Bailey, W.J.; Chen, Y.; Deslandes, A.; Loberg, L.I.; Mayawala, K.; Rogge, M.C.; Todd, M.; Chemuturi, N.V. Strategies and recommendations for using a data-driven and risk-based approach in the selection of first-in-human starting dose: An international consortium for innovation and quality in pharmaceutical development (IQ) assessment. Clin. Pharmacol. Ther., 2021, 109(6), 1395-1416.
[http://dx.doi.org/10.1002/cpt.2009] [PMID: 32757299]
[47]
Ali, M.K.; Javaid, S.; Afzal, H.; Zafar, I.; Fayyaz, K.; Ain, Q.; Rather, M.A.; Hossain, M.J.; Rashid, S.; Khan, K.A.; Sharma, R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. Environ. Res., 2023, 232, 116290.
[http://dx.doi.org/10.1016/j.envres.2023.116290] [PMID: 37295589]
[48]
Windisch, M. Phase 1 trials in Alzheimer’s disease drug development; Alzheimer’s Dis Drug Dev Res Dev Ecosyst, 2022, p. 135.
[http://dx.doi.org/10.1017/9781108975759.012]
[49]
Aagat Awasthi, A. Positioning science education for the self and society: An autoethnographic inquiry. Doctoral Dissertation, Kathmandu University School of Education, 2023.
[50]
Dorato, M.A.; Murphy, C.J.; Daniels, J.S.; Quist, E.M.; Godin, C.S. Toxicologic assessment of pharmaceutical, medical device and biotechnology products. Hayes’ Princ Methods Toxicol., 2023, 8, 331.
[51]
Spitzer, P.A. Empowering female climate change activists in the global south: The path toward environmental social justice; State University of New York at Stony Brook: USA, 2023.
[52]
Kar, S.; Leszczynski, J. Current Trends in Computational Modeling for Drug Discovery; Springer Nature, 2023, 35, .
[53]
Firestein, G.S.; Budd, R.C.; Gabriel, S.E.; McInnes, I.B.; O’Dell, J.R. Firestein & kelley’s textbook of rheumatology-E-book; Elsevier Health Sciences, 2020.
[54]
Umanath, S.; Coane, J.H.; Huff, M.J.; Cimenian, T.; Chang, K. Ecological validity of don’t remember and don’t know for distinguishing accessibility-versus availability-based retrieval failures in older and younger adults: Knowledge for news events. Cogn. Res. Princ. Implic., 2023, 8(1), 2.
[http://dx.doi.org/10.1186/s41235-022-00458-7] [PMID: 36600082]
[55]
Grenoble, L.A.; Osipov, B. The dynamics of bilingualism in language shift ecologies. Linguist. Approaches Biling., 2023, 13(1), 1-39.
[http://dx.doi.org/10.1075/lab.22035.gre]
[56]
Naz, T.; Akhtar, M.; Shahzad, S.K.; Fasli, M.; Iqbal, M.W.; Naqvi, M.R. Ontology-driven advanced drug-drug interaction. Comput. Electr. Eng., 2020, 86, 106695.
[http://dx.doi.org/10.1016/j.compeleceng.2020.106695]
[57]
Spanakis, M.; Alon-Ellenbogen, D.; Ioannou, P.; Spernovasilis, N. Antibiotics and lipid-modifying agents: Potential drug–drug interactions and their clinical implications. Pharmacy, 2023, 11(4), 130.
[http://dx.doi.org/10.3390/pharmacy11040130] [PMID: 37624085]
[58]
Vessels, T.J.; Strayer, N.J.; Choi, K.W.; Lee, H.; Zhang, S.; Han, L. Identifying modifiable comorbidities of schizophrenia by integrating electronic health records and polygenic risk. medRxiv, 2023, 2006-2023.
[http://dx.doi.org/10.1101/2023.06.01.23290057]
[59]
Swystun, L.L.; Lillicrap, D. Current understanding of inherited modifiers of FVIII pharmacokinetic variation. Pharm. Genomics Pers. Med., 2023, 16, 239-252.
[http://dx.doi.org/10.2147/PGPM.S383221] [PMID: 36998673]
[60]
Burbank, M.; Gautier, F.; Hewitt, N.; Detroyer, A.; Guillet-Revol, L.; Carron, L.; Wildemann, T.; Bringel, T.; Riu, A.; Noel-Voisin, A.; De Croze, N.; Léonard, M.; Ouédraogo, G. Advancing the use of new approach methodologies for assessing teratogenicity: Building a tiered approach. Reprod. Toxicol., 2023, 120, 108454.
[http://dx.doi.org/10.1016/j.reprotox.2023.108454] [PMID: 37543254]
[61]
Namdari, R.; Jones, K.; Chuang, S.S.; Van Cruchten, S.; Dincer, Z.; Downes, N.; Mikkelsen, L.F.; Harding, J.; Jäckel, S.; Jacobsen, B.; Kinyamu-Akunda, J.; Lortie, A.; Mhedhbi, S.; Mohr, S.; Schmitt, M.W.; Prior, H. Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice. Regul. Toxicol. Pharmacol., 2021, 126, 105029.
[http://dx.doi.org/10.1016/j.yrtph.2021.105029] [PMID: 34455009]
[62]
Berman, C.L.; Antonsson, M.; Batkai, S.; Bosgra, S.; Chopda, G.R.; Driessen, W. OSWG recommended approaches to the nonclinical pharmacokinetic (absorption, distribution, metabolism, and excretion) characterization of therapeutic oligonucleotides. Nucleic Acid Ther., 2023.
[http://dx.doi.org/10.1089/nat.2023.0011]
[63]
Gabrielsson, J.; Hjorth, S. Turn on, tune in, turnover! Target biology impacts in vivo potency, efficacy, and clearance. Pharmacol. Rev., 2023, 75(3), 416-462.
[http://dx.doi.org/10.1124/pharmrev.121.000524] [PMID: 36627211]
[64]
Haugland, B.T.; Rastrick, S.P.S.; Agnalt, A.L.; Husa, V.; Kutti, T.; Samuelsen, O.B. Mortality and reduced photosynthetic performance in sugar kelp Saccharina latissima caused by the salmon-lice therapeutant hydrogen peroxide. Aquacult. Environ. Interact., 2019, 11, 1-17.
[http://dx.doi.org/10.3354/aei00292]
[65]
Papachristos, A.; Patel, J.; Vasileiou, M.; Patrinos, G.P. Dose optimization in oncology drug development: The emerging role of pharmacogenomics, pharmacokinetics, and pharmacodynamics. Cancers, 2023, 15(12), 3233.
[http://dx.doi.org/10.3390/cancers15123233] [PMID: 37370844]
[66]
Audehm, S.; Glaser, M.; Pecoraro, M.; Bräunlein, E.; Mall, S.; Klar, R.; Effenberger, M.; Albers, J.; Bianchi, H.O.; Peper, J.; Yusufi, N.; Busch, D.H.; Stevanović, S.; Mann, M.; Antes, I.; Krackhardt, A.M. Key features relevant to select antigens and TCR from the MHC-mismatched repertoire to treat cancer. Front. Immunol., 2019, 10, 1485.
[http://dx.doi.org/10.3389/fimmu.2019.01485] [PMID: 31316521]
[67]
Langman, R. The immune system; Elsevier, 2014.
[68]
van der Heijden, J.E.M.; Freriksen, J.J.M.; de Hoop-Sommen, M.A.; Greupink, R. Physiologically-based pharmacokinetic modeling for drug dosing in pediatric patients: A tutorial for a pragmatic approach in clinical care. Clin. Pharmacol. Ther., 2023, 114(5), 960-971.
[http://dx.doi.org/10.1002/cpt.3023]
[69]
Majumder, D. Mathematical oncology to cancer systems medicine: translation from academic pursuit to individualized therapy with MORA. Curr. Cancer Ther. Rev., 2023, 19(1), 37-57.
[http://dx.doi.org/10.2174/1573394718666220517112049]
[70]
Kelsey, J.R.; Seidel, S. Propylene oxide derived glycol ethers: A review of the alkyl glycol ethers potential to cause endocrine disruption. Regul. Toxicol. Pharmacol., 2023, 105442.
[http://dx.doi.org/10.1016/j.yrtph.2023.105442] [PMID: 37394030]
[71]
Cardenas, J.L.C. An Engineered Paper-Based 3D Co-Culture Model of Pancreatic Cancer as a Platform for Systems Tissue Engineering; University of Toronto: Canada, 2023.
[72]
Iavicoli, I.; Fontana, L.; Santocono, C.; Guarino, D.; Laudiero, M.; Calabrese, E.J. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. Sci. Total Environ., 2023, 902, 166030.
[http://dx.doi.org/10.1016/j.scitotenv.2023.166030] [PMID: 37544458]
[73]
Rizvi, S.H.; Abbas, M. From data to insight, enhancing structural health monitoring using physics-informed machine learning and advanced data collection methods. Eng Res Express, 2023, 5, 032003.
[http://dx.doi.org/10.1088/2631-8695/acefae]
[74]
Assane, I.M.; Damaceno, M.A.; Campanharo, S.C.; da Silva, A.F.B.; de Sousa, E.L.; do Vale Oliveira, A.; de Abreu Reis Ferreira, D.; Kotzent, S.; de Jesus, R.B.; da Paz, D.J.F.; Paschoal, J.A.R.; Pilarski, F. Thiamphenicol and florfenicol combination in Nile tilapia: Simultaneous detection and quantification in plasma and muscle plus skin samples, and pharmacokinetics following single oral administration. Aquaculture, 2023, 577, 739978.
[http://dx.doi.org/10.1016/j.aquaculture.2023.739978]
[75]
Poźniak, B.; Tikhomirov, M.; Motykiewicz-Pers, K.; Bobrek, K.; Świtała, M. Allometric optimization of enrofloxacin dosage in growing male turkeys: Empirical evidence for improved internal exposure. Antibiotics, 2020, 9(12), 925.
[http://dx.doi.org/10.3390/antibiotics9120925] [PMID: 33353249]
[76]
Choi, G.W.; Lee, Y.B.; Cho, H.Y. Interpretation of non-clinical data for prediction of human pharmacokinetic parameters: In vitro-in vivo extrapolation and allometric scaling. Pharmaceutics, 2019, 11(4), 168.
[http://dx.doi.org/10.3390/pharmaceutics11040168] [PMID: 30959827]
[77]
Bordon, K.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; Ferreira, I.G.; Oliveira, I.S.; Boldrini-França, J.; Pucca, M.B.; Baldo, M.A.; Arantes, E.C. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front. Pharmacol., 2020, 11, 1132.
[http://dx.doi.org/10.3389/fphar.2020.01132] [PMID: 32848750]
[78]
Rosenstein, NA; Johnson, JA; Kirchofer, KS Ropinirole has similar efficacy to apomorphine for induction of emesis and removal of foreign and toxic gastric material in dogs J Am Vet Med Assoc, 2023, 261(8), 1140-1146.
[79]
Al-Worafi, Y.M. Technology for pharmaceutical industry sector safety. In: Technology for Drug Safety: Current Status and Future Developments; Springer, 2023; pp. 115-127.
[http://dx.doi.org/10.1007/978-3-031-34268-4_11]
[80]
Gogia, P.; Ashraf, H.; Bhasin, S.; Xu, Y. Antibody–drug conjugates: A review of approved drugs and their clinical level of evidence. Cancers, 2023, 15(15), 3886.
[http://dx.doi.org/10.3390/cancers15153886] [PMID: 37568702]
[81]
Wang, R.; Yang, X.; Wang, T.; Kou, R.; Liu, P.; Huang, Y.; Chen, C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. Ecotoxicol. Environ. Saf., 2023, 263, 115237.
[http://dx.doi.org/10.1016/j.ecoenv.2023.115237] [PMID: 37451096]
[82]
Nabity, M.; Hokamp, J. Urinary biomarkers of kidney disease in dogs and cats. Vet. Clin. North Am. Small Anim. Pract., 2023, 53(1), 53-71.
[http://dx.doi.org/10.1016/j.cvsm.2022.07.006] [PMID: 36270837]
[83]
Ortiz-Casasl, B.; Cortina, G.C.E. Basics of organ-on-a-chip technology. In: Nanochemistry; CRC Press, 2023; pp. 279-312.
[http://dx.doi.org/10.1201/9781003081944-12]
[84]
Messelmani, T.; Morisseau, L.; Sakai, Y.; Legallais, C.; Le Goff, A.; Leclerc, E.; Jellali, R. Liver organ-on-chip models for toxicity studies and risk assessment. Lab Chip, 2022, 22(13), 2423-2450.
[http://dx.doi.org/10.1039/D2LC00307D] [PMID: 35694831]
[85]
Lizano-Fallas, V.; Carrasco del Amor, A.; Cristobal, S. Prediction of molecular initiating events for adverse outcome pathways using high-throughput identification of chemical targets. Toxics, 2023, 11(2), 189.
[http://dx.doi.org/10.3390/toxics11020189] [PMID: 36851063]
[86]
Tabernilla, A.; dos Santos Rodrigues, B.; Pieters, A.; Caufriez, A.; Leroy, K.; Van Campenhout, R.; Cooreman, A.; Gomes, A.R.; Arnesdotter, E.; Gijbels, E.; Vinken, M. In vitro liver toxicity testing of chemicals: A pragmatic approach. Int. J. Mol. Sci., 2021, 22(9), 5038.
[http://dx.doi.org/10.3390/ijms22095038] [PMID: 34068678]
[87]
Geng, Y.; Arroyave-Ospina, J.C.; Buist-Homan, M.; Plantinga, J.; Olinga, P.; Reijngoud, D.J.; Van Vilsteren, F.G.I.; Blokzijl, H.; Kamps, J.A.A.M.; Moshage, H. Differential effects of oleate on vascular endothelial and liver sinusoidal endothelial cells reveal its toxic features in vitro. J. Nutr. Biochem., 2023, 114, 109255.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109255] [PMID: 36623779]
[88]
Faria, J.; Ahmed, S.; Gerritsen, K.G.F.; Mihaila, S.M.; Masereeuw, R. Kidney-based in vitro models for drug-induced toxicity testing. Arch. Toxicol., 2019, 93(12), 3397-3418.
[http://dx.doi.org/10.1007/s00204-019-02598-0] [PMID: 31664498]
[89]
Cai, L.; Ke, M.; Wang, H.; Wu, W.; Lin, R.; Huang, P.; Lin, C. Physiologically based pharmacokinetic model combined with reverse dose method to study the nephrotoxic tolerance dose of tacrolimus. Arch. Toxicol., 2023, 97(10), 2659-2673.
[http://dx.doi.org/10.1007/s00204-023-03576-3] [PMID: 37572130]
[90]
Das, S. Extrapolation of in vitro results to predict human toxicity. In vitro Toxicology. Elsevier, 2018; pp. 127-142.
[http://dx.doi.org/10.1016/B978-0-12-804667-8.00007-9]
[91]
Barile, F.A. Introduction to in vitro cytotoxicology: Mechanisms and methods. CRC Press, 2019.
[http://dx.doi.org/10.1201/9780429275487]
[92]
Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen., 2000, 35(3), 206-221.
[http://dx.doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J] [PMID: 10737956]
[93]
Eteläinen, T. The effect of prolyl oligopeptidase inhibition on protein aggregation and oxidative stress in the models of neurodegenerative diseases. Diss Sch Dr Ad Sanit Investig Univ Hels, 2023.
[94]
O’Connell, C.D.; Duchi, S.; Onofrillo, C.; Caballero-Aguilar, L.M.; Trengove, A.; Doyle, S.E.; Zywicki, W.J.; Pirogova, E.; Di Bella, C. Within or without you? A perspective comparing in situ and ex situ tissue engineering strategies for articular cartilage repair. Adv. Healthc. Mater., 2022, 11(24), 2201305.
[http://dx.doi.org/10.1002/adhm.202201305] [PMID: 36541723]
[95]
Kose, T.; Moreno-Fernandez, J.; Vera-Aviles, M.; Sharp, P.A.; Latunde-Dada, G.O. Ferulic acid protects HepG2 cells and mouse liver from iron-induced damage. Biochem. Biophys. Rep., 2023, 35, 101521.
[http://dx.doi.org/10.1016/j.bbrep.2023.101521] [PMID: 37560439]
[96]
De Hoon, I.; Boukherroub, R.; De Smedt, S.C.; Szunerits, S.; Sauvage, F. In vitro and ex vivo models for assessing drug permeation across the cornea. Mol Pharm, 2023, 20(7), 3298-3319.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00195]
[97]
Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Sci. Total Environ., 2023, 868, 161691.
[http://dx.doi.org/10.1016/j.scitotenv.2023.161691] [PMID: 36669659]
[98]
Tan, FHP; Ting, ACJ; Najimudin, N; Watanabe, N; Shamsuddin, S; Zainuddin, A 3-[[(3S)-1, 2, 3, 4-Tetrahydroisoquinoline-3-carbonyl] amino] propanoic acid (THICAPA) is protective against Aβ42-induced toxicity in vitro and in an Alzheimer’s disease drosophila. J. Gerontol. Ser A., 2023, 78(11), 1944-52.
[99]
Huang, Y.; Shan, Y.; Zhang, W.; Lee, A.M.; Li, F.; Stranger, B.E.; Huang, R.S. Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes. Nat. Commun., 2023, 14(1), 175.
[http://dx.doi.org/10.1038/s41467-023-35808-6] [PMID: 36635277]
[100]
Prasad, T.; Iyer, S.; Chatterjee, S.; Kumar, M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech. Dis., 2023, 15(4), e1603.
[http://dx.doi.org/10.1002/wsbm.1603] [PMID: 36754084]
[101]
Bengalli, R.D.; Zerbi, G.; Lucotti, A.; Catelani, T.; Mantecca, P. Carbon nanotubes: Structural defects as stressors inducing lung cell toxicity. Chem. Biol. Interact., 2023, 382, 110613.
[http://dx.doi.org/10.1016/j.cbi.2023.110613] [PMID: 37353135]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy