Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Peptide Biomarkers - An Emerging Diagnostic Tool and Current Applicable Assay

Author(s): Jing Wu* and Rui Yang*

Volume 26, Issue 3, 2025

Published on: 25 September, 2024

Page: [167 - 184] Pages: 18

DOI: 10.2174/0113892037315736240907131856

Price: $65

TIMBC 2026
Abstract

In the past few decades, impressive progress achieved in technology development and improvement has accelerated the application of peptides as diagnostic biomarkers for various diseases. We outline the advantages of peptides as good diagnostic targets, since they serve as molecular surrogates of enzyme activities, much more specific biomarkers than proteins, and also play vital roles in many biological processes. On the basis of an extensive literature survey, peptide markers with high specificity and sensitivity that are currently applied in clinical tests, as well as recently identified, are summarized for the following four major categories of diseases: neurodegenerative disease, heart failure, infectious disease, and cancer. In addition, we summarize a few prevalent techniques used in peptide biomarker discovery and analysis, such as immunoassays, nanopore-based and nanoparticle-based peptide detection, and also MS-based peptide analysis techniques, and their pros and cons. Currently, there are plenty of analytical technologies available to achieve fast, sensitive and reliable peptide analyses, benefiting from the developments of hardware and instrumentation, as well as data analysis software and databases. Thus, with peptides emerging as sensitive, specific and reliable biomarkers for early detection of diseases, therapeutic monitoring, clinical treatment decisions and disease prognosis, the medical need for peptide biomarkers will increase strongly in the future.

Keywords: Biomarkers, peptide, diagnostic tool, diseases, immunoblot, mass spectrometry.

Next »
Graphical Abstract
[1]
Acet, Ö.; Shcharbin, D.; Zhogla, V.; Kirsanov, P.; Halets-Bui, I.; Önal Acet, B.; Gök, T.; Bryszewska, M.; Odabaşı, M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf. B Biointerfaces, 2023, 222, 113031.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113031] [PMID: 36435026]
[2]
Di̇ki̇ci̇, E.; Önal Acet, B.; Gök, T.; Acet, Ö.; Odabaşi, M. Self-assembled short peptide nanostructures: “Dipeptides”. MANAS J. Eng., 2023, 11(1), 83-91.
[http://dx.doi.org/10.51354/mjen.1282790]
[3]
Okamoto, N.; Watanabe, A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly, 2022, 16(1), 152-176.
[http://dx.doi.org/10.1080/19336934.2022.2061834] [PMID: 35499154]
[4]
Latic, N.; Erben, R.G. Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system. Nutrients, 2022, 14(23), 5186.
[http://dx.doi.org/10.3390/nu14235186] [PMID: 36501215]
[5]
Rana, T.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Abdeen, A.; Ibrahim, S.F.; Mani, V.; Iqbal, M.S.; Bhatia, S.; Abdel Daim, M.M.; Bungau, S. Exploring the role of neuropeptides in depression and anxiety. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2022, 114, 110478.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110478] [PMID: 34801611]
[6]
Ishioh, M.; Nozu, T.; Okumura, T. Brain neuropeptides, neuroinflammation, and irritable bowel syndrome. Digestion, 2024, 105(1), 34-39.
[http://dx.doi.org/10.1159/000533275] [PMID: 37673052]
[7]
Wang, Z. Regulation of cell cycle progression by growth factor-induced cell signaling. Cells, 2021, 10(12), 3327.
[http://dx.doi.org/10.3390/cells10123327] [PMID: 34943835]
[8]
Zochodne, D.W. Growth factors and molecular-driven plasticity in neurological systems. Handb. Clin. Neurol., 2023, 196, 569-598.
[http://dx.doi.org/10.1016/B978-0-323-98817-9.00017-X] [PMID: 37620091]
[9]
Kim, J.; Lee, S.G.; Lee, J.; Choi, S.; Suk, J.; Lee, J.H.; Yang, J.H.; Yang, J.S.; Kim, J. Oral supplementation of low-molecular-weight collagen peptides reduces skin wrinkles and improves biophysical properties of skin: A randomized, double-blinded, placebo-controlled study. J. Med. Food, 2022, 25(12), 1146-1154.
[http://dx.doi.org/10.1089/jmf.2022.K.0097] [PMID: 36516059]
[10]
Bayliss, W.M.; Starling, E.H. The mechanism of pancreatic secretion. J. Physiol., 1902, 28(5), 325-353.
[http://dx.doi.org/10.1113/jphysiol.1902.sp000920] [PMID: 16992627]
[11]
Banting, F.G.; Best, C.H.; Collip, J.B.; Macleod, J.J.; Noble, E.C. The effect of pancreatic extract (insulin) on normal rabbits. Am. J. Physiol., 1922, 62(1), 162-176.
[http://dx.doi.org/10.1152/ajplegacy.1922.62.1.162]
[12]
du Vigneaud, V.; Ressler, C.; Trippett, S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem., 1953, 205(2), 949-957.
[http://dx.doi.org/10.1016/S0021-9258(18)49238-1] [PMID: 13129273]
[13]
Vigneaud, V.; Lawler, H.C.; Popenoe, E.A. Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Am. Chem. Soc., 1953, 75(19), 4880-4881.
[http://dx.doi.org/10.1021/ja01115a554]
[14]
Sumitomo, R.; Menju, T.; Shimazu, Y.; Toyazaki, T.; Chiba, N.; Miyamoto, H.; Hirayama, Y.; Nishikawa, S.; Tanaka, S.; Yutaka, Y.; Yamada, Y.; Nakajima, D.; Ohsumi, A.; Hamaji, M.; Sato, A.; Yoshizawa, A.; Huang, C.L.; Haga, H.; Date, H. M2-like tumor-associated macrophages promote epithelial–mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma. Cancer Sci., 2023, 114(12), 4521-4534.
[http://dx.doi.org/10.1111/cas.15987] [PMID: 37806311]
[15]
Sedlář, A.; Trávníčková, M.; Matějka, R.; Pražák, Š.; Mészáros, Z.; Bojarová, P.; Bačáková, L.; Křen, V.; Slámová, K. Growth factors vegf-a 165 and fgf-2 as multifunctional biomolecules governing cell adhesion and proliferation. Int. J. Mol. Sci., 2021, 22(4), 1843.
[http://dx.doi.org/10.3390/ijms22041843] [PMID: 33673317]
[16]
Szczepańska, E.; Gietka-Czernel, M. FGF21: A novel regulator of glucose and lipid metabolism and whole-body energy balance. Horm. Metab. Res., 2022, 54(4), 203-211.
[http://dx.doi.org/10.1055/a-1778-4159] [PMID: 35413740]
[17]
García-Arnés, J.A.; García-Casares, N. Doping and sports endocrinology: Growth hormone, IGF-1, insulin, and erythropoietin. Rev. Clin. Esp., 2023, 223(3), 181-187.
[http://dx.doi.org/10.1016/j.rceng.2023.01.005] [PMID: 36736729]
[18]
Levi-Montalcini, R. The nerve growth factor 35 years later. Science, 1987, 237(4819), 1154-1162.
[http://dx.doi.org/10.1126/science.3306916] [PMID: 3306916]
[19]
Carpenter, G.; Cohen, S. Epidermal growth factor. J. Biol. Chem., 1990, 265(14), 7709-7712.
[http://dx.doi.org/10.1016/S0021-9258(19)38983-5] [PMID: 2186024]
[20]
Carlsson, A. Antipsychotic drugs, neurotransmitters, and schizophrenia. Am. J. Psychiatry, 1978, 135(2), 164-173.
[http://dx.doi.org/10.1176/ajp.135.2.164] [PMID: 23684]
[21]
Patipong, T.; Kageyama, H.; Waditee-Sirisattha, R. Insights into the phylogeny and transcriptional response of serine proteases in a halotolerant cyanobacterium Halothece sp. PCC7418. Plant Signal. Behav., 2021, 16(9), 1913556.
[http://dx.doi.org/10.1080/15592324.2021.1913556] [PMID: 34184613]
[22]
Huh, T.; Larouche-Lebel, É.; Loughran, K.A.; Oyama, M.A. Effect of angiotensin receptor blockers and angiotensin-converting enzyme 2 on plasma equilibrium angiotensin peptide concentrations in cats with heart disease. J. Vet. Intern. Med., 2021, 35(1), 33-42.
[http://dx.doi.org/10.1111/jvim.15948] [PMID: 33135833]
[23]
Sun, H.; Kaartinen, M.T. Assessment of expression and specific activities of transglutaminases TG1, TG2, and FXIII-A during osteoclastogenesis. Anal. Biochem., 2020, 591, 113512.
[http://dx.doi.org/10.1016/j.ab.2019.113512] [PMID: 31786225]
[24]
Nangia-Makker, P.; Raz, T.; Tait, L.; Hogan, V.; Fridman, R.; Raz, A. Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Res., 2007, 67(24), 11760-11768.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3233] [PMID: 18089806]
[25]
Lasa-Benito, M.; Marin, O.; Meggio, F.; Pinna, L.A. Golgi apparatus mammary gland casein kinase: Monitoring by a specific peptide substrate and definition of specificity determinants. FEBS Lett., 1996, 382(1-2), 149-152.
[http://dx.doi.org/10.1016/0014-5793(96)00136-6] [PMID: 8612738]
[26]
Tikhonov, D.; Kulikova, L.; Kopylov, A.T.; Rudnev, V.; Stepanov, A.; Malsagova, K.; Izotov, A.; Kulikov, D.; Zulkarnaev, A.; Enikeev, D.; Potoldykova, N.; Kaysheva, A.L. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci. Rep., 2021, 11(1), 19318.
[http://dx.doi.org/10.1038/s41598-021-98201-7] [PMID: 34588485]
[27]
Chu, X.; Di, C.; Chang, P.; Li, L.; Feng, Z.; Xiao, S.; Yan, X.; Xu, X.; Li, H.; Qi, R.; Gong, H.; Zhao, Y.; Xiao, F.; Chang, Z. Lactylated Histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front. Immunol., 2022, 12, 786666.
[http://dx.doi.org/10.3389/fimmu.2021.786666] [PMID: 35069560]
[28]
Igarashi, N.; Honjo, M.; Asaoka, R.; Kurano, M.; Yatomi, Y.; Igarashi, K.; Miyata, K.; Kaburaki, T.; Aihara, M. Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes. Sci. Rep., 2021, 11(1), 1408.
[http://dx.doi.org/10.1038/s41598-021-81048-3] [PMID: 33446826]
[29]
Hirsch, K.; Nolley, S.; Ralph, D.D.; Zheng, Y.; Altemeier, W.A.; Rhodes, C.J.; Morrell, N.W.; Wilkins, M.R.; Leary, P.J.; Rayner, S.G. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension. J. Heart Lung Transplant., 2023, 42(2), 173-182.
[http://dx.doi.org/10.1016/j.healun.2022.10.026] [PMID: 36470771]
[30]
Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol., 2002, 20(21), 4368-4380.
[http://dx.doi.org/10.1200/JCO.2002.10.088] [PMID: 12409337]
[31]
Valenzuela-Vallejo, L.; Chrysafi, P.; Kouvari, M.; Guatibonza-Garcia, V.; Mylonakis, S.C.; Katsarou, A.; Verrastro, O.; Markakis, G.; Eslam, M.; Papatheodoridis, G.; Mingrone, G.; George, J.; Mantzoros, C.S. Circulating hormones in biopsy-proven steatotic liver disease and steatohepatitis: A Multicenter Observational Study. Metabolism, 2023, 148, 155694.
[http://dx.doi.org/10.1016/j.metabol.2023.155694] [PMID: 37757973]
[32]
Gómez-Choco, M.; Mena, L.; Font, M.À.; Mengual, J.J.; Garcia-Sanchez, S.M.; Avellaneda, C.; Montull, C.; Castrillo, L.; Blanch, P.; Lleixa, M.; Martín-Baranera, M.; Armario, P. NT-proBNP, cerebral small vessel disease and cardiac function in patients with a recent lacunar infarct. J. Hum. Hypertens., 2023, 37(1), 62-67.
[http://dx.doi.org/10.1038/s41371-021-00648-8] [PMID: 35013570]
[33]
Pao, P.C.; Seo, J.; Lee, A.; Kritskiy, O.; Patnaik, D.; Penney, J.; Raju, R.M.; Geigenmuller, U.; Silva, M.C.; Lucente, D.E.; Gusella, J.F.; Dickerson, B.C.; Loon, A.; Yu, M.X.; Bula, M.; Yu, M.; Haggarty, S.J.; Tsai, L.H. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc. Natl. Acad. Sci. USA, 2023, 120(16), e2217864120.
[http://dx.doi.org/10.1073/pnas.2217864120] [PMID: 37043533]
[34]
Hanahan, D.; Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell, 2023, 41(3), 573-580.
[http://dx.doi.org/10.1016/j.ccell.2023.02.012] [PMID: 36917953]
[35]
de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41(3), 374-403.
[http://dx.doi.org/10.1016/j.ccell.2023.02.016] [PMID: 36917948]
[36]
Rosiek, V.; Kogut, A.; Kos-Kudła, B. Pro-gastrin-releasing peptide as a biomarker in lung neuroendocrine neoplasm. Cancers, 2023, 15(13), 3282.
[http://dx.doi.org/10.3390/cancers15133282] [PMID: 37444393]
[37]
Vasdev, N. Multicentric validation of nomograms based on BC-116 and BC-106 urine peptide biomarker panels for bladder cancer diagnostics and monitoring in two prospective cohorts of patients. Br. J. Cancer, 2023, 128(6), 929.
[http://dx.doi.org/10.1038/s41416-023-02142-z] [PMID: 36859684]
[38]
Shen, W.; Shi, P.; Dong, Q.; Zhou, X.; Chen, C.; Sui, X.; Tian, W.; Zhu, X.; Wang, X.; Jin, S.; Wu, Y.; Chen, G.; Qiu, L.; Zhai, W.; Gao, Y. Discovery of a novel dual-targeting D-peptide to block CD24/Siglec-10 and PD-1/PD-L1 interaction and synergize with radiotherapy for cancer immunotherapy. J. Immunother. Cancer, 2023, 11(6), e007068.
[http://dx.doi.org/10.1136/jitc-2023-007068] [PMID: 37344099]
[39]
Hongo, H.; Kosaka, T.; Takayama, K.I.; Baba, Y.; Yasumizu, Y.; Ueda, K.; Suzuki, Y.; Inoue, S.; Beltran, H.; Oya, M. G-protein signaling of oxytocin receptor as a potential target for cabazitaxel-resistant prostate cancer. PNAS Nexus, 2024, 3(1), 002.
[40]
Zhou, B.; Wu, Y.; Cheng, P.; Wu, C. Long noncoding RNAs with peptide-encoding potential identified in esophageal squamous cell carcinoma: KDM4A-AS1 -encoded peptide weakens cancer cell viability and migratory capacity. Mol. Oncol., 2023, 17(7), 1419-1436.
[http://dx.doi.org/10.1002/1878-0261.13424] [PMID: 36965032]
[41]
McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; Cleland, J.G.; Crespo-Leiro, M.G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A.W.; Jaarsma, T.; Jankowska, E.A.; Lainscak, M.; Lam, C.S.; Lyon, A.R.; McMurray, J.J.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G.M.; Ruschitzka, F.; Skibelund, A.K.; de Boer, R.A.; Schulze, P.C.; Arbelo, E.; Bartunek, J.; Bauersachs, J.; Borger, M.A.; Buccheri, S.; Cerbai, E.; Donal, E.; Edelmann, F.; Färber, G.; Heidecker, B.; Ibanez, B.; James, S.; Køber, L.; Koskinas, K.C.; Masip, J.; McEvoy, J.W.; Mentz, R.; Mihaylova, B.; Møller, J.E.; Mullens, W.; Neubeck, L.; Nielsen, J.C.; Pasquet, A.A.; Ponikowski, P.; Prescott, E.; Rakisheva, A.; Rocca, B.; Rossello, X.; Sade, L.E.; Schaubroeck, H.; Tessitore, E.; Tokmakova, M.; van der Meer, P.; Van Gelder, I.C.; Van Heetvelde, M.; Vrints, C.; Wilhelm, M.; Witkowski, A.; Zeppenfeld, K.; Shuka, N.; Chettibi, M.; Hayrapetyan, H.; Pavo, N.; Islamli, A.; Pouleur, A-C.; Kusljugic, Z.; Tokmakova, M.; Milicic, D.; Christodoulides, T.; Malek, F.; Køber, L.; Koriem, M.A.; Põder, P.; Lassus, J.; Roubille, F.; Agladze, V.; Frantz, S.; Stavrati, A.; Kosztin, A.; Ingimarsdóttir, I.J.; Campbell, P.; Hasin, T.; Oliva, F.; Aidargaliyeva, N.; Bajraktari, G.; Mirrakhimov, E.; Kamzola, G.; El Neihoum, A.M.; Zaliaduonyte, D.; Moore, A.; Vataman, E.; Boskovic, A.; Alami, M.; Manintveld, O.; Kostovska, E.S.; Broch, K.; Nessler, J.; Franco, F.; Popescu, B.A.; Foscoli, M.; Milosavljevic, A.S.; Goncalvesova, E.; Fras, Z.; Gonzalez-Costello, J.; Lindmark, K.; Paul, M.; Oudeh, A.; Zakhama, L.; Celik, A.; Voronkov, L.; Clark, A.; Abdullaev, T.; Prescott, E.; James, S.; Arbelo, E.; Baigent, C.; Borger, M.A.; Buccheri, S.; Ibanez, B.; Køber, L.; Koskinas, K.C.; McEvoy, J.W.; Mihaylova, B.; Mindham, R.; Neubeck, L.; Nielsen, J.C.; Pasquet, A.A.; Rakisheva, A.; Rocca, B.; Rossello, X.; Vaartjes, I.; Vrints, C.; Witkowski, A.; Zeppenfeld, K. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 2023, 44(37), 3627-3639.
[http://dx.doi.org/10.1093/eurheartj/ehad195] [PMID: 37622666]
[42]
Tsutsui, H.; Albert, N.M.; Coats, A.J.; Anker, S.D.; Bayes-Genis, A.; Butler, J.; Chioncel, O.; Defilippi, C.R.; Drazner, M.H.; Felker, G.M.; Filippatos, G.; Fiuzat, M.; Ide, T.; Januzzi, J.L.; Kinugawa, K.; Kuwahara, K.; Matsue, Y.; Mentz, R.J.; Metra, M.; Pandey, A.; Rosano, G.; Saito, Y.; Sakata, Y.; Sato, N.; Seferovic, P.M.; Teerlink, J.; Yamamoto, K.; Yoshimura, M. Natriuretic peptides: Role in the diagnosis and management of heart failure: a scientific statement from the heart failure association of the european society of cardiology, heart failure society of america and japanese heart failure society. Eur. J. Heart Fail., 2023, 25(5), 616-631.
[http://dx.doi.org/10.1002/ejhf.2848] [PMID: 37098791]
[43]
Sakane, K.; Kanzaki, Y.; Okuno, T.; Nakayama, S.; Hasegawa, H.; Tokura, D.; Horai, R.; Tsuda, K.; Maeda, D.; Sakatani, Y.; Hoshiga, M. Left atrial remodeling related to disproportionately low b-type natriuretic peptide in acute heart failure patients with atrial fibrillation. Am. J. Cardiol., 2023, 209, 128-137.
[http://dx.doi.org/10.1016/j.amjcard.2023.09.071] [PMID: 37844875]
[44]
Marinescu, M.; Oprea, V.D.; Nechita, A.; Tutunaru, D.; Nechita, L.C.; Romila, A. The use of brain natriuretic peptide in the evaluation of heart failure in geriatric patients. Diagnostics, 2023, 13(9), 1512.
[http://dx.doi.org/10.3390/diagnostics13091512] [PMID: 37174904]
[45]
Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther., 2023, 8(1), 359.
[http://dx.doi.org/10.1038/s41392-023-01588-0] [PMID: 37735487]
[46]
Li, K.; Wang, Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res. Rev., 2023, 86, 101878.
[http://dx.doi.org/10.1016/j.arr.2023.101878] [PMID: 36738893]
[47]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[48]
Zou, Y.; Yu, S.; Ma, X.; Ma, C.; Mao, C.; Mu, D.; Li, L.; Gao, J.; Qiu, L. How far is the goal of applying β-amyloid in cerebrospinal fluid for clinical diagnosis of Alzheimer’s disease with standardization of measurements? Clin. Biochem., 2023, 112, 33-42.
[http://dx.doi.org/10.1016/j.clinbiochem.2022.11.013] [PMID: 36473516]
[49]
Ali, T.; Klein, A.N.; Vu, A.; Arifin, M.I.; Hannaoui, S.; Gilch, S. Peptide aptamer targeting Aβ–PrP–Fyn axis reduces Alzheimer’s disease pathologies in 5XFAD transgenic mouse model. Cell. Mol. Life Sci., 2023, 80(6), 139.
[http://dx.doi.org/10.1007/s00018-023-04785-w] [PMID: 37149826]
[50]
Yin, Z.; Xu, G.; Qi, Y.; Tan, D.M.; Chen, E.H.; Ding, X.; Ji, R.Y. Application of serum peptidomics for Parkinson’s disease in SNCA-A30P mice. Heliyon, 2023, 9(12), e21125.
[http://dx.doi.org/10.1016/j.heliyon.2023.e21125] [PMID: 38125428]
[51]
Schauenburg, D.; Zech, F.; Heck, A.J.; von Maltitz, P.; Harms, M.; Führer, S.; Alleva, N.; Münch, J.; Kuan, S.L.; Kirchhoff, F.; Weil, T. Peptide bispecifics inhibiting HIV-1 infection by an orthogonal chemical and supramolecular strategy. Bioconjug. Chem., 2023, 34(9), 1645-1652.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00314] [PMID: 37665137]
[52]
Castro-Amarante, M.F.; Pereira, S.S.; Pereira, L.R.; Santos, L.S.; Venceslau-Carvalho, A.A.; Martins, E.G.; Balan, A.; Souza Ferreira, L.C. The anti-dengue virus peptide dv2 inhibits zika virus both in vitro and in vivo. Viruses, 2023, 15(4), 839.
[http://dx.doi.org/10.3390/v15040839] [PMID: 37112820]
[53]
Bellini, C.; Vergara, E.; Bencs, F.; Fodor, K.; Bősze, S.; Krivić, D.; Bacsa, B.; Surguta, S.E.; Tóvári, J.; Reljic, R.; Horváti, K. Design and characterization of a multistage peptide-based vaccine platform to target mycobacterium tuberculosis infection. Bioconjug. Chem., 2023, 34(10), 1738-1753.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00273] [PMID: 37606258]
[54]
Saeed, N.; Attalah, M.; Salamony, A.; Shehata, S.; Abdel-Rahman, S.; Mohamed, R. Evaluation of serum calcitonin gene related peptide (CGRP) Level in HIV infected patients as an indicator of disease activity. Egypt. J. Immunol., 2023, 30(2), 26-36.
[http://dx.doi.org/10.55133/eji.300203] [PMID: 37031395]
[55]
Cerrutti, B.M.; Moraes, M.L.; Pulcinelli, S.H.; Santilli, C.V. Lignin as immobilization matrix for HIV p17 peptide used in immunosensing. Biosens. Bioelectron., 2015, 71, 420-426.
[http://dx.doi.org/10.1016/j.bios.2015.04.054] [PMID: 25950938]
[56]
Aquino, V.H.; Fumagalli, M.J.; Silva, A.; de Moura Negrini, B.V.; Rojas, A.; Guillen, Y.; Bernal, C.; Figueiredo, L.T. Linear epitope mapping in the E and NS1 proteins of dengue and Zika viruses: Prospection of peptides for vaccines and diagnostics. PLoS One, 2023, 18(10), e0292451.
[http://dx.doi.org/10.1371/journal.pone.0292451] [PMID: 37788262]
[57]
Mishra, N.; Thakkar, R.; Ng, J.; Lipkin, W.I. Zika virus peptide elisa (zikv-ns2b-concat elisa) for detection of igg antibodies to zika virus infection. Methods Mol. Biol., 2020, 2142, 113-122.
[http://dx.doi.org/10.1007/978-1-0716-0581-3_10] [PMID: 32367363]
[58]
Antas, P.; Borchert, J.; Ponte, C.; Lima, J.; Georg, I.; Bastos, M.; Trajman, A. Interleukin-6 and -27 as potential novel biomarkers for human pleural tuberculosis regardless of the immunological status. Microbes Infect., 2024, 26(1-2), 105238.
[http://dx.doi.org/10.1016/j.micinf.2023.105238] [PMID: 37805123]
[59]
Sampath, P.; Rajamanickam, A.; Thiruvengadam, K.; Natarajan, A.P.; Hissar, S.; Dhanapal, M.; Thangavelu, B.; Jayabal, L.; Ramesh, P.M.; Ranganathan, U.D.; Babu, S.; Bethunaickan, R. Plasma chemokines CXCL10 and CXCL9 as potential diagnostic markers of drug-sensitive and drug-resistant tuberculosis. Sci. Rep., 2023, 13(1), 7404.
[http://dx.doi.org/10.1038/s41598-023-34530-z] [PMID: 37149713]
[60]
Bothra, A.; Perry, M.L.; Wei, E.; Moayeri, M.; Ma, Q.; Biamonte, M.A.; Siirin, M.; Leppla, S.H. S9.6-based hybrid capture immunoassay for pathogen detection. Sci. Rep., 2023, 13(1), 22562.
[http://dx.doi.org/10.1038/s41598-023-49881-w] [PMID: 38110611]
[61]
Li, X.; Pu, X.; Wang, X.; Wang, J.; Liao, X.; Huang, Z.; Yin, G. A dual-targeting peptide for glioblastoma screened by phage display peptide library biopanning combined with affinity-adaptability analysis. Int. J. Pharm., 2023, 644, 123306.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123306] [PMID: 37572856]
[62]
Qasrawi, D.O.; Petrotchenko, E.V.; Borchers, C.H. Amino acid analysis for peptide quantitation using reversed-phase liquid chromatography combined with multiple reaction monitoring mass spectrometry. Anal. Bioanal. Chem., 2023, 415(22), 5261-5267.
[http://dx.doi.org/10.1007/s00216-023-04840-2] [PMID: 37468754]
[63]
Ye, F.; Smith, P.B.; Wu, C.; Chiu, D.T. Ultrasensitive detection of proteins on Western blots with semiconducting polymer dots. Macromol. Rapid Commun., 2013, 34(9), 785-790.
[http://dx.doi.org/10.1002/marc.201200809] [PMID: 23637077]
[64]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 1979, 76(9), 4350-4354.
[http://dx.doi.org/10.1073/pnas.76.9.4350] [PMID: 388439]
[65]
Ida, N.; Hartmann, T.; Pantel, J.; Schrüder, J.; Zerfass, R.; Fürstl, H.; Sandbrink, R.; Masters, C.L.; Beyreuther, K. Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J. Biol. Chem., 1996, 271(37), 22908-22914.
[http://dx.doi.org/10.1074/jbc.271.37.22908] [PMID: 8798471]
[66]
Ayoubi, R.; Fotouhi, M.; Southern, K.; Bhajiawala, R.; Fanti, R.; Prinos, P.; McPherson, P.S.; Laflamme, C. The identification of high-performing antibodies for transmembrane protein 106B (TMEM106B) for use in Western blot, immunoprecipitation, and immunofluorescence. F1000 Res., 2023, 12, 308.
[http://dx.doi.org/10.12688/f1000research.131333.1] [PMID: 37545650]
[67]
Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J. Immunol., 1972, 109(1), 129-135.
[http://dx.doi.org/10.4049/jimmunol.109.1.129] [PMID: 4113792]
[68]
Munawaroh, H.S.; Pratiwi, R.N.; Gumilar, G.G.; Aisyah, S.; Rohilah, S.; Nurjanah, A.; Ningrum, A.; Susanto, E.; Pratiwi, A.; Arindita, N.P.; Martha, L.; Chew, K.W.; Show, P.L. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int. J. Biol. Macromol., 2023, 231, 123248.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123248] [PMID: 36642356]
[69]
Lee, D.K.; Rubakhin, S.S.; Sweedler, J.V. Chemical decrosslinking-based peptide characterization of formaldehyde-fixed rat pancreas using fluorescence-guided single-cell mass spectrometry. Anal. Chem., 2023, 95(16), 6732-6739.
[http://dx.doi.org/10.1021/acs.analchem.3c00612] [PMID: 37040477]
[70]
Mansur, A.A.; Rodrigues, M.A.; Capanema, N.S.; Carvalho, S.M.; Gomes, D.A.; Mansur, H.S. Functionalized bioadhesion-enhanced carboxymethyl cellulose/polyvinyl alcohol hybrid hydrogels for chronic wound dressing applications. RSC Advances, 2023, 13(19), 13156-13168.
[http://dx.doi.org/10.1039/D3RA01519J] [PMID: 37124005]
[71]
Sithigorngul, P.; Stretton, A.O.; Cowden, C. A versatile dot-ELISA method with femtomole sensitivity for detecting small peptides. J. Immunol. Methods, 1991, 141(1), 23-32.
[http://dx.doi.org/10.1016/0022-1759(91)90206-U] [PMID: 1865121]
[72]
Rahi, S.; Lanjekar, V.; Ghormade, V. Rationally designed peptide conjugated to gold nanoparticles for detection of aflatoxin B1 in point-of-care dot-blot assay. Food Chem., 2023, 413, 135651.
[http://dx.doi.org/10.1016/j.foodchem.2023.135651] [PMID: 36787667]
[73]
Yadav, V.; Rafiqi, S.I.; Yadav, A.; Kushwaha, A.; Godara, R.; Katoch, R.; Panadero-Fontán, R. Dot-ELISA based on recombinant Hypodermin C of Przhevalskiana silenus for field diagnosis of goat warble fly infestation. Parasite Immunol., 2023, 45(10), e13007.
[http://dx.doi.org/10.1111/pim.13007] [PMID: 37524537]
[74]
El-Adawy, M.M.; Attia, M.M.; Elgendy, M.Y.; Abdelsalam, M.; Fadel, A. Development of silver nano-based indirect ELISA and Dot-ELISA methods for serological diagnosis of a bacterial fish pathogen Aeromonas veronii. J. Microbiol. Methods, 2023, 211, 106782.
[http://dx.doi.org/10.1016/j.mimet.2023.106782] [PMID: 37451347]
[75]
Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 13770-13773.
[http://dx.doi.org/10.1073/pnas.93.24.13770] [PMID: 8943010]
[76]
Oukhaled, A.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J.M.; Pelta, J. Sensing proteins through nanopores: Fundamental to applications. ACS Chem. Biol., 2012, 7(12), 1935-1949.
[http://dx.doi.org/10.1021/cb300449t] [PMID: 23145870]
[77]
Abraham Versloot, R.C.; Arias-Orozco, P.; Tadema, M.J.; Rudolfus Lucas, F.L.; Zhao, X.; Marrink, S.J.; Kuipers, O.P.; Maglia, G. Seeing the invisibles: Detection of peptide enantiomers, diastereomers, and isobaric ring formation in lanthipeptides using nanopores. J. Am. Chem. Soc., 2023, 145(33), 18355-18365.
[http://dx.doi.org/10.1021/jacs.3c04076] [PMID: 37579582]
[78]
Lucas, F.L.; Sarthak, K.; Lenting, E.M.; Coltan, D.; van der Heide, N.J.; Versloot, R.C.; Aksimentiev, A.; Maglia, G. The manipulation of the internal hydrophobicity of frac nanopores augments peptide capture and recognition. ACS Nano, 2021, 15(6), 9600-9613.
[http://dx.doi.org/10.1021/acsnano.0c09958] [PMID: 34060809]
[79]
Andersen, C.S.; Kvist-Hansen, A.; Siewertsen, M.; Enevold, C.; Hansen, P.R.; Kaur-Knudsen, D.; Zachariae, C.; Nielsen, C.H.; Loft, N.; Skov, L. Blood cell biomarkers of inflammation and cytokine levels as predictors of response to biologics in patients with psoriasis. Int. J. Mol. Sci., 2023, 24(7), 6111.
[http://dx.doi.org/10.3390/ijms24076111] [PMID: 37047086]
[80]
Wu, X.; Shen, Y.; Tan, S.; Jiang, X.; Chen, Z.; Yu, Q.; Chen, H.; Zhuang, Y.; Zeng, H.; Fu, X.; Zhou, H.; Dou, Z.; Chen, G.; Li, X. Multiscale imaging of peroxynitrite in gliomas with a blood-brain barrier permeable probe reveals its potential as a biomarker and target for glioma treatment. Biosens. Bioelectron., 2023, 236, 115415.
[http://dx.doi.org/10.1016/j.bios.2023.115415] [PMID: 37245459]
[81]
Kim, D.Y.; Sharma, S.K.; Rasool, K.; Koduru, J.R.; Syed, A.; Ghodake, G. Development of novel peptide-modified silver nanoparticle-based rapid biosensors for detecting aminoglycoside antibiotics. J. Agric. Food Chem., 2023, 71(34), 12883-12898.
[http://dx.doi.org/10.1021/acs.jafc.3c03565] [PMID: 37603424]
[82]
Ossoliński, K.; Ruman, T.; Copié, V.; Tripet, B.P.; Kołodziej, A.; Płaza-Altamer, A.; Ossolińska, A.; Ossoliński, T.; Nieczaj, A.; Nizioł, J. Targeted and untargeted urinary metabolic profiling of bladder cancer. J. Pharm. Biomed. Anal., 2023, 233, 115473.
[http://dx.doi.org/10.1016/j.jpba.2023.115473] [PMID: 37229797]
[83]
Eremina, O.E.; Yarenkov, N.R.; Bikbaeva, G.I.; Kapitanova, O.O.; Samodelova, M.V.; Shekhovtsova, T.N.; Kolesnikov, I.E.; Syuy, A.V.; Arsenin, A.V.; Volkov, V.S.; Tselikov, G.I.; Novikov, S.M.; Manshina, A.A.; Veselova, I.A. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta, 2024, 266(1), 124970.
[http://dx.doi.org/10.1016/j.talanta.2023.124970] [PMID: 37536108]
[84]
Hanoglu, S.B.; Man, E.; Harmanci, D.; Tozan, R.S.; Sanli, S.; Keles, N.A.; Ayden, A.; Tuna, B.G.; Duzgun, O.; Ozkan, O.F.; Dogan, S.; Ghorbanizamani, F.; Moulahoum, H.; Guler Celik, E.; Evran, S.; Timur, S. Magnetic nanoparticle-based electrochemical sensing platform using ferrocene-labelled peptide nucleic acid for the early diagnosis of colorectal cancer. Biosensors, 2022, 12(9), 736.
[http://dx.doi.org/10.3390/bios12090736] [PMID: 36140121]
[85]
Nandi, D.; Debnath, M.; Forster, J.; Pandey, A.; Bharadwaj, H.; Patel, R.; Kulkarni, A. Nanoparticle-mediated co-delivery of inflammasome inhibitors provides protection against sepsis. Nanoscale, 2024, 16(9), 4678-4690.
[http://dx.doi.org/10.1039/D3NR05570A] [PMID: 38317511]
[86]
Xu, R.; Wang, Q.; Zhu, J.; Bei, Y.; Chu, Y.; Sun, Z.; Du, S.; Zhou, S.; Ding, N.; Meng, F.; Liu, B. Membrane fusogenic nanoparticle-based HLA-peptide-addressing universal T cell receptor-engineered T (HAUL TCR-T) cell therapy in solid tumor. Bioeng. Transl. Med., 2023, 8(6), e10585.
[http://dx.doi.org/10.1002/btm2.10585] [PMID: 38023696]
[87]
Olivares, J.A.; Nguyen, N.T.; Yonker, C.R.; Smith, R.D. On-line mass spectrometric detection for capillary zone electrophoresis. Anal. Chem., 1987, 59(8), 1230-1232.
[http://dx.doi.org/10.1021/ac00135a034]
[88]
Smith, R.D.; Olivares, J.A.; Nguyen, N.T.; Udseth, H.R. Capillary zone electrophoresis-mass spectrometry using an electrospray ionization interface, analytical chemistry. Anal. Chem., 1988, 60(5), 436-4.
[89]
van Veelen, P.A.; Tjaden, U.R.; van der Greef, J.; Ingendoh, A.; Hillenkamp, F. Off-line coupling of capillary electrophoresis with matrix-assisted laser desorption mass spectrometry. J. Chromatogr., 1993, 647(2), 367-374.
[http://dx.doi.org/10.1016/0021-9673(93)83417-Q]
[90]
Frantzi, M.; Gomez, G.E.; Blanca, P.A.; Valero, R.J.; Latosinska, A.; Culig, Z.; Merseburger, A.S.; Luque, R.M.; Requena, T.M.J.; Mischak, H.; Carrasco, V.J. CE–MS-based urinary biomarkers to distinguish non-significant from significant prostate cancer. Br. J. Cancer, 2019, 120(12), 1120-1128.
[http://dx.doi.org/10.1038/s41416-019-0472-z] [PMID: 31092909]
[91]
Krochmal, M.; van Kessel, K.E.; Zwarthoff, E.C.; Belczacka, I.; Pejchinovski, M.; Vlahou, A.; Mischak, H.; Frantzi, M. Urinary peptide panel for prognostic assessment of bladder cancer relapse. Sci. Rep., 2019, 9(1), 7635.
[http://dx.doi.org/10.1038/s41598-019-44129-y] [PMID: 31114012]
[92]
Voigtländer, T.; Metzger, J.; Husi, H.; Kirstein, M.M.; Pejchinovski, M.; Latosinska, A.; Frantzi, M.; Mullen, W.; Book, T.; Mischak, H.; Manns, M.P. Bile and urine peptide marker profiles: Access keys to molecular pathways and biological processes in cholangiocarcinoma. J. Biomed. Sci., 2020, 27(1), 13.
[http://dx.doi.org/10.1186/s12929-019-0599-5] [PMID: 31900160]
[93]
Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process., 1987, 78, 53-68.
[http://dx.doi.org/10.1016/0168-1176(87)87041-6]
[94]
Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 1988, 2(8), 151-153.
[http://dx.doi.org/10.1002/rcm.1290020802]
[95]
Wang, W.; Zhang, X.; Tang, E.; Li, A.; Chen, L.; Wang, J.; Ma, J.; Zhang, X.; Sun, B. Thymosin β4, a potential marker of malignancy and prognosis in hepatocellular carcinoma. Scand. J. Gastroenterol., 2023, 58(4), 380-391.
[http://dx.doi.org/10.1080/00365521.2022.2136012] [PMID: 36269095]
[96]
Ding, D.; Chen, M.; Xiao, X.; Cao, P.; Li, S. Novel serum peptide model revealed by MALDI-TOF-MS and its diagnostic value in early bladder cancer. Int. J. Biol. Markers, 2020, 35(3), 59-66.
[http://dx.doi.org/10.1177/1724600820935473] [PMID: 32701013]
[97]
Rungkamoltip, P.; Roytrakul, S.; Navakanitworakul, R. MALDI-TOF ms analysis of serum peptidome patterns in cervical cancer. Biomedicines, 2023, 11(8), 2327.
[http://dx.doi.org/10.3390/biomedicines11082327] [PMID: 37626823]
[98]
Manfredi, E.; Rocca, M.F.; Zintgraff, J.; Irazu, L.; Miliwebsky, E.; Carbonari, C.; Deza, N.; Prieto, M.; Chinen, I. Rapid and accurate detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 by mass spectrometry directly from the isolate, using 10 potential biomarker peaks and machine learning predictive models. J. Med. Microbiol., 2023, 72(5), 001675.
[http://dx.doi.org/10.1099/jmm.0.001675] [PMID: 37130048]
[99]
Yamashita, M.; Fenn, J.B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem., 1984, 88(20), 4451-4459.
[http://dx.doi.org/10.1021/j150664a002]
[100]
Maus, A.; Fatica, E.M.; Taylor, R.; Larson, B.J.; Algeciras-Schimnich, A.; Singh, R.J.; Grebe, S.K. Identification, measurement, and assessment of the clinical utility of human pancreatic polypeptide by liquid chromatography–tandem mass spectrometry. J. Proteome Res., 2023, 22(4), 1322-1330.
[http://dx.doi.org/10.1021/acs.jproteome.2c00829] [PMID: 36880754]
[101]
Podvin, S.; Jones, J.; Kang, A.; Goodman, R.; Reed, P.; Lietz, C.B.; Then, J.; Lee, K.C.; Eyler, L.T.; Jeste, D.V.; Gage, F.H.; Hook, V. Human iN neuronal model of schizophrenia displays dysregulation of chromogranin B and related neuropeptide transmitter signatures. Mol. Psychiatry, 2024, 29(5), 1440-1449.
[http://dx.doi.org/10.1038/s41380-024-02422-x] [PMID: 38302561]
[102]
Demeuse, J.; Huyghebaert, L.; Determe, W.; Schoumacher, M.; Grifnée, E.; Massonnet, P.; Dubrowski, T.; Rechchad, M.; Segura, J.F.; Peeters, S.; Cavalier, E.; Le Goff, C. Development and validation of an LC-MS/MS method for the simultaneous quantitation of angiotensin (1–7), (1–8), (1–9) and (1–10) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2024, 1232, 123943.
[http://dx.doi.org/10.1016/j.jchromb.2023.123943] [PMID: 38039597]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy