Abstract
Background: Considerable interest has been devoted to electrochemical sensors for the detection of L-cysteine using BiPr-based oxide-modified electrodes due to high specific surface area and good electro-catalytic activity with several oxidation states. The combination of the BiPr composite oxide nanowires with polyaniline (PAn) can promote the electro-catalytic performance towards Lcysteine because PAn can facilitate the electro-catalytic process by enhancing the charge transfer.
Methods: PAn/BiPr composite oxide nanowires were obtained via low temperature one-step hydrothermal route. The obtained composite oxide nanowires were analyzed by X-ray diffraction, electron microscopy, and electrochemical methods.
Results: Characterization results indicate that amorphous PAn nanoparticles with a size of about 50 nm are homogeneously dispersed at the surface of the BiPr composite oxide nanowires. PAn/BiPr composite oxide nanowire-modified electrode shows an enhanced L-cysteine electro-catalytic activity. PAn promotes electro-catalytic activity of the BiPr composite oxide nanowires. A pair of quasi-reversible cyclic voltammetry (CV) peaks exist at +0.49 V, -0.19 V, respectively. PAn/BiPr composite oxide nanowire modified electrode possesses a linear response in L-cysteine concentration of 0.001-2 mM and detection limit of 0.095 μM, good repeatability, and stability.
Conclusion: PAn/BiPr composite oxide nanowires act as effective electro-catalysts for L-cysteine oxidation resulting in the enhancement of the electro-catalytic activity relative to BiPr composite oxide nanowires.
Keywords: BiPr composite oxide nanowires, polyaniline, electrochemical performance, L-cysteine, characterization, cyclic voltammetry.
[http://dx.doi.org/10.1007/s11051-012-0983-5]
[http://dx.doi.org/10.1016/j.jpowsour.2006.05.036]
[http://dx.doi.org/10.1016/0167-2738(93)90370-I]
[http://dx.doi.org/10.1016/S0360-5442(97)00044-3]
[http://dx.doi.org/10.1016/S1452-3981(23)14995-9]
[http://dx.doi.org/10.1007/s11581-015-1620-y]
[http://dx.doi.org/10.1007/s10800-014-0681-3]
[http://dx.doi.org/10.1088/1361-6528/ac7244] [PMID: 35605596]
[http://dx.doi.org/10.1007/s11426-011-4330-y]
[http://dx.doi.org/10.1016/j.measurement.2014.03.032]
[http://dx.doi.org/10.1007/s10800-005-0914-6]
[http://dx.doi.org/10.1016/j.electacta.2005.10.038]
[http://dx.doi.org/10.2174/1573412914666181017145307]
[http://dx.doi.org/10.1088/0957-4484/19/01/015503] [PMID: 21730534]
[http://dx.doi.org/10.1016/j.msec.2013.01.044] [PMID: 23498252]
[http://dx.doi.org/10.1016/j.snb.2013.06.082]
[http://dx.doi.org/10.1016/j.measurement.2018.06.036]
[http://dx.doi.org/10.1016/j.aca.2015.02.064] [PMID: 25910444]
[http://dx.doi.org/10.1016/j.bios.2011.09.038] [PMID: 22019101]
[http://dx.doi.org/10.1016/j.msec.2020.111300] [PMID: 32919661]
[http://dx.doi.org/10.1021/acs.analchem.2c04498] [PMID: 36625123]
[http://dx.doi.org/10.1002/advs.202309824] [PMID: 38561966]
[http://dx.doi.org/10.1002/adma.202008276] [PMID: 34245059]
[http://dx.doi.org/10.1039/C7RA04052K]
[http://dx.doi.org/10.1134/S102319351711012X]
[http://dx.doi.org/10.1016/j.matchemphys.2021.124689]
[http://dx.doi.org/10.1007/s00604-016-1974-5]
[http://dx.doi.org/10.1016/j.bios.2010.07.005] [PMID: 20685105]
[http://dx.doi.org/10.1021/ac000220v] [PMID: 11217755]
[http://dx.doi.org/10.1039/c0jm01055c]
[http://dx.doi.org/10.1016/j.talanta.2009.11.027] [PMID: 20152470]
[http://dx.doi.org/10.1016/j.snb.2010.04.023]
[http://dx.doi.org/10.1021/la701667p] [PMID: 17824628]
[http://dx.doi.org/10.1002/elan.200804213]
[http://dx.doi.org/10.1016/j.ab.2005.01.002] [PMID: 15766706]
[http://dx.doi.org/10.1016/j.bios.2009.03.008] [PMID: 19345085]
[http://dx.doi.org/10.1021/ac0703707] [PMID: 17555298]
[http://dx.doi.org/10.3139/146.111516]
[http://dx.doi.org/10.1149/2.0041602jes]
[http://dx.doi.org/10.1039/c2ce26592c]
[http://dx.doi.org/10.1080/10408347.2019.1664281] [PMID: 31559831]
[PMID: 31531049]
