Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Cell Therapies and Gene Therapy for Diabetes: Current Progress

Author(s): Leila Ghassemifard, Masumeh Hasanlu, Negin Parsamanesh, Stephen L. Atkin, Wael Almahmeed and Amirhossein Sahebkar*

Volume 21, Issue 8, 2025

Published on: 13 May, 2024

Article ID: e130524229899 Pages: 28

DOI: 10.2174/0115733998292392240425122326

Price: $65

TIMBC 2026
Abstract

The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.

Keywords: Diabetes, gene therapy, cell therapy, stem cells, pancreatic beta cells, vector.

[1]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
Global report on diabetes. WHO: World Health organization. 2016; p. 83.
[3]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[4]
Bell RA, Mayer-Davis EJ, Beyer JW, D'Agostino RB Jr, Lawrence JM, Linder B. Diabetes in non-Hispanic white youth: prevalence, incidence, and clinical characteristics: The search for Diabetes in Youth Study. Diabetes care 2009; 32 (Suppl 2): S102-11.
[http://dx.doi.org/10.2337/dc09-S202] [PMID: 19246575]
[5]
Quilliam BJ, Simeone JC, Ozbay AB, Kogut SJ. The incidence and costs of hypoglycemia in type 2 diabetes. Am J Manag Care 2011; 17(10): 673-80.
[PMID: 22106460]
[6]
Murtaugh LC. Pancreas and beta-cell development: from the actual to the possible. Development 2007; 134(3): 427-38.
[http://dx.doi.org/10.1242/dev.02770] [PMID: 17185316]
[7]
Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R. Introduction to Diabetes Mellitus. In: Ahmad SI, Ed. New York, NY.: Diabetes: An Old Disease, a New Insight 2013; 771: pp. 1-11.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_1]
[8]
Robertson RP. Antagonist: diabetes and insulin resistance--philosophy, science, and the multiplier hypothesis. J Lab Clin Med 1995; 125(5): 560-4.
[PMID: 7738421]
[9]
Fujioka K. Pathophysiology of type 2 diabetes and the role of incretin hormones and beta-cell dysfunction. JAAPA 2007; 20(12) (Suppl.): 3-8.
[http://dx.doi.org/10.1097/01720610-200712000-00001] [PMID: 18217245]
[10]
Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 2001; 44(S2) (Suppl. 2): S14-21.
[http://dx.doi.org/10.1007/PL00002934] [PMID: 11587045]
[11]
da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, et al. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 2016; 117: 48-54.
[http://dx.doi.org/10.1016/j.diabres.2016.04.016] [PMID: 27329022]
[12]
Tuomilehto J, Borch-Johnsen K, Molarius A, et al. Incidence of cardiovascular disease in Type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland. Diabetologia 1998; 41(7): 784-90.
[http://dx.doi.org/10.1007/s001250050988] [PMID: 9686919]
[13]
Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care 2006; 29(4): 798-804.
[http://dx.doi.org/10.2337/diacare.29.04.06.dc05-1433] [PMID: 16567818]
[14]
Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62-9.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
[15]
Ghazanfari Z, Haghdoost AA, Alizadeh SM, Atapour J, Zolala F. A comparison of HbA1c and fasting blood sugar tests in general population. Int J Prev Med 2010; 1(3): 187-94.
[PMID: 21566790]
[16]
Vija L, Farge D, Gautier JF, et al. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes Metab 2009; 35(2): 85-93.
[http://dx.doi.org/10.1016/j.diabet.2008.10.003] [PMID: 19230736]
[17]
Robertson P, Davis C, Larsen J, Stratta R, Sutherland DE. Pancreas transplantation in type 1 diabetes. Diabetes Care 2004; 27 (Suppl. 1): s105.
[http://dx.doi.org/10.2337/diacare.27.2007.S105] [PMID: 14693941]
[18]
Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54(7): 2060-9.
[http://dx.doi.org/10.2337/diabetes.54.7.2060] [PMID: 15983207]
[19]
Shapiro AMJ, Lakey JRT, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4): 230-8.
[http://dx.doi.org/10.1056/NEJM200007273430401] [PMID: 10911004]
[20]
Xu J, Lu Y, Ding F, Zhan X, Zhu M, Wang Z. Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP-murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene. World J Surg 2007; 31(9): 1872-82.
[http://dx.doi.org/10.1007/s00268-007-9168-2] [PMID: 17653584]
[21]
Xu J, Zhu M-Y, Lu Y-H, Lu Y, Wang Z-W. Treatment of type 1 diabetes by transplantation of bone-derived mesenchymal stem cells expressing human insulin gene: experiment with mice. Zhonghua Yi Xue Za Zhi 2007; 87(36): 2557-60.
[PMID: 18067833]
[22]
Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005; 85(2): 635-78.
[http://dx.doi.org/10.1152/physrev.00054.2003] [PMID: 15788707]
[23]
Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105(7): 829-41.
[http://dx.doi.org/10.1016/S0092-8674(01)00409-3] [PMID: 11439179]
[24]
Fortier LAJVS. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005; 34(5): 415-23.
[http://dx.doi.org/10.1111/j.1532-950X.2005.00063.x] [PMID: 16266332]
[25]
Guo T, Hebrok M. Stem cells to pancreatic β-cells: new sources for diabetes cell therapy. Endocr Rev 2009; 30(3): 214-27.
[http://dx.doi.org/10.1210/er.2009-0004] [PMID: 19389995]
[26]
Butler AE, Huang A, Rao PN, et al. Hematopoietic stem cells derived from adult donors are not a source of pancreatic β-cells in adult nondiabetic humans. Diabetes 2007; 56(7): 1810-6.
[http://dx.doi.org/10.2337/db06-1385] [PMID: 17456852]
[27]
Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003; 111(6): 843-50.
[http://dx.doi.org/10.1172/JCI200316502] [PMID: 12639990]
[28]
Parekh VS, Joglekar MV, Hardikar AA. Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage. Differentiation 2009; 78(4): 232-40.
[http://dx.doi.org/10.1016/j.diff.2009.07.004] [PMID: 19664871]
[29]
Seaberg RM, Smukler SR, Kieffer TJ, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004; 22(9): 1115-24.
[http://dx.doi.org/10.1038/nbt1004] [PMID: 15322557]
[30]
Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004; 22(3): 265-74.
[http://dx.doi.org/10.1634/stemcells.22-3-265] [PMID: 15153604]
[31]
Kalra K, Tomar PC. Stem cell: basics, classification and applications. Amer J Phytomedi Clini Therapeut 2014; 2(7): 919-30.
[32]
Avasthi S, Srivastava RN, Singh A, Srivastava M. Stem cell: past, present and future--a review article. Inter J Medi 2008; 3(1): 22-31.
[http://dx.doi.org/10.4314/ijmu.v3i1.39856]
[33]
Saleem M, Sabir S, Akhtar MF, Zahid S, Niazi SG, Naeem M, et al. Stem cell therapy for diabetes mellitus: Recent progress and hurdles. Crit Rev Eukaryot Gene Expr 2019; 29(5): 471-82.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025723] [PMID: 32422003]
[34]
Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JRJNb. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotech 2020; 38(4): 460-70.
[http://dx.doi.org/10.1038/s41587-020-0430-6]
[35]
Mishra PK, Singh SR, Joshua IG, Tyagi SC. Stem cells as a therapeutic target for diabetes. Front Biosci 2010; 15: 461-77.
[http://dx.doi.org/10.2741/3630] [PMID: 20036830]
[36]
Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 2015; 5(1): 9322.
[http://dx.doi.org/10.1038/srep09322] [PMID: 25818803]
[37]
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH. Generation of functional human pancreatic β cells in vitro. Cell 2014; 159(2): 428-39.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[38]
Inc VP. vertex announces positive day 90 data for the first patient in the phase 1/2 clinical trial dosed with VX‐880, a novel investigational stem cell‐derived therapy for the treatment of type 1 diabetes. 2023. Available from: https://investors.vrtx.com/news-releases/news-release-details/vertex-presents-positive-vx-880-results-ongoing-phase-12-study
[39]
Jahr H, Bretzel RG. Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc 2003; 35(6): 2140-1.
[http://dx.doi.org/10.1016/S0041-1345(03)00747-4] [PMID: 14529868]
[40]
Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman MJd. Insulin production by human embryonic stem cells. Diabetes 2001; 50(8): 1691-7.
[http://dx.doi.org/10.2337/diabetes.50.8.1691] [PMID: 11473026]
[41]
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26(4): 443-52.
[http://dx.doi.org/10.1038/nbt1393] [PMID: 18288110]
[42]
Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J. Maturation of human embryonic stem cell–derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012; 61(8): 2016-29.
[http://dx.doi.org/10.2337/db11-1711] [PMID: 22740171]
[43]
Toyoda T, Mae S-I, Tanaka H, Kondo Y, Funato M, Hosokawa Y. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 2015; 14(2): 185-97.
[http://dx.doi.org/10.1016/j.scr.2015.01.007] [PMID: 25665923]
[44]
Singh KN, Chandra V, Barthwal KC. Letter to the editor: Hypoglycaemic activity of Acacia arabica, Acacia benthami and Acacia modesta leguminous seed diets in normal young albino rats. Indian J Physiol Pharmacol 1975; 19(3): 167-8.
[PMID: 1205562]
[45]
Moreira A, Kahlenberg S, Hornsby P. Therapeutic potential of mesenchymal stem cells for diabetes. J Mol Endocrinol 2017; 59(3): R109-20.
[http://dx.doi.org/10.1530/JME-17-0117] [PMID: 28739632]
[46]
Liu Y, Tang SCW. Recent progress in stem cell therapy for diabetic nephropathy. Kidney Dis 2016; 2(1): 20-7.
[http://dx.doi.org/10.1159/000441913] [PMID: 27536688]
[47]
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9(1): 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[48]
Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/ scid mice. Proc Natl Acad Sci 2006; 103(46): 17438-43.
[http://dx.doi.org/10.1073/pnas.0608249103] [PMID: 17088535]
[49]
Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant 2013; 19(4): 538-46.
[http://dx.doi.org/10.1016/j.bbmt.2013.01.001] [PMID: 23295166]
[50]
Cao M, Pan Q, Dong H, Yuan X, Li Y, Sun Z. Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice. Stem Cell Res Ther 2015; 6: 208.
[http://dx.doi.org/10.1186/s13287-015-0201-3] [PMID: 26519255]
[51]
Li Y-Y, Liu H-H, Chen H-L. Adipose-derived mesenchymal stem cells ameliorate STZ-induced pancreas damage in type 1 diabetes. Biomed Mater Eng 2012; 22(1-3): 97-103.
[http://dx.doi.org/10.3233/BME-2012-0694] [PMID: 22766707]
[52]
Evangelista AF. Mecanismos envolvidos no efeito terapêutico de células mesenquimais de medula óssea em modelo experimental de neuropatia diabética sensorial: Instituto Gonçalo Moniz. Salvador: Fundação Oswaldo Cruz 2019; pp. 1-6.
[53]
Eydian Z, Mohammad Ghasemi A, Ansari S, Kamali AN, Khosravi M, Momtaz S. Differentiation of multipotent stem cells to insulin-producing cells for treatment of diabetes mellitus: Bone marrow-and adipose tissue-derived cells comparison. 2022; 49(5): 3539-48.
[http://dx.doi.org/10.1007/s11033-022-07194-7] [PMID: 35107740]
[54]
Ranjbaran H , Mohammadi Jobani B , Amirfakhrian E , Alizadeh Navaei R. . Efficacy of mesenchymal stem cell therapy on glucose levels in type 2 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Investig 2021 May;; 12(5): 803-10. Epub 2020 Oct 22.
[http://dx.doi.org/10.1111/jdi.13404.] [PMID: 32926576] [PMCID: PMC8089007]
[55]
Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 2013; 60(3): 347-57.
[http://dx.doi.org/10.1507/endocrj.EJ12-0343] [PMID: 23154532]
[56]
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes H-P, Harmsen MC. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology 2018; 223(12): 729-43.
[http://dx.doi.org/10.1016/j.imbio.2018.01.001] [PMID: 29402461]
[57]
Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Konari N. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes Sci Rep 2016; 6: 34842.
[http://dx.doi.org/10.1038/srep34842] [PMID: 27721418]
[58]
Cao Y, Gang X, Sun C, Wang G. Mesenchymal stem cells improve healing of diabetic foot ulcer. J Diabetes Res 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/9328347] [PMID: 28386568]
[59]
Liu Y, Chen J, Liang H, et al. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther 2022; 13(1): 258.
[http://dx.doi.org/10.1186/s13287-022-02927-8] [PMID: 35715841]
[60]
Davey GC, Patil SB, O'Loughlin A, O'Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne) 2014 Jun; 6; 5: 86.
[http://dx.doi.org/10.3389/fendo.2014.00086] [PMID: 24936198] [PMCID: PMC4047679]
[61]
Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 2019; 9(1): 4468.
[http://dx.doi.org/10.1038/s41598-019-41100-9] [PMID: 30872726]
[62]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[63]
Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 2004; 18(9): 980-2.
[http://dx.doi.org/10.1096/fj.03-1100fje] [PMID: 15084518]
[64]
Liu M, Han ZC. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 2008; 12(4): 1155-68.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00288.x] [PMID: 18298656]
[65]
Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 2008; 116(2): 104-11.
[http://dx.doi.org/10.1055/s-2007-985154] [PMID: 18286426]
[66]
Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yañez AJ, Conget PA. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 2008; 14(6): 631-40.
[http://dx.doi.org/10.1016/j.bbmt.2008.01.006] [PMID: 18489988]
[67]
Herrera M, Bussolati B, Bruno S, Fonsato V, Romanazzi G, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 2004; 14(6): 1035-41.
[http://dx.doi.org/10.3892/ijmm.14.6.1035] [PMID: 15547670]
[68]
Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol 2010; 248(10): 1415-22.
[http://dx.doi.org/10.1007/s00417-010-1384-z] [PMID: 20437245]
[69]
Seeberger KL, Dufour JM, Shapiro AMJ, Lakey JRT, Rajotte RV, Korbutt GS. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 2006; 86(2): 141-53.
[http://dx.doi.org/10.1038/labinvest.3700377] [PMID: 16402034]
[70]
Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 2008; 3(1): e1451.
[http://dx.doi.org/10.1371/journal.pone.0001451] [PMID: 18197261]
[71]
Dave S, Vanikar A, Trivedi H. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue. Indian J Endocrinol Metab 2012; 16(7) (Suppl. 1): 65.
[http://dx.doi.org/10.4103/2230-8210.94264] [PMID: 22701849]
[72]
Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 2004; 325(3): 665-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.091] [PMID: 15541340]
[73]
Kajiyama H, Hamazaki TS, Tokuhara M, et al. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 2010; 54(4): 699-705.
[http://dx.doi.org/10.1387/ijdb.092953hk] [PMID: 19757377]
[74]
Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10(1): 274.
[http://dx.doi.org/10.1186/s13287-019-1362-2] [PMID: 31455405]
[75]
Starzl TE. The ldquo privilege drdquo liver and hepatic tolerogenicity. Liver Transpl 2001; 7(10): 918-20.
[http://dx.doi.org/10.1053/jlts.2001.0070918] [PMID: 11679993]
[76]
Trivedi HL, Vanikar AV, Thakker U, et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc 2008; 40(4): 1135-9.
[http://dx.doi.org/10.1016/j.transproceed.2008.03.113] [PMID: 18555133]
[77]
Vanikar AV, Dave SD, Thakkar UG, Trivedi HL. Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010; 2010: 1-5.
[http://dx.doi.org/10.4061/2010/582382] [PMID: 21197448]
[78]
Biswas S. A review on the progress of stem cell therapy as a treatment for Diabetes mellitus. Brac University 2022; pp. 63-87.
[79]
Abu-Shahba N, Mahmoud M, El-Erian AM, et al. Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells. Int J Biochem Cell Biol 2021; 140: 106072.
[http://dx.doi.org/10.1016/j.biocel.2021.106072] [PMID: 34455058]
[80]
Yu S, Cheng Y, Zhang L, et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther 2019; 10(1): 333.
[http://dx.doi.org/10.1186/s13287-019-1474-8] [PMID: 31747961]
[81]
Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 2011; 29(1): 5-10.
[http://dx.doi.org/10.1002/stem.556] [PMID: 21280154]
[82]
Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 2008; 375(4): 547-51.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.064] [PMID: 18725201]
[83]
Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30(5): 804-10.
[http://dx.doi.org/10.1002/stem.1076] [PMID: 22415904]
[84]
Smadja DM, d’Audigier C, Guerin CL, et al. Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transplant 2012; 47(7): 997-1000.
[http://dx.doi.org/10.1038/bmt.2011.196] [PMID: 21986637]
[85]
Wang L, Zhang L, Liang X, et al. Adipose tissue-derived stem cells from type 2 diabetics reveal conservative alterations in multidimensional characteristics. Int J Stem Cells 2020; 13(2): 268-78.
[http://dx.doi.org/10.15283/ijsc20028] [PMID: 32587133]
[86]
Duan Y, Luo Q, Wang Y, et al. Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy. J Biol Chem 2020; 295(37): 12868-84.
[http://dx.doi.org/10.1074/jbc.RA120.012522] [PMID: 32580945]
[87]
Kuppan P, Seeberger K, Kelly S, et al. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 2020; 27(4): e12581.
[http://dx.doi.org/10.1111/xen.12581] [PMID: 31930606]
[88]
Zhao Y, Mazzone T. Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev 2010; 10(2): 103-7.
[http://dx.doi.org/10.1016/j.autrev.2010.08.011] [PMID: 20728583]
[89]
Aguayo-Mazzucato C, Bonner-Weir S. Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 2010; 6(3): 139-48.
[http://dx.doi.org/10.1038/nrendo.2009.274] [PMID: 20173775]
[90]
Kakkar A, Sorout A, Tiwari M, et al. Current status of stem cell treatment for type I diabetes mellitus. Tissue Eng Regen Med 2018; 15(6): 699-709.
[http://dx.doi.org/10.1007/s13770-018-0143-9] [PMID: 30603589]
[91]
Yap SK, Tan KL, Abd Rahaman NY, et al. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorated insulin resistance in type 2 diabetes mellitus rats. Pharmaceutics 2022; 14(3): 649.
[http://dx.doi.org/10.3390/pharmaceutics14030649] [PMID: 35336023]
[92]
Wan XX, Zhang DY, Khan MA, et al. Stem cell transplantation in the treatment of type 1 diabetes mellitus: from insulin replacement to beta-cell replacement. Front Endocrinol 2022; 13: 859638.
[http://dx.doi.org/10.3389/fendo.2022.859638] [PMID: 35370989]
[93]
Kondo Y, Toyoda T, Inagaki N. iPSC technology‐based regenerative therapy for diabetes. J Diab Invest 2018; 9(2): 234-43.
[94]
Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 2015; 125(17): 2605-13.
[http://dx.doi.org/10.1182/blood-2014-12-570200] [PMID: 25762175]
[95]
Carroll D, St Clair DKJA. signaling r. Hematopoietic stem cells: normal versus malignant. Antioxid Redox Signal 2018; 29(16): 1612-32.
[http://dx.doi.org/10.1089/ars.2017.7326] [PMID: 29084438]
[96]
Pastore I, Assi E, Ben Nasr M, et al. Hematopoietic stem cells in type 1 diabetes. Front Immunol 2021; 12: 694118.
[http://dx.doi.org/10.3389/fimmu.2021.694118] [PMID: 34305929]
[97]
Snarski E, Milczarczyk A, Hałaburda K, et al. Immunoablation and autologous hematopoietic stem cell transplantation in the treatment of new-onset type 1 diabetes mellitus: long-term observations. Bone Marrow Transplant 2016; 51(3): 398-402.
[http://dx.doi.org/10.1038/bmt.2015.294] [PMID: 26642342]
[98]
D’Addio F, Valderrama Vasquez A, Ben Nasr M, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 2014; 63(9): 3041-6.
[http://dx.doi.org/10.2337/db14-0295] [PMID: 24947362]
[99]
Gu B, Miao H, Zhang J, et al. Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients. Diabetes Metab 2018; 44(4): 341-5.
[http://dx.doi.org/10.1016/j.diabet.2017.12.006] [PMID: 29331269]
[100]
Zhang J, Hu M, Wang B, et al. Comprehensive assessment of T-cell repertoire following autologous hematopoietic stem cell transplantation for treatment of type 1 diabetes using high-throughput sequencing. Pediatr Diabetes 2018; 19(7): 1229-37.
[http://dx.doi.org/10.1111/pedi.12728] [PMID: 30022578]
[101]
Snarski E, Szmurło D, Hałaburda K, et al. An economic analysis of autologous hematopoietic stem cell transplantation (AHSCT) in the treatment of new onset type 1 diabetes. Acta Diabetol 2015; 52(5): 881-8.
[http://dx.doi.org/10.1007/s00592-015-0724-1] [PMID: 25744552]
[102]
Boscari F, D’Anna M, Bonora BM, et al. Effects of glucose variability on hematopoietic stem/progenitor cells in patients with type 1 diabetes. J Endocrinol Invest 2021; 44(1): 119-26.
[http://dx.doi.org/10.1007/s40618-020-01278-6] [PMID: 32367464]
[103]
Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014; 32(11): 1121-33.
[http://dx.doi.org/10.1038/nbt.3033] [PMID: 25211370]
[104]
Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009; 106(37): 15768-73.
[http://dx.doi.org/10.1073/pnas.0906894106] [PMID: 19720998]
[105]
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41-9.
[http://dx.doi.org/10.1038/nature00870] [PMID: 12077603]
[106]
Dow C, Mancini F, Rajaobelina K, et al. Diet and risk of diabetic retinopathy: a systematic review. Eur J Epidemiol 2018; 33(2): 141-56.
[http://dx.doi.org/10.1007/s10654-017-0338-8] [PMID: 29204902]
[107]
Tian C, Bagley J, Cretin N, Seth N, Wucherpfennig KW, Iacomini J. Prevention of type 1 diabetes by gene therapy. J Clin Invest 2004; 114(7): 969-78.
[http://dx.doi.org/10.1172/JCI22103] [PMID: 15467836]
[108]
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 2016; 6(1): 34842.
[http://dx.doi.org/10.1038/srep34842] [PMID: 27721418]
[109]
Chen M, Zhao Y, Zhou L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes. Curr Med Sci 2021; 41(1): 87-93.
[http://dx.doi.org/10.1007/s11596-021-2323-4] [PMID: 33582911]
[110]
Konari N, Nagaishi K, Kikuchi S, Fujimiya M. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep 2019; 9(1): 5184.
[http://dx.doi.org/10.1038/s41598-019-40163-y] [PMID: 30914727]
[111]
Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[112]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[113]
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5(11): 1642-61.
[http://dx.doi.org/10.1002/emmm.201202287] [PMID: 24106209]
[114]
Chellappan DK, Sivam NS, Teoh KX, et al. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108: 1188-200.
[http://dx.doi.org/10.1016/j.biopha.2018.09.138] [PMID: 30372820]
[115]
Nayerossadat N, Maedeh T, Ali P. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1(1): 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[116]
Wold W, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2014; 13(6): 421-33.
[http://dx.doi.org/10.2174/1566523213666131125095046] [PMID: 24279313]
[117]
Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4(2): 43-63.
[http://dx.doi.org/10.1016/j.gendis.2017.04.001] [PMID: 28944281]
[118]
Borkar SS, Wakodkar SB, Raghatate PS, Mahapatra DK. Gene Therapy: New Therapeutic approach to Diabetes Mellitus. Gene 1: 9.
[119]
Morral N, McEvoy R, Dong H, et al. Adenovirus-mediated expression of glucokinase in the liver as an adjuvant treatment for type 1 diabetes. Hum Gene Ther 2002; 13(13): 1561-70.
[http://dx.doi.org/10.1089/10430340260201653] [PMID: 12228011]
[120]
Jin Y, Qu A, Wang GM, Hao J, Gao X, Xie S. Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin. Gene Ther 2004; 11(12): 982-91.
[http://dx.doi.org/10.1038/sj.gt.3302260] [PMID: 15042121]
[121]
Machen J, Bertera S, Chang Y, et al. Prolongation of islet allograft survival following ex vivo transduction with adenovirus encoding a soluble type 1 TNF receptor–Ig fusion decoy. Gene Ther 2004; 11(20): 1506-14.
[http://dx.doi.org/10.1038/sj.gt.3302320] [PMID: 15229635]
[122]
Sanlioglu AD, Griffith TS, Omer A, et al. Molecular mechanisms of death ligand‐mediated immune modulation: A gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem 2008; 104(3): 710-20.
[http://dx.doi.org/10.1002/jcb.21677] [PMID: 18247339]
[123]
Li R, Oka K, Yechoor V. Neo-islet formation in liver of diabetic mice by helper-dependent adenoviral vector-mediated gene transfer. J Vis Exp 2012; (68): e4321. [Journal of Visualized Experiments].
[PMID: 23093064]
[124]
Rowzee AM, Perez-Riveros PJ, Zheng C, Krygowski S, Baum BJ, Cawley NX. Expression and secretion of human proinsulin-B10 from mouse salivary glands: implications for the treatment of type I diabetes mellitus. PLoS One 2013; 8(3): e59222.
[http://dx.doi.org/10.1371/journal.pone.0059222] [PMID: 23554999]
[125]
Ye S, Hua S, Zhou M. Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice. Autoimmunity 2022; 55(8): 529-37.
[http://dx.doi.org/10.1080/08916934.2022.2128782] [PMID: 36226521]
[126]
Wang C, Du X, Fu F, et al. Adiponectin gene therapy prevents islet loss after transplantation. J Cell Mol Med 2022; 26(18): 4847-58.
[http://dx.doi.org/10.1111/jcmm.17515] [PMID: 35975481]
[127]
Li C, Zhang L, Qiao L, et al. Combination therapy with anti-CD20 mAb and IL-10 gene to reverse type 1 diabetes by attenuating pancreatitis and inhibiting apoptosis in NOD mice. Life Sci 2020; 256: 117985.
[http://dx.doi.org/10.1016/j.lfs.2020.117985] [PMID: 32562692]
[128]
Parajuli KR, Zhang Y, Cao AM, Wang H, Fonseca VA, Wu H. Pax4 gene delivery improves islet transplantation efficacy by promoting β cell survival and α-to-β cell transdifferentiation. Cell Transplant 2020; 29
[http://dx.doi.org/10.1177/0963689720958655] [PMID: 33086892]
[129]
Matsuda E, Obama Y, Kosai K. Safe and low-dose but therapeutically effective adenovirus-mediated hepatocyte growth factor gene therapy for type 1 diabetes in mice. Life Sci 2021; 268: 119014.
[http://dx.doi.org/10.1016/j.lfs.2020.119014] [PMID: 33412216]
[130]
Geng L, Liao B, Jin L, et al. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130. Nat Metab 2022; 4(5): 608-26.
[http://dx.doi.org/10.1038/s42255-022-00572-2] [PMID: 35551509]
[131]
Lu G, Teng X, Zheng Z, et al. Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus. Gene Ther 2016; 23(4): 323-9.
[http://dx.doi.org/10.1038/gt.2016.1] [PMID: 26752353]
[132]
Shimizu K, Ogiya Y, Yoshinaga K, et al. ZFAND3 overexpression in the mouse liver improves glucose tolerance and hepatic insulin resistance. Exp Clin Endocrinol Diabetes 2022; 130(4): 254-61.
[http://dx.doi.org/10.1055/a-1400-2656] [PMID: 33782927]
[133]
Fernandez-Ruiz R, García-Alamán A, Esteban Y, et al. Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11(1): 5982.
[http://dx.doi.org/10.1038/s41467-020-19657-1] [PMID: 33239617]
[134]
Chen Y, Li Q, Duan Y, Yang X, Chen Y, Han J. Activation of Nogo‐B receptor expression ameliorates type 2 diabetes in mice by improving insulin sensitivity. FASEB J 2020; 34(S1): 1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.02057]
[135]
So WY, Liu WN, Teo AKK, Rutter GA, Han W. Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis. Sci Transl Med 2021; 13(600): eabb1038.
[http://dx.doi.org/10.1126/scitranslmed.abb1038] [PMID: 34193609]
[136]
El Khatib MM, Sakuma T, Tonne JM, et al. β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection. Gene Ther 2015; 22(5): 430-8.
[http://dx.doi.org/10.1038/gt.2015.18] [PMID: 25786871]
[137]
Zhang YC, Pileggi A, Agarwal A, et al. Adeno-associated virus-mediated IL-10 gene therapy inhibits diabetes recurrence in syngeneic islet cell transplantation of NOD mice. Diabetes 2003; 52(3): 708-16.
[http://dx.doi.org/10.2337/diabetes.52.3.708] [PMID: 12606512]
[138]
Goudy K, Song S, Wasserfall C, et al. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proc Natl Acad Sci 2001; 98(24): 13913-8.
[http://dx.doi.org/10.1073/pnas.251532298] [PMID: 11717448]
[139]
Kapturczak M, Flotte T, Atkinson M. Adeno-associated virus (AAV) as a vehicle for therapeutic gene delivery: improvements in vector design and viral production enhance potential to prolong graft survival in pancreatic islet cell transplantation for the reversal of type 1 diabetes. Curr Mol Med 2001; 1(2): 245-58.
[http://dx.doi.org/10.2174/1566524013363979] [PMID: 11899074]
[140]
Prasad K-MR, Yang Z, Bleich D, Nadler JL. Adeno-associated virus vector mediated gene transfer to pancreatic beta cells. Gene Ther 2000; 7(18): 1553-61.
[http://dx.doi.org/10.1038/sj.gt.3301279] [PMID: 11021593]
[141]
Song S, Goudy K, Campbell-Thompson M, et al. Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther 2004; 11(2): 181-6.
[http://dx.doi.org/10.1038/sj.gt.3302156] [PMID: 14712302]
[142]
La QT, Ren B, Logan GJ, et al. Use of a hybrid adeno-associated viral vector transposon system to deliver the insulin gene to diabetic NOD mice. Cells 2020; 9(10): 2227.
[http://dx.doi.org/10.3390/cells9102227] [PMID: 33023100]
[143]
Mallol C, Casana E, Jimenez V, et al. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6(7): 664-80.
[http://dx.doi.org/10.1016/j.molmet.2017.05.007] [PMID: 28702323]
[144]
Gao MH, Giamouridis D, Lai NC, et al. Urocortin 2 gene transfer improves glycemic control and reduces retinopathy and mortality in murine insulin deficiency. Mol Ther Methods Clin Dev 2020; 17: 220-33.
[http://dx.doi.org/10.1016/j.omtm.2019.12.002] [PMID: 31970200]
[145]
Lovric J, Mano M, Zentilin L, Eulalio A, Zacchigna S, Giacca M. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins. Mol Ther 2012; 20(11): 2087-97.
[http://dx.doi.org/10.1038/mt.2012.144] [PMID: 22850678]
[146]
Romer AI, Sussel L. Pancreatic islet cell development and regeneration. Curr Opin Endocrinol Diabetes Obes 2015; 22(4): 255-64.
[http://dx.doi.org/10.1097/MED.0000000000000174] [PMID: 26087337]
[147]
Nakano M, Asakawa A, Inui A. Long-term correction of type 1 and 2 diabetes by central leptin gene therapy independent of effects on appetite and energy expenditure. Indian J Endocrinol Metab 2012; 16(9) (Suppl. 3): 556.
[http://dx.doi.org/10.4103/2230-8210.105572] [PMID: 23565490]
[148]
Jaén ML, Vilà L, Elias I, et al. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol Ther Methods Clin Dev 2017; 6: 1-7.
[http://dx.doi.org/10.1016/j.omtm.2017.03.008] [PMID: 28626777]
[149]
Li H, Li X, Lam KSL, Tam S, Xiao W, Xu R. Adeno-associated virus-mediated pancreatic and duodenal homeobox gene-1 expression enhanced differentiation of hepatic oval stem cells to insulin-producing cells in diabetic rats. J Biomed Sci 2008; 15(4): 487-97.
[http://dx.doi.org/10.1007/s11373-008-9233-3] [PMID: 18253862]
[150]
Yu Y, Zhang J, Yao S, Pan L, Luo G, Xu N. Apolipoprotein M overexpression through adeno‐associated virus gene transfer improves insulin secretion and insulin sensitivity in Goto‐Kakizaki rats. J Diabetes Investig 2020; 11(5): 1150-8.
[http://dx.doi.org/10.1111/jdi.13261] [PMID: 32243104]
[151]
Hoffmann JM, Grünberg JR, Hammarstedt A, et al. BMP4 gene therapy enhances insulin sensitivity but not adipose tissue browning in obese mice. Mol Metab 2020; 32: 15-26.
[http://dx.doi.org/10.1016/j.molmet.2019.11.016] [PMID: 32029225]
[152]
Casana E, Jimenez V, Jambrina C, et al. AAV-mediated BMP7 gene therapy counteracts insulin resistance and obesity. Mol Ther Methods Clin Dev 2022; 25: 190-204.
[http://dx.doi.org/10.1016/j.omtm.2022.03.007] [PMID: 35434177]
[153]
Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 2018; 10(8): e8791.
[http://dx.doi.org/10.15252/emmm.201708791] [PMID: 29987000]
[154]
Du H, Yin Z, Zhao Y, et al. miR-320a induces pancreatic β cells dysfunction in diabetes by inhibiting MafF. Mol Ther Nucleic Acids 2021; 26: 444-57.
[http://dx.doi.org/10.1016/j.omtn.2021.08.027] [PMID: 34631276]
[155]
Zhang L, Li X, Zhang N, et al. WDFY2 potentiates hepatic insulin sensitivity and controls endosomal localization of the insulin receptor and IRS1/2. Diabetes 2020; 69(9): 1887-902.
[http://dx.doi.org/10.2337/db19-0699] [PMID: 32641353]
[156]
Ji L, Wang Q, Liu M, et al. The 14‐3‐3 protein YWHAB inhibits glucagon‐induced hepatic gluconeogenesis through interacting with the glucagon receptor and FOXO1. FEBS Lett 2021; 595(9): 1275-88.
[http://dx.doi.org/10.1002/1873-3468.14063] [PMID: 33641163]
[157]
Wang J, Wen J, Bai D, Guo Y. Injection of submandibular gland with recombinant Exendin-4 and adeno-associated virus for the treatment of diabetic rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015; 40(11): 1179-85.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2015.11.003] [PMID: 26643419]
[158]
Liu J, Nie C, Xue L, et al. Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics 2021; 11(17): 8283-300.
[http://dx.doi.org/10.7150/thno.61192] [PMID: 34373742]
[159]
Wu T, Zhang S, Xu J, et al. HRD1, an important player in pancreatic β-cell failure and therapeutic target for type 2 diabetic mice. Diabetes 2020; 69(5): 940-53.
[http://dx.doi.org/10.2337/db19-1060] [PMID: 32086291]
[160]
Sia KC, Fu ZY, Calne RY, Nathwani AC, Lee KO, Gan SU. Modification of a constitutive to glucose-responsive liver-specific promoter resulted in increased efficacy of adeno-associated virus serotype 8-insulin gene therapy of diabetic mice. Cells 2020; 9(11): 2474.
[http://dx.doi.org/10.3390/cells9112474] [PMID: 33202992]
[161]
Gautam P, Recino A, Foale RD, et al. Promoter optimisation of lentiviral vectors for efficient insulin gene expression in canine mesenchymal stromal cells: potential surrogate beta cells. J Gene Med 2016; 18(10): 312-21.
[http://dx.doi.org/10.1002/jgm.2900] [PMID: 27572655]
[162]
Jimenez-Moreno C, de Gracia Herrera-Gomez I, Lopez-Noriega L, et al. A simple high efficiency intra-islet transduction protocol using lentiviral vectors. Curr Gene Ther 2015; 15(4): 436-46.
[http://dx.doi.org/10.2174/1566523215666150630121557] [PMID: 26122098]
[163]
Elsner M, Terbish T, Jörns A, et al. Reversal of diabetes through gene therapy of diabetic rats by hepatic insulin expression via lentiviral transduction. Mol Ther 2012; 20(5): 918-26.
[http://dx.doi.org/10.1038/mt.2012.8] [PMID: 22354377]
[164]
Ren B, O’Brien BA, Byrne MR, et al. Long‐term reversal of diabetes in non‐obese diabetic mice by liver‐directed gene therapy. J Gene Med 2013; 15(1): 28-41.
[http://dx.doi.org/10.1002/jgm.2692] [PMID: 23293075]
[165]
Lu J, Shen H, Li Q, et al. KCNH6 protects pancreatic β‐cells from endoplasmic reticulum stress and apoptosis. FASEB J 2020; 34(11): 15015-28.
[http://dx.doi.org/10.1096/fj.202001218R] [PMID: 32918525]
[166]
Erendor F, Sahin EO, Sanlioglu AD, Balci MK, Griffith TS, Sanlioglu S. Lentiviral gene therapy vectors encoding VIP suppressed diabetes-related inflammation and augmented pancreatic beta-cell proliferation. Gene Ther 2021; 28(3-4): 130-41.
[http://dx.doi.org/10.1038/s41434-020-0183-3] [PMID: 32733091]
[167]
Clark KA, Shin AC, Sirivelu MP, et al. Evaluation of the central effects of systemic lentiviral-mediated leptin delivery in streptozotocin-induced diabetic rats. Int J Mol Sci 2021; 22(24): 13197.
[http://dx.doi.org/10.3390/ijms222413197] [PMID: 34947993]
[168]
Russo F, Citro A, Squeri G, et al. InsB9-23 gene transfer to hepatocyte-based combined therapy abrogates recurrence of type 1 diabetes after islet transplantation. Diabetes 2021; 70(1): 171-81.
[http://dx.doi.org/10.2337/db19-1249] [PMID: 33122392]
[169]
Erendor F, Eksi YE, Sahin EO, Balci MK, Griffith TS, Sanlioglu S. Lentivirus mediated pancreatic beta-cell-specific insulin gene therapy for STZ-induced diabetes. Mol Ther 2021; 29(1): 149-61.
[http://dx.doi.org/10.1016/j.ymthe.2020.10.025] [PMID: 33130311]
[170]
Tasyurek HM, Eksi YE, Sanlioglu AD, et al. HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes. Gene Ther 2018; 25(4): 269-83.
[http://dx.doi.org/10.1038/s41434-018-0011-1] [PMID: 29523882]
[171]
Tasyurek HM, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S. Therapeutic potential of lentivirus-mediated glucagon-like peptide-1 gene therapy for diabetes. Hum Gene Ther 2018; 29(7): 802-15.
[http://dx.doi.org/10.1089/hum.2017.180] [PMID: 29409356]
[172]
Cheng X, Huang Y, Yang P, Bu L. miR-383 ameliorates high glucose-induced β-cells apoptosis and hyperglycemia in high-fat induced diabetic mice. Life Sci 2020; 263: 118571.
[http://dx.doi.org/10.1016/j.lfs.2020.118571] [PMID: 33058915]
[173]
Lu S, Liu G, Chen T, et al. Lentivirus-mediated hFGF21 stable expression in liver of diabetic rats model and its antidiabetic effect observation. Hum Gene Ther 2020; 31(7-8): 472-84.
[http://dx.doi.org/10.1089/hum.2019.322] [PMID: 32027183]
[174]
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014; 459(1-2): 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[175]
Savulescu J. Harm, ethics committees and the gene therapy death. J Med Ethics 2001; 27(3): 148-50.
[http://dx.doi.org/10.1136/jme.27.3.148] [PMID: 11417019]
[176]
Hareendran S, Balakrishnan B, Sen D, Kumar S, Srivastava A, Jayandharan GR. Adeno‐associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 2013; 23(6): 399-413.
[http://dx.doi.org/10.1002/rmv.1762] [PMID: 24023004]
[177]
Ylä-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 2012; 20(10): 1831-2.
[http://dx.doi.org/10.1038/mt.2012.194] [PMID: 23023051]
[178]
Mingozzi F, Maus MV, Hui DJ, et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13(4): 419-22.
[http://dx.doi.org/10.1038/nm1549] [PMID: 17369837]
[179]
Rogers GL, Martino AT, Aslanidi GV, Jayandharan GR, Srivastava A, Herzog RW. Innate Immune Responses to AAV Vectors. Front Microbiol 2011; 2: 194.
[http://dx.doi.org/10.3389/fmicb.2011.00194] [PMID: 21954398]
[180]
Xiao C, Zhou H, Liu G, et al. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration. Biomed Mater 2011; 6(1): 015013.
[http://dx.doi.org/10.1088/1748-6041/6/1/015013] [PMID: 21252414]
[181]
Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther 2010; 21(11): 1513-26.
[http://dx.doi.org/10.1089/hum.2010.165] [PMID: 20825283]
[182]
Armbruster N, Weber C, Wictorowicz T, Rethwilm A, Scheller C, Steinert AF. Ex vivo gene delivery to synovium using foamy viral vectors. J Gene Med 2014; 16(7-8): 166-78.
[http://dx.doi.org/10.1002/jgm.2774] [PMID: 25044583]
[183]
Treacy O, Ryan AE, Heinzl T, et al. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One 2012; 7(8): e42662.
[http://dx.doi.org/10.1371/journal.pone.0042662] [PMID: 22880073]
[184]
Isner JM, Vale PR, Symes JF, Losordo DW. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001; 89(5): 389-400.
[http://dx.doi.org/10.1161/hh1701.096259] [PMID: 11532899]
[185]
Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2013; 2(5): 328-36.
[http://dx.doi.org/10.5966/sctm.2012-0116] [PMID: 23572052]
[186]
Hou WR, Xie SN, Wang HJ, et al. Intramuscular delivery of a naked DNA plasmid encoding proinsulin and pancreatic regenerating III protein ameliorates type 1 diabetes mellitus. Pharmacol Res 2011; 63(4): 320-7.
[http://dx.doi.org/10.1016/j.phrs.2010.12.009] [PMID: 21185938]
[187]
Anguela XM, Tafuro S, Roca C, et al. Nonviral-mediated hepatic expression of IGF-I increases Treg levels and suppresses autoimmune diabetes in mice. Diabetes 2013; 62(2): 551-60.
[http://dx.doi.org/10.2337/db11-1776] [PMID: 23099863]
[188]
Deng L, Yang P, Li C, Xie L, Lu W, Zhang Y, et al. Prolonged control of insulin-dependent diabetes via intramuscular expression of plasmid-encoded single-strand insulin analogue. Genes Dis 2022; 10(3): 1101-13.
[http://dx.doi.org/10.1016/j.gendis.2022.05.009]
[189]
Banerjee A, Sharma D, Trivedi R, Singh J. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. Int J Pharm 2020; 583: 119357.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119357] [PMID: 32334065]
[190]
Ren M, Pan J, Yu X, Chang K, Yuan X, Zhang C. CTRP1 prevents high fat diet-induced obesity and improves glucose homeostasis in obese and STZ-induced diabetic mice. J Transl Med 2022; 20(1): 449.
[http://dx.doi.org/10.1186/s12967-022-03672-5] [PMID: 36195912]
[191]
Desai Y, Patel M, Panakanti R. Hepatocyte growth factor and betacellulin gene expression for treating diabetes: In vitro analysis. Int J Pharm Investig 2022; 12(1): 46-50.
[http://dx.doi.org/10.5530/ijpi.2022.1.8]
[192]
Nurunnabi M, Lee SA, Revuri V, et al. Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. J Control Release 2017; 268: 305-13.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.035] [PMID: 28860072]
[193]
Pan Y, Shao M, Li P, et al. Polyaminoglycoside-mediated cell reprogramming system for the treatment of diabetes mellitus. J Control Release 2022; 343: 420-33.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.041] [PMID: 35101476]
[194]
Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonself 2010; 1(3): 165-75.
[http://dx.doi.org/10.4161/self.1.3.12643] [PMID: 21487475]
[195]
Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006; 8(1): 343-75.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095735] [PMID: 16834560]
[196]
Levine F. Gene therapy for diabetes: strategies for β-cell modification and replacement. Diabetes Metab Rev 1997; 13(4): 209-46.
[http://dx.doi.org/10.1002/(SICI)1099-0895(199712)13:4<209::AID-DMR198>3.0.CO;2-N] [PMID: 9509277]
[197]
Yamanaka S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell 2020; 27(4): 523-31.
[http://dx.doi.org/10.1016/j.stem.2020.09.014] [PMID: 33007237]
[198]
Kohn DB, Chen YY, Spencer MJ. Successes and challenges in clinical gene therapy. Gene Ther 2023; 30(10-11): 738-46.
[http://dx.doi.org/10.1038/s41434-023-00390-5] [PMID: 37935854]
[199]
Shahryari A, Burtscher I, Nazari Z, Lickert HJAT. Engineering gene therapy: advances and barriers Adv Theraput 2021; 4(9): 2100040.
[http://dx.doi.org/10.1002/adtp.202100040]
[200]
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11(1): 275.
[http://dx.doi.org/10.1186/s13287-020-01793-6] [PMID: 32641151]
[201]
Soria-Juan B, Escacena N, Capilla-González V, et al. Cost-effective, safe, and personalized cell therapy for critical limb ischemia in type 2 diabetes mellitus. Front Immunol 2019; 10: 1151.
[http://dx.doi.org/10.3389/fimmu.2019.01151] [PMID: 31231366]
[202]
Farrokhi M, Taheri F, Khouzani PJ, Rahmani E, Tavakoli R, Fard AM. Role of precision medicine and personalized medicine in the treatment of diseases Kindle 2023; 3(1): 1-164.
[203]
Elemento O. The future of precision medicine: Towards a more predictive personalized medicine. Emerg Top Life Sci 2020; 4(2): 175-7.
[http://dx.doi.org/10.1042/ETLS20190197] [PMID: 32856697]
[204]
Akil AAS, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med 2021; 19(1): 137.
[http://dx.doi.org/10.1186/s12967-021-02778-6] [PMID: 33397399]
[205]
Alagpulinsa DA, Cao JJL, Driscoll RK, et al. Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am J Transplant 2019; 19(7): 1930-40.
[http://dx.doi.org/10.1111/ajt.15308] [PMID: 30748094]
[206]
Castro-Gutierrez R, Alkanani A, Mathews CE, Michels A, Russ HA. Protecting stem cell derived pancreatic beta-like cells from diabetogenic T cell recognition. Front Endocrinol 2021; 12: 707881.
[http://dx.doi.org/10.3389/fendo.2021.707881] [PMID: 34305820]
[207]
Shaheen R, Gurlin RE, Gologorsky R, et al. Superporous agarose scaffolds for encapsulation of adult human islets and human stem‐cell‐derived β cells for intravascular bioartificial pancreas applications. J Biomed Mater Res A 2021; 109(12): 2438-48.
[http://dx.doi.org/10.1002/jbm.a.37236] [PMID: 34196100]
[208]
Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 2020; 38(4): 460-70.
[http://dx.doi.org/10.1038/s41587-020-0430-6] [PMID: 32094658]
[209]
Nair GG, Liu JS, Russ HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol 2019; 21(2): 263-74.
[http://dx.doi.org/10.1038/s41556-018-0271-4] [PMID: 30710150]
[210]
Wang Q, Donelan W, Ye H, et al. Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. Am J Transl Res 2019; 11(6): 3490-504.
[PMID: 31312361]
[211]
Yoshihara E, O’Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 2020; 586(7830): 606-11.
[http://dx.doi.org/10.1038/s41586-020-2631-z] [PMID: 32814902]
[212]
Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Repor 2019; 12(2): 351-65.
[http://dx.doi.org/10.1016/j.stemcr.2018.12.012] [PMID: 30661993]
[213]
Southard SM, Kotipatruni RP, Rust WL. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS One 2018; 13(9): e0203126.
[http://dx.doi.org/10.1371/journal.pone.0203126] [PMID: 30183752]
[214]
Eydian Z, Mohammad Ghasemi A, Ansari S, et al. Differentiation of multipotent stem cells to insulin-producing cells for treatment of diabetes mellitus: bone marrow- and adipose tissue-derived cells comparison. Mol Biol Rep 2022; 49(5): 3539-48.
[http://dx.doi.org/10.1007/s11033-022-07194-7] [PMID: 35107740]
[215]
Yu G, Zhang M, Gao L, et al. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Mol Ther 2022; 30(1): 341-54.
[http://dx.doi.org/10.1016/j.ymthe.2021.09.004] [PMID: 34530162]
[216]
Sarvestani FS, Zare MA, Saki F, Koohpeyma F, Al-Abdullah IH, Azarpira N. The effect of human wharton’s jelly-derived mesenchymal stem cells on MC4R, NPY, and LEPR gene expression levels in rats with streptozotocin-induced diabetes. Iran J Basic Med Sci 2020; 23(2): 214-23.
[PMID: 32405365]
[217]
Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 2020; 28(2): 585-601.
[http://dx.doi.org/10.1007/s10787-019-00661-x] [PMID: 31741175]
[218]
Bai Y, Wang J, He Z, Yang M, Li L, Jiang H. Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines. Med Sci Monit 2019; 25: 3069-76.
[http://dx.doi.org/10.12659/MSM.914860] [PMID: 31023998]
[219]
Li Y, Liu J, Liao G, et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int J Mol Med 2018; 41(5): 2629-39.
[http://dx.doi.org/10.3892/ijmm.2018.3501] [PMID: 29484379]
[220]
Sun Y, Shi H, Yin S, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 2018; 12(8): 7613-28.
[http://dx.doi.org/10.1021/acsnano.7b07643] [PMID: 30052036]
[221]
Sávio-Silva C, Soinski-Sousa PE, Simplício-Filho A, Bastos RMC, Beyerstedt S, Rangel ÉB. Therapeutic potential of mesenchymal stem cells in a pre-clinical model of diabetic kidney disease and obesity. Int J Mol Sci 2021; 22(4): 1546.
[http://dx.doi.org/10.3390/ijms22041546] [PMID: 33557007]
[222]
Bi Y, Guo X, Zhang M, et al. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Res Ther 2021; 12(1): 602.
[http://dx.doi.org/10.1186/s13287-021-02663-5] [PMID: 34895322]
[223]
Navabi R, Negahdari B, Hajizadeh-Saffar E, et al. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model. Life Sci 2021; 276: 119374.
[http://dx.doi.org/10.1016/j.lfs.2021.119374] [PMID: 33745896]
[224]
Yuan Y, Li L, Zhu L, et al. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells 2020; 38(5): 639-52.
[http://dx.doi.org/10.1002/stem.3144] [PMID: 31904160]
[225]
Zhang L, Chi Y, Wei Y, et al. Bone marrow-derived mesenchymal stem/stromal cells in patients with acute myeloid leukemia reveal transcriptome alterations and deficiency in cellular vitality. Stem Cell Res Ther 2021; 12(1): 365.
[http://dx.doi.org/10.1186/s13287-021-02444-0] [PMID: 34174939]
[226]
Cai X, Wang L, Wang X, Hou F. miR‐124a enhances therapeutic effects of bone marrow stromal cells transplant on diabetic nephropathy‐related epithelial‐to‐mesenchymal transition and fibrosis. J Cell Biochem 2020; 121(1): 299-312.
[http://dx.doi.org/10.1002/jcb.29170]
[227]
Rao N, Wang X, Xie J, Li J, Zhai Y, Li X. Stem cells from human exfoliated deciduous teeth ameliorate diabetic nephropathy in vivo and in vitro by inhibiting advanced glycation end product-activated epithelial-mesenchymal transition. Stem Cells Int 2019; 2019: 2751475.
[http://dx.doi.org/10.1155/2019/2751475] [PMID: 31871464]
[228]
Gabr MM, Zakaria MM, Refaie AF, et al. Insulin-producing cells from adult human bone marrow mesenchymal stromal cells could control chemically induced diabetes in dogs: A preliminary study. Cell Transplant 2018; 27(6): 937-47.
[http://dx.doi.org/10.1177/0963689718759913] [PMID: 29860900]
[229]
Ebrahim N, Ahmed I, Hussien N, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells 2018; 7(12): 226.
[http://dx.doi.org/10.3390/cells7120226] [PMID: 30467302]
[230]
Elshemy MM, Asem M, Allemailem KS, Uto K, Ebara M, Nabil A. Antioxidative capacity of liver-and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats Oxid Med Cell Longev 2021; 2021: 8833467.
[http://dx.doi.org/10.1155/2021/8833467] [PMID: 33623636]
[231]
Takemura S, Shimizu T, Oka M, Sekiya S, Babazono T. Transplantation of adipose‐derived mesenchymal stem cell sheets directly into the kidney suppresses the progression of renal injury in a diabetic nephropathy rat model. J Diabetes Investig 2020; 11(3): 545-53.
[http://dx.doi.org/10.1111/jdi.13164] [PMID: 31622047]
[232]
Araujo DB, Dantas JR, Silva KR, et al. Allogenic adipose tissue-derived stromal/stem cells and vitamin D supplementation in patients with recent-onset type 1 diabetes mellitus: a 3-month follow-up pilot study. Front Immunol 2020; 11: 993.
[http://dx.doi.org/10.3389/fimmu.2020.00993] [PMID: 32582156]
[233]
Jin J, Shi Y, Gong J, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther 2019; 10(1): 95.
[http://dx.doi.org/10.1186/s13287-019-1177-1] [PMID: 30876481]
[234]
Montanucci P, Pescara T, Greco A, et al. Co‐microencapsulation of human umbilical cord‐derived mesenchymal stem and pancreatic islet‐derived insulin producing cells in experimental type 1 diabetes. Diabetes Metab Res Rev 2021; 37(2): e3372.
[http://dx.doi.org/10.1002/dmrr.3372] [PMID: 32562342]
[235]
He Q, Wang L, Zhao R, et al. Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy. Stem Cell Res Ther 2020; 11(1): 223.
[http://dx.doi.org/10.1186/s13287-020-01731-6] [PMID: 32513303]
[236]
Chen L, Xiang E, Li C, Han B, Zhang Q, Rao W. Umbilical cord-derived mesenchymal stem cells ameliorate nephrocyte injury and proteinuria in a diabetic nephropathy rat model. J Diabet Res 2020; 29: 8035853.
[http://dx.doi.org/10.1155/2020/8035853]
[237]
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther 2020; 11(1): 336.
[http://dx.doi.org/10.1186/s13287-020-01852-y] [PMID: 32746936]
[238]
Lee SE, Jang JE, Kim HS, et al. Mesenchymal stem cells prevent the progression of diabetic nephropathy by improving mitochondrial function in tubular epithelial cells. Exp Mol Med 2019; 51(7): 1-14.
[http://dx.doi.org/10.1038/s12276-019-0268-5] [PMID: 31285429]
[239]
An X, Liao G, Chen Y, et al. Intervention for early diabetic nephropathy by mesenchymal stem cells in a preclinical nonhuman primate model. Stem Cell Res Ther 2019; 10(1): 363.
[http://dx.doi.org/10.1186/s13287-019-1401-z] [PMID: 31791397]
[240]
Wang HL, Wei B, He HJ, et al. Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting β cell proliferation via the E2F3-dependent mechanism. Theranostics 2022; 12(1): 379-95.
[http://dx.doi.org/10.7150/thno.67034] [PMID: 34987651]
[241]
Choi MY, Lim SJ, Kim MJ, et al. Islet isograft transplantation improves insulin sensitivity in a murine model of type 2 diabetes. Endocrine 2021; 72(3): 660-71.
[http://dx.doi.org/10.1007/s12020-021-02655-8] [PMID: 33713015]
[242]
Tun SBB, Chua M, Hasan R, et al. Islet transplantation to the anterior chamber of the eye—a future treatment option for insulin-deficient type-2 diabetics? A case report from a nonhuman type-2 diabetic primate. Cell Transplant 2020; 29
[http://dx.doi.org/10.1177/0963689720913256] [PMID: 32264703]
[243]
Sui L, Danzl N, Campbell SR, et al. β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 2018; 67(1): 26-35.
[http://dx.doi.org/10.2337/db17-0120] [PMID: 28931519]
[244]
Ramzy A, Thompson DM, Ward-Hartstonge KA, Ivison S, Cook L, Garcia RV. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell stem cell 2021; 28(12): 2047-61.
[http://dx.doi.org/10.1016/j.stem.2021.10.003] [PMID: 34861146]
[245]
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13(1): 264.
[http://dx.doi.org/10.1186/s13287-022-02941-w] [PMID: 35725652]
[246]
Li Y, Wang F, Liang H, et al. Efficacy of mesenchymal stem cell transplantation therapy for type 1 and type 2 diabetes mellitus: a meta-analysis. Stem Cell Res Ther 2021; 12(1): 273.
[http://dx.doi.org/10.1186/s13287-021-02342-5] [PMID: 33957998]
[247]
Nguyen LT, Hoang DM, Nguyen KT, et al. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl Med 2021; 10(9): 1266-78.
[http://dx.doi.org/10.1002/sctm.20-0506] [PMID: 34080789]
[248]
Wang H, Strange C, Nietert PJ, et al. Autologous mesenchymal stem cell and islet cotransplantation: safety and efficacy. Stem Cells Transl Med 2018; 7(1): 11-9.
[http://dx.doi.org/10.1002/sctm.17-0139] [PMID: 29159905]
[249]
Weiss JN, Levy S. Stem cell ophthalmology treatment study: bone marrow derived stem cells in the treatment of retinitis pigmentosa. Stem Cell Investig 2018; 5: 18.
[http://dx.doi.org/10.21037/sci.2018.04.02] [PMID: 30050918]
[250]
Dantas JR, CABRAL DA, Pereira K, Pereira MF, Souto DL, Nolasco M. Heterologous adipose–derived mesenchymal stem cells and vitamin d supplementation in patients with recent–onset type 1 diabetes mellitus–six months follow-up. Diabetes 2018; 67(Supplement_1): 1112.
[http://dx.doi.org/10.2337/db18-1112-P]
[251]
Gu X, Yu X, Zhao C, et al. Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem 2018; 49(1): 40-52.
[http://dx.doi.org/10.1159/000492838] [PMID: 30134223]
[252]
Zhao Y, Knight CM, Jiang Z, et al. Stem cell educator therapy in type 1 diabetes: From the bench to clinical trials. Autoimmun Rev 2022; 21(5): 103058.
[http://dx.doi.org/10.1016/j.autrev.2022.103058] [PMID: 35108619]
[253]
Zang L, Li Y, Hao H, et al. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther 2022; 13(1): 180.
[http://dx.doi.org/10.1186/s13287-022-02848-6] [PMID: 35505375]
[254]
Wu Z, Xu X, Cai J, et al. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: a pilot randomized controlled open-label clinical study with 8-year follow-up. Cytotherapy 2022; 24(4): 421-7.
[http://dx.doi.org/10.1016/j.jcyt.2021.09.015] [PMID: 35086778]
[255]
Weiss JN. Cellular Therapy for Type 1 Diabetes Using Mesenchymal Stem Cells. In: Stem Cell Surgery Trials in Heart Failure and Diabetes. Cham: Springer 2022; pp. 85-8.
[http://dx.doi.org/10.1007/978-3-030-78010-4_17]
[256]
Yazhen Z, Wenyi C, Bing F, Hongcui C. The clinical efficacy and safety of stem cell therapy for diabetes mellitus: a systematic review and meta-analysis. Aging Dis 2020; 11(1): 141-53.
[http://dx.doi.org/10.14336/AD.2019.0421] [PMID: 32010488]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy