Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Diabetes and its Silent Partner: A Critical Review of Hyperinsulinemia and its Complications

Author(s): Imran Rashid Rangraze, Mohamed El-Tanani*, Syed Arman Rabbani, Rasha Babiker, Ismail I. Matalka and Manfredi Rizzo

Volume 21, Issue 9, 2025

Published on: 26 August, 2024

Article ID: e15733998311738 Pages: 18

DOI: 10.2174/0115733998311738240813110032

Price: $65

TIMBC 2026
Abstract

In this complex realm of diabetes, hyperinsulinemia is no longer regarded as just a compensatory response to insulin resistance but rather has evolved into an integral feature. This comprehensive review provides a synthesis of the current literature, including various aspects associated with hyperinsulinemia in diabetic complications. Hyperinsulinemia has been shown to be more than just a compensatory mechanism, and the key findings demonstrate how hyperinsulinism affects the development of cardiovascular events as well as microvascular complications. Additionally, recognizing hyperinsulinemia as a modifiable factor, the diabetes management paradigm shifts towards cognitive ones that consider the use of lifestyle modifications in combination with newer pharmacotherapies and precision medicine approaches. These findings have crucial implications for the clinical work, requiring a careful appreciation of hyperinsulinemia's changing aspects as well as incorporation in personalized treatment protocol. In addition, the review focuses on bigger issues related to public health, showing that prevention and early diagnosis will help reduce the burden of complications. Research implications favor longitudinal studies, biomarker discovery, and the study of emerging treatment modalities; clinical practice should adopt global evaluations, patient education, and precision medicine adaptation. Finally, this critical review provides an overview of the underlying processes of hyperinsulinemia in diabetes and its overall health effects.

Keywords: Hyperinsulinemia, diabetic complications, insulin resistance, cardiovascular events, chronic metabolic disorder, diabetes mellitus.

[1]
Ojo OA, Ibrahim HS, Rotimi DE, Ogunlakin AD, Ojo AB. Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Med Novel Technol Dev 2023; 19: 100247.
[http://dx.doi.org/10.1016/j.medntd.2023.100247]
[2]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[3]
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14: 1149239.
[http://dx.doi.org/10.3389/fendo.2023.1149239] [PMID: 37056675]
[4]
DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 2010; 53(7): 1270-87.
[http://dx.doi.org/10.1007/s00125-010-1684-1] [PMID: 20361178]
[5]
Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 2022; 18(9): 525-39.
[http://dx.doi.org/10.1038/s41574-022-00690-7] [PMID: 35668219]
[6]
Norton L, Shannon C, Gastaldelli A, DeFronzo RA. Insulin: The master regulator of glucose metabolism. Metabolism 2022; 129: 155142.
[http://dx.doi.org/10.1016/j.metabol.2022.155142] [PMID: 35066003]
[7]
Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc 2019; 3(9): 1727-47.
[http://dx.doi.org/10.1210/js.2019-00065] [PMID: 31528832]
[8]
Xing J, Chen C. Hyperinsulinemia: beneficial or harmful or both on glucose homeostasis. Am J Physiol Endocrinol Metab 2022; 323(1): E2-7.
[http://dx.doi.org/10.1152/ajpendo.00441.2021] [PMID: 35635329]
[9]
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54 (Suppl. 2): S97-S107.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S97] [PMID: 16306347]
[10]
Kulkarni RN, Holzenberger M, Shih DQ, et al. β-cell–specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nat Genet 2002; 31(1): 111-5.
[http://dx.doi.org/10.1038/ng872] [PMID: 11923875]
[11]
Saisho Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J Diabetes 2015; 6(1): 109-24.
[http://dx.doi.org/10.4239/wjd.v6.i1.109] [PMID: 25685282]
[12]
Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology 2022; 164(1): bqac184.
[http://dx.doi.org/10.1210/endocr/bqac184] [PMID: 36317483]
[13]
Marselli L, Piron A, Suleiman M, et al. Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Rep 2020; 33(9): 108466.
[http://dx.doi.org/10.1016/j.celrep.2020.108466] [PMID: 33264613]
[14]
Ntsapi C, Lumkwana D, Swart C, du Toit A, Loos B. New Insights Into Autophagy Dysfunction Related to Amyloid Beta Toxicity and Neuropathology in Alzheimer’s Disease. Int Rev Cell Mol Biol 2018; 336: 321-61.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.002] [PMID: 29413893]
[15]
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9: 384.
[http://dx.doi.org/10.3389/fendo.2018.00384] [PMID: 30061862]
[16]
Cao R, Tian H, Zhang Y, et al. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm 2023; 4(3): e283.
[http://dx.doi.org/10.1002/mco2.283] [PMID: 37303813]
[17]
Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol 2002; 90(5): 3-10.
[http://dx.doi.org/10.1016/S0002-9149(02)02553-5] [PMID: 12231073]
[18]
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98(4): 2133-223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[19]
Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 2001; 60(3): 349-56.
[http://dx.doi.org/10.1079/PNS2001110] [PMID: 11681809]
[20]
Zatterale F, Longo M, Naderi J, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol 2020; 10: 1607.
[http://dx.doi.org/10.3389/fphys.2019.01607] [PMID: 32063863]
[21]
Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross‐talk with liver and adipose tissue. Physiol Rep 2020; 8(19): e14607.
[http://dx.doi.org/10.14814/phy2.14607] [PMID: 33038072]
[22]
Vogelzangs N, van der Kallen CJH, van Greevenbroek MMJ, et al. Metabolic profiling of tissue-specific insulin resistance in human obesity: results from the Diogenes study and the Maastricht Study. Int J Obes 2020; 44(6): 1376-86.
[http://dx.doi.org/10.1038/s41366-020-0565-z] [PMID: 32203114]
[23]
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2017; 426(1-2): 27-45.
[http://dx.doi.org/10.1007/s11010-016-2878-8] [PMID: 27868170]
[24]
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10: 703.
[http://dx.doi.org/10.3389/fendo.2019.00703] [PMID: 31736870]
[25]
Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 2016; 126(1): 12-22.
[http://dx.doi.org/10.1172/JCI77812] [PMID: 26727229]
[26]
Lu H, Bogdanovic E, Yu Z, et al. Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology 2018; 159(4): 1658-77.
[http://dx.doi.org/10.1210/en.2017-00312] [PMID: 29370351]
[27]
Saad MJA. Obesity, Diabetes, and Endothelium: Molecular Interactions. In: Da Luz PL, Libby P, Chagas ACP, Laurindo FRM, Eds. Endothelium and Cardiovascular Diseases. Academic Press 2018; pp. 639-52.
[http://dx.doi.org/10.1016/B978-0-12-812348-5.00044-1]
[28]
Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018; 14(11): 1483-96.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[29]
Maffei A, Lembo G, Carnevale D. PI3Kinases in diabetes mellitus and its related complications. Int J Mol Sci 2018; 19(12): 4098.
[http://dx.doi.org/10.3390/ijms19124098] [PMID: 30567315]
[30]
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55(10): 2565-82.
[http://dx.doi.org/10.1007/s00125-012-2644-8] [PMID: 22869320]
[31]
Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015; 6(13): 1246-58.
[http://dx.doi.org/10.4239/wjd.v6.i13.1246] [PMID: 26468341]
[32]
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 2020; 21(5): 1835.
[http://dx.doi.org/10.3390/ijms21051835] [PMID: 32155866]
[33]
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology ofllerosis. Int J Mol Sci 2022; 23(6): 3346.
[http://dx.doi.org/10.3390/ijms23063346] [PMID: 35328769]
[34]
Standl E. Hyperinsulinemia and atherosclerosis. Clin Invest Med 1995; 18(4): 261-6.
[PMID: 8549011]
[35]
Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20: 247-60.
[http://dx.doi.org/10.1016/j.redox.2018.09.025] [PMID: 30384259]
[36]
Lu Y, Cui X, Zhang L, et al. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13(2): 491-520.
[http://dx.doi.org/10.14336/AD.2021.0929] [PMID: 35371605]
[37]
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73: 383-99.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.016] [PMID: 24878261]
[38]
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 2023; 14(7): 410.
[http://dx.doi.org/10.1038/s41419-023-05935-5] [PMID: 37433795]
[39]
Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 2013; 14(1): 5-12.
[http://dx.doi.org/10.1007/s11154-012-9229-1] [PMID: 23306778]
[40]
Bahadoran Z, Mirmiran P, Ghasemi A. Role of Nitric Oxide in Insulin Secretion and Glucose Metabolism. Trends Endocrinol Metab 2020; 31(2): 118-30.
[http://dx.doi.org/10.1016/j.tem.2019.10.001] [PMID: 31690508]
[41]
Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 2012; 14: e1.
[http://dx.doi.org/10.1017/S1462399411002109] [PMID: 22233681]
[42]
Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. J Clin Invest 2000; 105(3): 311-20.
[http://dx.doi.org/10.1172/JCI7535] [PMID: 10675357]
[43]
Bönner G. Hyperinsulinemia, insulin resistance, and hypertension. J Cardiovasc Pharmacol 1994; 24 (Suppl. 2): S39-49.
[http://dx.doi.org/10.1097/00005344-199412001-00007] [PMID: 7898093]
[44]
Brands MW, Manhiani MM. Sodium-retaining effect of insulin in diabetes. Am J Physiol Regul Integr Comp Physiol 2012; 303(11): R1101-9.
[http://dx.doi.org/10.1152/ajpregu.00390.2012] [PMID: 23034715]
[45]
Wang H, Wang AX, Aylor K, Barrett EJ. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes 2013; 62(12): 4030-42.
[http://dx.doi.org/10.2337/db13-0627] [PMID: 23863813]
[46]
Daza-Arnedo R, Rico-Fontalvo J, Aroca-Martínez G, et al. Insulin and the kidneys: a contemporary view on the molecular basis. Front Neurol 2023; 3: 1133352.
[http://dx.doi.org/10.3389/fneph.2023.1133352] [PMID: 37675359]
[47]
da Silva AA, do Carmo JM, Li X, Wang Z, Mouton AJ, Hall JE. Role of hyperinsulinemia and insulin resistance in hypertension: Metabolic syndrome revisited. Can J Cardiol 2020; 36(5): 671-82.
[http://dx.doi.org/10.1016/j.cjca.2020.02.066] [PMID: 32389340]
[48]
Monu S. Renal hyperinsulinemia causes thickening of glomerular basement membrane independent of hypertension and hyperglycemia. FASEB J 2020; 34(S1): 1-1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.02118]
[49]
De Cosmo S, Menzaghi C, Prudente S, Trischitta V. Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. Nephrol Dial Transplant 2013; 28(1): 29-36.
[http://dx.doi.org/10.1093/ndt/gfs290] [PMID: 23048172]
[50]
Sinha S, Haque M. Insulin Resistance Is Cheerfully Hitched with Hypertension. Life (Basel) 2022; 12(4): 564.
[http://dx.doi.org/10.3390/life12040564] [PMID: 35455055]
[51]
Jia G, Sowers JR. Hypertension in diabetes: An update of basic mechanisms and clinical disease. Hypertension 2021; 78(5): 1197-205.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.17981]
[52]
Hosszúfalusi N, Pánczél P, Jánoskuti L. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men. Circulation 1999; 100(24): e118.
[http://dx.doi.org/10.1161/01.CIR.100.24.e118] [PMID: 10595966]
[53]
Rask-Madsen C, King GL. Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 2007; 3(1): 46-56.
[http://dx.doi.org/10.1038/ncpendmet0366] [PMID: 17179929]
[54]
Després JP, Lamarche B, Mauriège P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334(15): 952-8.
[http://dx.doi.org/10.1056/NEJM199604113341504] [PMID: 8596596]
[55]
Cui J, Liu Y, Li Y, Xu F, Liu Y. Type 2 Diabetes and Myocardial Infarction: Recent Clinical Evidence and Perspective. Front Cardiovasc Med 2021; 8: 644189.
[http://dx.doi.org/10.3389/fcvm.2021.644189] [PMID: 33718461]
[56]
Warraich HJ, Rana JS. Dyslipidemia in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol 2017; 6(1): 27-32.
[http://dx.doi.org/10.1097/XCE.0000000000000120] [PMID: 31646116]
[57]
Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies—a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42(47): 4791-806.
[http://dx.doi.org/10.1093/eurheartj/ehab551] [PMID: 34472586]
[58]
Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001; 40(6): 439-52.
[http://dx.doi.org/10.1016/S0163-7827(01)00010-8] [PMID: 11591434]
[59]
Mourikis P, Zako S, Dannenberg L, et al. Lipid lowering therapy in cardiovascular disease: From myth to molecular reality. Pharmacol Ther 2020; 213: 107592.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107592] [PMID: 32492513]
[60]
Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci 2019; 20(9): 2358.
[http://dx.doi.org/10.3390/ijms20092358] [PMID: 31085992]
[61]
Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86(5): 1930-5.
[http://dx.doi.org/10.1210/jcem.86.5.7463] [PMID: 11344187]
[62]
Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548-56.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[63]
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacoth 2021; 137: 111315.
[http://dx.doi.org/10.1016/j.biopha.2021.111315]
[64]
Dharmalingam M, Yamasandhi PG. Nonalcoholic fatty liver disease and Type 2 diabetes mellitus. Indian J Endocrinol Metab 2018; 22(3): 421-8.
[http://dx.doi.org/10.4103/ijem.IJEM_585_17] [PMID: 30090738]
[65]
Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2006; 91(12): 4753-61.
[http://dx.doi.org/10.1210/jc.2006-0587] [PMID: 16968800]
[66]
Bourebaba N, Marycz K. Hepatic stellate cells role in the course of metabolic disorders development – A molecular overview. Pharmacol Res 2021; 170: 105739.
[http://dx.doi.org/10.1016/j.phrs.2021.105739] [PMID: 34171492]
[67]
Tsamos G, Vasdeki D, Koufakis T, Michou V, Makedou K, Tzimagiorgis G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023; 13(4): 517.
[http://dx.doi.org/10.3390/metabo13040517] [PMID: 37110175]
[68]
Finer N. Weight loss interventions and nonalcoholic fatty liver disease: Optimizing liver outcomes. Diabetes Obes Metab 2022; 24(S2) (Suppl. 2): 44-54.
[http://dx.doi.org/10.1111/dom.14569] [PMID: 34622555]
[69]
Marshall JC, Dunaif A. Should all women with PCOS be treated for insulin resistance? Fertil Steril 2012; 97(1): 18-22.
[http://dx.doi.org/10.1016/j.fertnstert.2011.11.036] [PMID: 22192137]
[70]
Baburao A, Souza G. Insulin resistance in moderate to severe obstructive sleep apnea in nondiabetics and its response to continuous positive airway pressure treatment. N Am J Med Sci 2014; 6(10): 500-4.
[http://dx.doi.org/10.4103/1947-2714.143280] [PMID: 25489561]
[71]
Pateguana NB, Janes A. The contribution of hyperinsulinemia to the hyperandrogenism of polycystic ovary syndrome. Journal of Metabolic Health 2019; 4(1): 3.
[http://dx.doi.org/10.4102/jir.v4i1.50]
[72]
Song SO, He K, Narla RR, Kang HG, Ryu HU, Boyko EJ. Metabolic Consequences of Obstructive Sleep Apnea Especially Pertaining to Diabetes Mellitus and Insulin Sensitivity. Diabetes Metab J 2019; 43(2): 144-55.
[http://dx.doi.org/10.4093/dmj.2018.0256] [PMID: 30993938]
[73]
Järgen P, Dietrich A, Herling AW, Hammes HP, Wohlfart P. The role of insulin resistance in experimental diabetic retinopathy—Genetic and molecular aspects. PLoS One 2017; 12(6): e0178658.
[http://dx.doi.org/10.1371/journal.pone.0178658] [PMID: 28575111]
[74]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[75]
Gui F, You Z, Fu S, Wu H, Zhang Y. Endothelial Dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11: 591.
[http://dx.doi.org/10.3389/fendo.2020.00591] [PMID: 33013692]
[76]
Forrester JV, Kuffova L, Delibegovic M. The Role of Inflammation in Diabetic Retinopathy. Front Immunol 2020; 11: 583687.
[http://dx.doi.org/10.3389/fimmu.2020.583687] [PMID: 33240272]
[77]
Li Y, Liu Y, Liu S, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8(1): 152.
[http://dx.doi.org/10.1038/s41392-023-01400-z] [PMID: 37037849]
[78]
Hernandez K, Pollock L, Anand-Apte B. Role of Hyperinsulinemia and Hyperglycemia in Outer Blood Retinal Barrier (BRB) Breakdown. Invest Ophthalmol Vis Sci 2022; 63(7): 3620-A0075.
[79]
Sugandh FNU, Chandio M, Raveena FNU, et al. Advances in the Management of Diabetes Mellitus: A Focus on Personalized Medicine. Cureus 2023; 15(8): e43697.
[http://dx.doi.org/10.7759/cureus.43697] [PMID: 37724233]
[80]
Kubo M, Kiyohara Y, Kato I, et al. Effect of hyperinsulinemia on renal function in a general Japanese population: The Hisayama study. Kidney Int 1999; 55(6): 2450-6.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00458.x] [PMID: 10354294]
[81]
Penno G, Solini A, Orsi E, et al. Insulin resistance, diabetic kidney disease, and all-cause mortality in individuals with type 2 diabetes: a prospective cohort study. BMC Med 2021; 19(1): 66.
[http://dx.doi.org/10.1186/s12916-021-01936-3] [PMID: 33715620]
[82]
Sarafidis PA, Grekas DM. Insulin resistance and oxidant stress: an interrelation with deleterious renal consequences? J Cardiometab Syndr 2007; 2(2): 139-42.
[http://dx.doi.org/10.1111/j.1559-4564.2007.06666.x] [PMID: 17684472]
[83]
Sarafidis PA, Ruilope LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am J Nephrol 2006; 26(3): 232-44.
[http://dx.doi.org/10.1159/000093632] [PMID: 16733348]
[84]
Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 2013; 15(1): 59-70.
[http://dx.doi.org/10.1007/s11906-012-0323-2] [PMID: 23242734]
[85]
Foggensteiner L, Mulroy S, Firth J. Management of diabetic nephropathy. J R Soc Med 2001; 94(5): 210-7.
[http://dx.doi.org/10.1177/014107680109400504] [PMID: 11385086]
[86]
Grote CW, Wright DE. A Role for Insulin in Diabetic Neuropathy. Front Neurosci 2016; 10: 581.
[http://dx.doi.org/10.3389/fnins.2016.00581] [PMID: 28066166]
[87]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197183]
[88]
Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2(1): 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[89]
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30(4): e14477.
[http://dx.doi.org/10.1111/cns.14477]
[90]
Ali O. Genetics of type 2 diabetes. World J Diabetes 2013; 4(4): 114-23.
[http://dx.doi.org/10.4239/wjd.v4.i4.114] [PMID: 23961321]
[91]
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[92]
Florez JC, Hirschhorn J, Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 2003; 4(1): 257-91.
[http://dx.doi.org/10.1146/annurev.genom.4.070802.110436] [PMID: 14527304]
[93]
Nakamura F, Taira M, Hashimoto N, Makino H, Sasaki N. Familial type C syndrome of insulin resistance and short stature with possible autosomal dominant transmission. Endocrinol Jpn 1989; 36(3): 349-58.
[http://dx.doi.org/10.1507/endocrj1954.36.349] [PMID: 2684618]
[94]
Ladha FA, Stitzel ML, Hinson JT. From GWAS association to function: candidate gene screening within insulin resistance-associated genomic loci using a preadipocyte differentiation model. Circ Res 2020; 126(3): 347-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316405] [PMID: 31999535]
[95]
McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diab Rep 2009; 9(2): 164-71.
[http://dx.doi.org/10.1007/s11892-009-0027-4] [PMID: 19323962]
[96]
Kido Y. Gene–environment interaction in type 2 diabetes. Diabetol Int 2017; 8(1): 7-13.
[http://dx.doi.org/10.1007/s13340-016-0299-2] [PMID: 30603301]
[97]
Lind PM, Lind L. Endocrine-disrupting chemicals and risk of diabetes: an evidence-based review. Diabetologia 2018; 61(7): 1495-502.
[http://dx.doi.org/10.1007/s00125-018-4621-3] [PMID: 29744538]
[98]
Li JH, Szczerbinski L, Dawed AY, et al. A Polygenic Score for Type 2 Diabetes Risk Is Associated With Both the Acute and Sustained Response to Sulfonylureas. Diabetes 2021; 70(1): 293-300.
[http://dx.doi.org/10.2337/db20-0530] [PMID: 33106254]
[99]
Galcheva S, Demirbilek H, Al-Khawaga S, Hussain K. The Genetic and Molecular Mechanisms of Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2019; 10: 111.
[http://dx.doi.org/10.3389/fendo.2019.00111] [PMID: 30873120]
[100]
Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud 2012; 9(1): 6-22.
[http://dx.doi.org/10.1900/RDS.2012.9.6] [PMID: 22972441]
[101]
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pathophysiology of Physical Inactivity-Dependent Insulin Resistance: A Theoretical Mechanistic Review Emphasizing Clinical Evidence. J Diabetes Res 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/7796727] [PMID: 34660812]
[102]
Andersson DP, Kerr AG, Dahlman I, Rydén M, Arner P. Relationship Between a Sedentary Lifestyle and Adipose Insulin Resistance. Diabetes 2023; 72(3): 316-25.
[http://dx.doi.org/10.2337/db22-0612] [PMID: 36445942]
[103]
Martins FO, Conde SV. Impact of Diet Composition on Insulin Resistance. Nutrients 2022; 14(18): 3716.
[http://dx.doi.org/10.3390/nu14183716] [PMID: 36145093]
[104]
Farrugia F, Aquilina A, Vassallo J, Pace NP. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. Int J Environ Res Public Health 2021; 18(2): 716.
[http://dx.doi.org/10.3390/ijerph18020716] [PMID: 33467592]
[105]
Bonini MG, Sargis RM. Environmental toxicant exposures and type 2 diabetes mellitus: Two interrelated public health problems on the rise. Curr Opin Toxicol 2018; 7: 52-9.
[http://dx.doi.org/10.1016/j.cotox.2017.09.003] [PMID: 29392186]
[106]
Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health 2018; 15(1): 78.
[http://dx.doi.org/10.3390/ijerph15010078] [PMID: 29304014]
[107]
Stahlhut RW, Myers JP, Taylor JA, Nadal A, Dyer JA, vom Saal FS. Experimental BPA Exposure and Glucose-Stimulated Insulin Response in Adult Men and Women. J Endocr Soc 2018; 2(10): 1173-87.
[http://dx.doi.org/10.1210/js.2018-00151] [PMID: 30302422]
[108]
Hagobian TA, Bird A, Stanelle S, Williams D, Schaffner A, Phelan S. Pilot Study on the Effect of Orally Administered Bisphenol A on Glucose and Insulin Response in Nonobese Adults. J Endocr Soc 2019; 3(3): 643-54.
[http://dx.doi.org/10.1210/js.2018-00322] [PMID: 30842988]
[109]
Gregory JM, Kraft G, Dalla Man C, et al. A high-fat and fructose diet in dogs mirrors insulin resistance and β-cell dysfunction characteristic of impaired glucose tolerance in humans. PLoS One 2023; 18(12): e0296400.
[http://dx.doi.org/10.1371/journal.pone.0296400] [PMID: 38134122]
[110]
Cummings PJ, Noakes TD, Nichols DM, Berchou KD, Kreher MD, Washburn PJ. Lifestyle Therapy Targeting Hyperinsulinemia Normalizes Hyperglycemia and Surrogate Markers of Insulin Resistance in a Large, Free-Living Population. AJPM Focus 2022; 1(2): 100034.
[http://dx.doi.org/10.1016/j.focus.2022.100034] [PMID: 37791244]
[111]
Bessho R, Kashiwagi K, Ikura A, et al. A significant risk of metabolic dysfunction-associated fatty liver disease plus diabetes on subclinical atherosclerosis. PLoS One 2022; 17(5): e0269265.
[http://dx.doi.org/10.1371/journal.pone.0269265] [PMID: 35639744]
[112]
Regufe VMG, Pinto CMCB, Perez PMVHC. Metabolic syndrome in type 2 diabetic patients: a review of current evidence. Porto Biomed J 2020; 5(6): e101.
[http://dx.doi.org/10.1097/j.pbj.0000000000000101] [PMID: 33299950]
[113]
Unnikrishnan R, Shah VN, Mohan V. Challenges in diagnosis and management of diabetes in the young. Clin Diabetes Endocrinol 2016; 2(1): 18.
[http://dx.doi.org/10.1186/s40842-016-0036-6] [PMID: 28702252]
[114]
Wang MY, Yu X, Lee Y, et al. Iatrogenic hyperinsulinemia in type 1 diabetes: Its effect on atherogenic risk markers. J Diabetes Complications 2013; 27(1): 70-4.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.08.008] [PMID: 23079124]
[115]
Nathan DM. Realising the long-term promise of insulin therapy: the DCCT/EDIC study. Diabetologia 2021; 64(5): 1049-58.
[http://dx.doi.org/10.1007/s00125-021-05397-4] [PMID: 33550441]
[116]
Purnell JQ, Hokanson JE, Cleary PA, et al. The effect of excess weight gain with intensive diabetes treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes: Results from the Diabetes Control and Complications Trial / Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. Circulation 2013; 127(2): 180-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.077487]
[117]
Gouta EL, Jerraya H, Dougaz W, et al. Endogenous hyperinsulinism: Diagnostic and therapeutic difficulties. Pan Afr Med J 2019; 33: 57.
[http://dx.doi.org/10.11604/pamj.2019.33.57.18885] [PMID: 31448019]
[118]
Shen Y, Song X, Ren Y. Insulin autoimmune syndrome induced by exogenous insulin injection: a four-case series. BMC Endocr Disord 2019; 19(1): 148.
[http://dx.doi.org/10.1186/s12902-019-0482-0] [PMID: 31883520]
[119]
McAuley KA, Williams SM, Mann JI, et al. Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial. Diabetes Care 2002; 25(3): 445-52.
[http://dx.doi.org/10.2337/diacare.25.3.445] [PMID: 11874928]
[120]
Chiarelli F, Di Marzio D. Peroxisome proliferator-activated receptor-γ agonists and diabetes: current evidence and future perspectives. Vasc Health Risk Manag 2008; 4(2): 297-304.
[PMID: 18561505]
[121]
Raguraman R, Srivastava A, Munshi A, Ramesh R. Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178: 113918.
[http://dx.doi.org/10.1016/j.addr.2021.113918] [PMID: 34375681]
[122]
Franceschi R. Precision Medicine in Diabetes, Current Research and Future Perspectives. J Pers Med 2022; 12(8): 1233.
[http://dx.doi.org/10.3390/jpm12081233] [PMID: 36013182]
[123]
Perumalsamy S, Huri HZ, Abdullah BM, Mazlan O, Wan Ahmad WA, Vethakkan SRDB. Genetic Markers of Insulin Resistance and Atherosclerosis in Type 2 Diabetes Mellitus Patients with Coronary Artery Disease. Metabolites 2023; 13(3): 427.
[http://dx.doi.org/10.3390/metabo13030427] [PMID: 36984867]
[124]
Larijani B, Goodarzi P, Payab M, et al. Metabolomics and Cell Therapy in Diabetes Mellitus. Int J Mol Cell Med 2019; 8 (Suppl. 1): 41-8.
[http://dx.doi.org/10.22088/IJMCM.BUMS.8.2.41] [PMID: 32351908]
[125]
Goddijn PPM, Bilo HJG, Feskens EJM, Groenier KH, van der Zee KI, de Jong BM. Longitudinal study on glycaemic control and quality of life in patients with Type 2 diabetes mellitus referred for intensified control. Diabet Med 1999; 16(1): 23-30.
[http://dx.doi.org/10.1046/j.1464-5491.1999.00002.x] [PMID: 10229289]
[126]
Ferrara C, Patel P, Becker S, Stanley CA, Kelly A. Biomarkers of Insulin for the Diagnosis of Hyperinsulinemic Hypoglycemia in Infants and Children. J Pediatr 2016; 168: 212-9.
[http://dx.doi.org/10.1016/j.jpeds.2015.09.045] [PMID: 26490124]
[127]
Kalra S, Das AK, Bajaj S, et al. Utility of Precision Medicine in the Management of Diabetes: Expert Opinion from an International Panel. Diabetes Ther 2020; 11(2): 411-22.
[http://dx.doi.org/10.1007/s13300-019-00753-5] [PMID: 31916214]
[128]
Kolb H, Kempf K, Röhling M, Martin S. Insulin: too much of a good thing is bad. BMC Med 2020; 18(1): 224.
[http://dx.doi.org/10.1186/s12916-020-01688-6] [PMID: 32819363]
[129]
Franks PW, Poveda A. Lifestyle and precision diabetes medicine: will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy? Diabetologia 2017; 60(5): 784-92.
[http://dx.doi.org/10.1007/s00125-017-4207-5] [PMID: 28124081]
[130]
Garedow AW, Jemaneh TM, Hailemariam AG, Tesfaye GT. Lifestyle modification and medication use among diabetes mellitus patients attending Jimma University Medical Center, Jimma zone, south west Ethiopia. Sci Rep 2023; 13(1): 4956.
[http://dx.doi.org/10.1038/s41598-023-32145-y] [PMID: 36973400]
[131]
Slieker RC, Donnelly LA, Akalestou E, et al. Identification of biomarkers for glycaemic deterioration in type 2 diabetes. Nat Commun 2023; 14(1): 2533.
[http://dx.doi.org/10.1038/s41467-023-38148-7] [PMID: 37137910]
[132]
Orkunoglu-Suer FE, Gordish-Dressman H, Clarkson PM, et al. INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistance training in men. BMC Med Genet 2008; 9(1): 117.
[http://dx.doi.org/10.1186/1471-2350-9-117] [PMID: 19105843]
[133]
Bedair RN, Magour GM, Ooda SA, Amar EM, Awad AM. Insulin receptor substrate-1 G972R single nucleotide polymorphism in Egyptian patients with chronic hepatitis C virus infection and type 2 diabetes mellitus. Egyptian Liver Journal 2021; 11(1): 2.
[http://dx.doi.org/10.1186/s43066-020-00069-1]
[134]
Mohás M, Kisfali P, Járomi L, et al. GCKR gene functional variants in type 2 diabetes and metabolic syndrome: do the rare variants associate with increased carotid intima-media thickness? Cardiovasc Diabetol 2010; 9(1): 79.
[http://dx.doi.org/10.1186/1475-2840-9-79] [PMID: 21114848]
[135]
Wang F, Han L, Hu D. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis. Clin Chim Acta 2017; 464: 57-63.
[http://dx.doi.org/10.1016/j.cca.2016.11.009] [PMID: 27836689]
[136]
Brunzell JD, Ayyobi AF. Dyslipidemia in the metabolic syndrome and type 2 diabetes mellitus. Am J Med 2003; 115(8) (Suppl. 8A): 24-8.
[http://dx.doi.org/10.1016/j.amjmed.2003.08.011] [PMID: 14678862]
[137]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(1) (Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[138]
Ramesh R, Pandurangan V, Madhavan S, et al. Comparison of Fasting Insulin Level, Homeostatic Model of Insulin Resistance, and Lipid Levels between Patients with Primary Hypertension and Normotensive Subjects. Rambam Maimonides Med J 2022; 13(2): e0009.
[http://dx.doi.org/10.5041/RMMJ.10468] [PMID: 35482462]
[139]
Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol Endocrinol Metab 1979; 236(6): E667-77.
[http://dx.doi.org/10.1152/ajpendo.1979.236.6.E667] [PMID: 443421]
[140]
Sievenpiper JL, Jenkins DJ, Josse RG, Vuksan V. Dilution of the 75-g oral glucose tolerance test increases postprandial glycemia: implications for diagnostic criteria. CMAJ: Canadian Med Assoc J 2000; 162(7): 993-6.
[141]
DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab 1979; 237(3): E214-23.
[http://dx.doi.org/10.1152/ajpendo.1979.237.3.E214] [PMID: 382871]
[142]
Antoniolli LP, Nedel BL, Pazinato TC, de Andrade Mesquita L, Gerchman F. Accuracy of insulin resistance indices for metabolic syndrome: a cross-sectional study in adults. Diabetol Metab Syndr 2018; 10(1): 65.
[http://dx.doi.org/10.1186/s13098-018-0365-y] [PMID: 30151057]
[143]
Leighton E, Sainsbury CAR, Jones GC. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther 2017; 8(3): 475-87.
[http://dx.doi.org/10.1007/s13300-017-0265-4] [PMID: 28484968]
[144]
Redondo MJ, Hagopian WA, Oram R, et al. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia 2020; 63(10): 2040-8.
[http://dx.doi.org/10.1007/s00125-020-05211-7] [PMID: 32894314]
[145]
Litwińczuk-Hajduk J, Bernat-Karpińska M, Kowrach M, Cielecka-Kuszyk J, Piątkiewicz P. Autoimmunity markers in subjects with diabetes. Journal of Pre-Clinical and Clinical Research 2016; 10(1): 28-33.
[http://dx.doi.org/10.5604/18982395.1208185]
[146]
Teixeira MM, Diniz MFHS, Reis JS, et al. Insulin resistance and associated factors in patients with Type 1 Diabetes. Diabetol Metab Syndr 2014; 6(1): 131.
[http://dx.doi.org/10.1186/1758-5996-6-131] [PMID: 25937839]
[147]
Bjornstad P, Snell-Bergeon JK, Nadeau KJ, Maahs DM. Insulin sensitivity and complications in type 1 diabetes: New insights. World J Diabetes 2015; 6(1): 8-16.
[http://dx.doi.org/10.4239/wjd.v6.i1.8] [PMID: 25685274]
[148]
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[149]
Feero GW, Guttmacher AE. Genomics, type 2 diabetes, and obesity. NEJM 363(24): 1-12.
[http://dx.doi.org/10.1056/nejmra0906948]
[150]
Chen Y, Ma H, Zhu D, et al. Discovery of Novel Insulin Sensitizers: Promising Approaches and Targets. PPAR Res 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8360919] [PMID: 28659972]
[151]
Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care 2010; 33(2): 428-33.
[http://dx.doi.org/10.2337/dc09-1499] [PMID: 20103558]
[152]
Hsia DS, Grove O, Cefalu WT. An Update on SGLT2 Inhibitors for the Treatment of Diabetes Mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24(1): 73-9.
[http://dx.doi.org/10.1097/MED.0000000000000311] [PMID: 27898586]
[153]
Atabek ME, Pirgon O. Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab 2008; 21(4): 339-48.
[http://dx.doi.org/10.1515/JPEM.2008.21.4.339] [PMID: 18556965]
[154]
Ye L, Varamini B, Lamming DW, Sabatini DM, Baur JA. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2. Front Genet 2012; 3: 177.
[http://dx.doi.org/10.3389/fgene.2012.00177] [PMID: 22973301]
[155]
Mishra S, Pericherla S, Manthuruthil S, Mishra S, Hanno R. Effect of Physical activity on Insulin Resistance, Inflammation and Oxidative Stress in Diabetes Mellitus. J Clin Diagn Res 2013; 7(8): 1764-6.
[http://dx.doi.org/10.7860/JCDR/2013/6518.3306] [PMID: 24086908]
[156]
Weickert MO. What dietary modification best improves insulin sensitivity and why? Clin Endocrinol (Oxf) 2012; 77(4): 508-12.
[http://dx.doi.org/10.1111/j.1365-2265.2012.04450.x] [PMID: 22640465]
[157]
Klein S, Sheard NF, Pi-Sunyer X, et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am J Clin Nutr 2004; 80(2): 257-63.
[http://dx.doi.org/10.1093/ajcn/80.2.257] [PMID: 15277143]
[158]
Svoboda SA, Shields BE. Cutaneous manifestations of nutritional excess: Pathophysiologic effects of hyperglycemia and hyperinsulinemia on the skin. Cutis 2021; 107(2): 74-8.
[http://dx.doi.org/10.12788/cutis.0173] [PMID: 33891835]
[159]
Crofts C, Zinn C, Wheldon M, Schofield G. Errata: Hyperinsulinemia: A unifying theory of chronic disease? Diabesity 2016; 2(2): 19-29.
[http://dx.doi.org/10.15562/diabesity.2016.29]
[160]
Zhang, A.M.Y., Chu, K.H., Daly, B.F. et al. Effects of hyperinsulinemia on pancreatic cancer development and the immune micro-environment revealed through single-cell transcriptomics. Cancer Metab 10, 5 2022.
[http://dx.doi.org/10.1186/s40170-022-00282-z]
[161]
Kurauti MA, Ferreira SM, Soares GM, et al. Hyperinsulinemia is associated with increasing insulin secretion but not with decreasing insulin clearance in an age‐related metabolic dysfunction mice model. J Cell Physiol 2019; 234(6): 9802-9.
[http://dx.doi.org/10.1002/jcp.27667] [PMID: 30370604]
[162]
Clemente EG, Kanungo S, Schmitt C, Maajali D. Hyperinsulinism. Endocrines 2022; 3(1): 115-26.
[http://dx.doi.org/10.3390/endocrines3010011]
[163]
Kostopoulou E, Dastamani A, Caiulo S, Antell H, Flanagan SE, Shah P. Hyperinsulinaemic hypoglycaemia: A new presentation of 16p11.2 deletion syndrome. Clin Endocrinol 2019; 90(5): 766-9.
[http://dx.doi.org/10.1111/cen.13951] [PMID: 30776145]
[164]
Zhang AMY, Chu KH, Daly BF, et al. Effects of hyperinsulinemia on pancreatic cancer development and the immune microenvironment revealed through single-cell transcriptomics. Cancer Metab 2022; 10(1): 5.
[http://dx.doi.org/10.1186/s40170-022-00282-z] [PMID: 35189981]
[165]
Lakka HM, Lakka TA, Tuomilehto J, Sivenius J, Salonen JT. Hyperinsulinemia and the risk of cardiovascular death and acute coronary and cerebrovascular events in men: the kuopio ischaemic heart disease risk factor study. Arch Intern Med 2000; 160(8): 1160-8.
[http://dx.doi.org/10.1001/archinte.160.8.1160] [PMID: 10789610]
[166]
Cen HH, Botezelli JD, Wang S, et al. Transcriptomic analysis of human and mouse muscle during hyperinsulinemia demonstrates insulin receptor downregulation as a mechanism for insulin resistance. bioRxiv 556571 2021.
[http://dx.doi.org/10.1101/556571]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy