Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Synthesis of Polyaniline/BiPr Composite Oxide Nanowires with Enhanced Electrochemical Sensing Performance

Author(s): Chenxu Feng, Zhangjie Ban, Jianfeng Huang, Yong Zhang, Zhengyu Cai* and Lizhai Pei*

Volume 20, Issue 7, 2024

Published on: 12 August, 2024

Page: [607 - 616] Pages: 10

DOI: 10.2174/0115734129317923240808114505

Price: $65

Abstract

Background: Considerable interest has been devoted to electrochemical sensors for the detection of L-cysteine using BiPr-based oxide-modified electrodes due to high specific surface area and good electro-catalytic activity with several oxidation states. The combination of the BiPr composite oxide nanowires with polyaniline (PAn) can promote the electro-catalytic performance towards Lcysteine because PAn can facilitate the electro-catalytic process by enhancing the charge transfer.

Methods: PAn/BiPr composite oxide nanowires were obtained via low temperature one-step hydrothermal route. The obtained composite oxide nanowires were analyzed by X-ray diffraction, electron microscopy, and electrochemical methods.

Results: Characterization results indicate that amorphous PAn nanoparticles with a size of about 50 nm are homogeneously dispersed at the surface of the BiPr composite oxide nanowires. PAn/BiPr composite oxide nanowire-modified electrode shows an enhanced L-cysteine electro-catalytic activity. PAn promotes electro-catalytic activity of the BiPr composite oxide nanowires. A pair of quasi-reversible cyclic voltammetry (CV) peaks exist at +0.49 V, -0.19 V, respectively. PAn/BiPr composite oxide nanowire modified electrode possesses a linear response in L-cysteine concentration of 0.001-2 mM and detection limit of 0.095 μM, good repeatability, and stability.

Conclusion: PAn/BiPr composite oxide nanowires act as effective electro-catalysts for L-cysteine oxidation resulting in the enhancement of the electro-catalytic activity relative to BiPr composite oxide nanowires.

Keywords: BiPr composite oxide nanowires, polyaniline, electrochemical performance, L-cysteine, characterization, cyclic voltammetry.

Graphical Abstract
[1]
Choi, J.; Qu, Y.; Hoffmann, M.R. SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2. J. Nanopart. Res., 2012, 14(8), 983.
[http://dx.doi.org/10.1007/s11051-012-0983-5]
[2]
Gujar, T.P.; Shinde, V.R.; Lokhande, C.D.; Han, S.H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources, 2006, 161(2), 1479-1485.
[http://dx.doi.org/10.1016/j.jpowsour.2006.05.036]
[3]
Sammes, N.; Gainsford, G. Phase stability and oxygen ion conduction in Bi2O3−Pr6O11. Solid State Ion., 1993, 62(3-4), 179-184.
[http://dx.doi.org/10.1016/0167-2738(93)90370-I]
[4]
Kawabe, M.; Ono, H.; Sano, T.; Tsuji, M.; Tamaura, Y. Thermochemical oxygen pump with praseodymium oxides using a temperature-swing at 403–873 K. Energy, 1997, 22(11), 1041-1049.
[http://dx.doi.org/10.1016/S0360-5442(97)00044-3]
[5]
Zidan, M.; Tee, T.W.; Abdullah, A.H.; Zainal, Z.; Kheng, G.J. Electrochemical oxidation of ascorbic acid mediated by Bi2O3 microparticles modified glassy carbon electrode. Int. J. Electrochem. Sci., 2011, 6(2), 289-300.
[http://dx.doi.org/10.1016/S1452-3981(23)14995-9]
[6]
Devnani, H.; Satsangee, S.P.; Jain, R. A novel graphene-chitosan-Bi2O3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine. Ionics, 2016, 22(6), 943-956.
[http://dx.doi.org/10.1007/s11581-015-1620-y]
[7]
Su, H.; Cao, S.; Xia, N.; Huang, X.; Yan, J.; Liang, Q.; Yuan, D. Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties. J. Appl. Electrochem., 2014, 44(6), 735-740.
[http://dx.doi.org/10.1007/s10800-014-0681-3]
[8]
Huang, J.; Tao, F.; Li, F.; Cai, Z.; Zhang, Y.; Fan, C.; Pei, L. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties. Nanotechnology, 2022, 33(34), 345704.
[http://dx.doi.org/10.1088/1361-6528/ac7244] [PMID: 35605596]
[9]
Feng, X.; Li, R.; Ma, Y.; Chen, R.; Mei, Q.; Fan, Q.; Huang, W. Nitrogen-doped carbon nanotube/polyaniline composite: Synthesis, characterization, and its application to the detection of dopamine. Sci. China Chem., 2011, 54(10), 1615-1621.
[http://dx.doi.org/10.1007/s11426-011-4330-y]
[10]
Pei, L.Z.; Cai, Z.Y.; Xie, Y.K.; Fu, D.G. Electrochemical behaviors of benzoic acid at polyaniline/CuGeO3 nanowire modified glassy carbon electrode. Measurement, 2014, 53, 62-70.
[http://dx.doi.org/10.1016/j.measurement.2014.03.032]
[11]
Mathiyarasu, J.; Senthilkumar, S.; Phani, K.L.N.; Yegnaraman, V. Selective detection of dopamine using a functionalised polyaniline composite electrode. J. Appl. Electrochem., 2005, 35(5), 513-519.
[http://dx.doi.org/10.1007/s10800-005-0914-6]
[12]
Zhu, N.; Chang, Z.; He, P.; Fang, Y. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim. Acta, 2006, 51(18), 3758-3762.
[http://dx.doi.org/10.1016/j.electacta.2005.10.038]
[13]
Pei, L.; Qiu, F.; Ma, Y.; Lin, F.; Fan, C.; Ling, X. Polyaniline/Al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid. Curr. Pharm. Anal., 2020, 16(2), 153-158.
[http://dx.doi.org/10.2174/1573412914666181017145307]
[14]
Li, Y.; Wang, H.; Cao, X.; Yuan, M.; Yang, M. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor. Nanotechnology, 2008, 19(1), 015503.
[http://dx.doi.org/10.1088/0957-4484/19/01/015503] [PMID: 21730534]
[15]
Nguyen, B.H.; Tran, L.D.; Do, Q.P.; Nguyen, H.L.; Tran, N.H.; Nguyen, P.X. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater. Sci. Eng. C, 2013, 33(4), 2229-2234.
[http://dx.doi.org/10.1016/j.msec.2013.01.044] [PMID: 23498252]
[16]
Li, J.; Liu, S.; Yu, J.; Lian, W.; Cui, M.; Xu, W.; Huang, J. Electrochemical immunosensor based on graphene–polyaniline composites and carboxylated graphene oxide for estradiol detection. Sens. Actuators B Chem., 2013, 188, 99-105.
[http://dx.doi.org/10.1016/j.snb.2013.06.082]
[17]
Zhang, Y.; Ma, Y.; Wei, T.; Lin, F.F.; Qiu, F.L.; Pei, L.Z. Polyaniline/zinc bismuthate nanocomposites for the enhanced electrochemical performance of the determination of L-Cysteine. Measurement, 2018, 128, 55-62.
[http://dx.doi.org/10.1016/j.measurement.2018.06.036]
[18]
Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal. Chim. Acta, 2015, 874, 40-48.
[http://dx.doi.org/10.1016/j.aca.2015.02.064] [PMID: 25910444]
[19]
Ge, S.; Yan, M.; Lu, J.; Zhang, M.; Yu, F.; Yu, J.; Song, X.; Yu, S. Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosens. Bioelectron., 2012, 31(1), 49-54.
[http://dx.doi.org/10.1016/j.bios.2011.09.038] [PMID: 22019101]
[20]
Sohouli, E.; Ghalkhani, M.; Rostami, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. A noble electrochemical sensor based on TiO2@CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam. Mater. Sci. Eng. C, 2020, 117, 111300.
[http://dx.doi.org/10.1016/j.msec.2020.111300] [PMID: 32919661]
[21]
Pan, J.; Xu, W.; Li, W.; Chen, S.; Dai, Y.; Yu, S.; Zhou, Q.; Xia, F. Electrochemical aptamer-based sensors with tunable detection range. Anal. Chem., 2023, 95(1), 420-432.
[http://dx.doi.org/10.1021/acs.analchem.2c04498] [PMID: 36625123]
[22]
Gao, A.; Zhou, Q.; Cao, Z.; Xu, W.; Zhou, K.; Wang, B.; Pan, J.; Pan, C.; Xia, F. A self-powered biochemical sensor for intelligent agriculture enabled by signal enhanced triboelectric nanogenerator. Adv. Sci. (Weinh.), 2024, 11(22), 2309824.
[http://dx.doi.org/10.1002/advs.202309824] [PMID: 38561966]
[23]
Zhou, Q.; Pan, J.; Deng, S.; Xia, F.; Kim, T. Triboelectric nanogenerator-based sensor systems for chemical or biological detection. Adv. Mater., 2021, 33(35), 2008276.
[http://dx.doi.org/10.1002/adma.202008276] [PMID: 34245059]
[24]
Yang, S.; Li, G.; Qu, C.; Wang, G.; Wang, D. Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of L -cysteine. RSC Advances, 2017, 7(56), 35004-35011.
[http://dx.doi.org/10.1039/C7RA04052K]
[25]
Pei, L.Z.; Wei, T.; Lin, N.; Zhang, H.; Fan, C.G. Bismuth tellurate nanospheres and electrochemical behaviors of L-Cysteine at the nanospheres modified electrode. Russ. J. Electrochem., 2018, 54(1), 84-91.
[http://dx.doi.org/10.1134/S102319351711012X]
[26]
Kivrak, H.; Selçuk, K.; Er, O.F.; Aktas, N. Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts. Mater. Chem. Phys., 2021, 267, 124689.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124689]
[27]
Wang, Y.; Wang, W.; Li, G.; Liu, Q.; Wei, T.; Li, B.; Jiang, C.; Sun, Y. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Mikrochim. Acta, 2016, 183(12), 3221-3228.
[http://dx.doi.org/10.1007/s00604-016-1974-5]
[28]
Lai, Y.T.; Ganguly, A.; Chen, L.C.; Chen, K.H. Direct voltammetric sensing of l-Cysteine at pristine GaN nanowires electrode. Biosens. Bioelectron., 2010, 26(4), 1688-1691.
[http://dx.doi.org/10.1016/j.bios.2010.07.005] [PMID: 20685105]
[29]
Spãtaru, N.; Sarada, B.V.; Popa, E.; Tryk, D.A.; Fujishima, A. Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal. Chem., 2001, 73(3), 514-519.
[http://dx.doi.org/10.1021/ac000220v] [PMID: 11217755]
[30]
Ahmad, M.; Pan, C.; Zhu, J. Electrochemical determination of l-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J. Mater. Chem., 2010, 20(34), 7169-7174.
[http://dx.doi.org/10.1039/c0jm01055c]
[31]
Tang, X.; Liu, Y.; Hou, H.; You, T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta, 2010, 80(5), 2182-2186.
[http://dx.doi.org/10.1016/j.talanta.2009.11.027] [PMID: 20152470]
[32]
Dharmapandian, P.; Rajesh, S.; Rajasingh, S.; Rajendran, A.; Karunakaran, C. Electrochemical cysteine biosensor based on the selective oxidase–peroxidase activities of copper, zinc superoxide dismutase. Sens. Actuators B Chem., 2010, 148(1), 17-22.
[http://dx.doi.org/10.1016/j.snb.2010.04.023]
[33]
Chen, Z.; Zheng, H.; Lu, C.; Zu, Y. Oxidation of L-cysteine at a fluorosurfactant-modified gold electrode: lower overpotential and higher selectivity. Langmuir, 2007, 23(21), 10816-10822.
[http://dx.doi.org/10.1021/la701667p] [PMID: 17824628]
[34]
Chen, S.M.; Chen, J.Y.; Thangamuthu, R. Electrochemical Preparation of brilliant-blue-modified poly(diallyldimethylammonium chloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and L-cysteine. Electroanalysis, 2008, 20(14), 1565-1573.
[http://dx.doi.org/10.1002/elan.200804213]
[35]
Fei, S.; Chen, J.; Yao, S.; Deng, G.; He, D.; Kuang, Y. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem., 2005, 339(1), 29-35.
[http://dx.doi.org/10.1016/j.ab.2005.01.002] [PMID: 15766706]
[36]
Bai, Y.H.; Xu, J.J.; Chen, H.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron., 2009, 24(10), 2985-2990.
[http://dx.doi.org/10.1016/j.bios.2009.03.008] [PMID: 19345085]
[37]
Zhou, M.; Ding, J.; Guo, L.; Shang, Q. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal. Chem., 2007, 79(14), 5328-5335.
[http://dx.doi.org/10.1021/ac0703707] [PMID: 17555298]
[38]
Wen, Y.; Pei, L.; Wei, T. Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance. Int. J. Mater. Res., 2017, 108(7), 592-599.
[http://dx.doi.org/10.3139/146.111516]
[39]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163(2), H1-H8.
[http://dx.doi.org/10.1149/2.0041602jes]
[40]
Pei, L.Z.; Pei, Y.Q.; Xie, Y.K.; Fan, C.G.; Yu, H.Y. Synthesis and characterization of manganese vanadate nanorods as glassy carbon electrode modified materials for the determination of l-cysteine. CrystEngComm, 2013, 15(9), 1729-1738.
[http://dx.doi.org/10.1039/c2ce26592c]
[41]
Ghalkhani, M.; Bakirhan, N.K.; Ozkan, S.A. Combination of efficiency with easiness, speed, and cheapness in development of sensitive electrochemical sensors. Crit. Rev. Anal. Chem., 2020, 50(6), 538-553.
[http://dx.doi.org/10.1080/10408347.2019.1664281] [PMID: 31559831]
[42]
Ghalkhani, M.; Ghorbani-Bidkorbeh, F. Development of carbon nanostructured based electrochemical sensors for pharmaceutical analysis. Iran. J. Pharm. Res., 2019, 18(2), 658-669.
[PMID: 31531049]

© 2025 Bentham Science Publishers | Privacy Policy