Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

A Patent Landscape on Methane Oxidizing Bacteria (MOB) or Methanotrophs

Author(s): Abhishek Bokad and Manasi Telang*

Volume 19, Issue 4, 2025

Published on: 27 September, 2024

Page: [301 - 318] Pages: 18

DOI: 10.2174/0118722083316359240915173125

Price: $65

TIMBC 2026
Abstract

Methane-oxidizing bacteria (MOB) or methanotrophs are a category of bacteria that rely on methane as their primary carbon and energy source. Methane is the second most abundant greenhouse gas after carbon dioxide and is comparatively far more potent in trapping heat in the atmosphere. MOBs are important microorganisms in the global carbon cycle where they play a crucial role in the oxidation of methane. The present review provides a comprehensive patent landscape on technology development using MOB. The first patent in this technology domain was recorded in 1971, with a notable surge in activity observed in 2020. A detailed patent analysis revealed that the early inventions were mainly focused on the production of various metabolites and bioremediation using MOB. In the later years, patents were filed in the area of identification of various species of MOB and their large-scale production. From 2010 onwards, consistent patent filing was observed in the genetic engineering of MOB to enhance their methane oxidizing capacity. The United States and China have emerged as the global leaders in terms of patent filing in this technology space. Precigen Inc. and Exxon Research Engineering Co., US were the top patent assignees followed by the University of Tsinghua and Calysta Inc. The Highest number of patent applications have claimed metabolite production by using MOB followed by their use in bioremediation. Methylosinus has emerged as the predominant microorganism of choice for methane oxidation applications.

Keywords: Methane, methane oxidizing bacteria, methanotrophs, patent landscape, bioremediation, oxidation applications.

Graphical Abstract
[1]
Lidstrom ME. Aerobic methylotrophicpProkaryotes.In: The prokaryotes: Volume 2: Ecophysiology and biochemistry. New York: Springer 2006; pp. 618-34.
[2]
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields. Front Microbiol 2023; 14: 1253773.
[http://dx.doi.org/10.3389/fmicb.2023.1253773]
[3]
Mei J, Wu Y, Qian F, Chen C, Shen Y, Zhao Y. Methane-oxidizing microorganism properties in landfills. Pol J Environ Stud 2019; 28(5): 3809-18.
[4]
Mo Y, Qi XE, Li A, Zhang X, Jia Z. Active methanotrophs in suboxic alpine swamp soils of the qinghai-tibetan plateau. Front Microbiol 2020; 11: 580866.
[5]
He R, Matthew J. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. The ISME J 2012; 6: 1937-48.
[6]
Whalen SC, Reeburgh WS. A methane flux transect along the trans-Alaska pipeline haul road. Tellus B Chem Phys Meterol 1990; 42(3): 237-49.
[7]
Eller G, Frenzel P. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl Environ Microbiol 2001; 67(6): 2395-403.
[http://dx.doi.org/10.1128/AEM.67.6.2395-2403.2001] [PMID: 11375143]
[8]
Bodrossy L, Murrell JC, Dalton H, Kalman M, Puskas LG, Kovacs KL. Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 1995; 61(10): 3549-55.
[http://dx.doi.org/10.1128/aem.61.10.3549-3555.1995] [PMID: 7486989]
[9]
Dedysh SN, Panikov NS, Liesack W, Großkopf R, Zhou J, Tiedje JM. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 1998; 282(5387): 281-4.
[http://dx.doi.org/10.1126/science.282.5387.281] [PMID: 9765151]
[10]
Khmelenina VN, Rozova N, But CY, et al. Biosynthesis of secondary metabolites in methanotrophs: Biochemical and genetic aspects (review). Prikl Biokhim Mikrobiol 2015; 51(2): 140-50.
[http://dx.doi.org/10.7868/S0555109915020087]
[11]
Bowman JP, McCammon SA, Skerrat JH. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 1997; 143(4): 1451-9.
[http://dx.doi.org/10.1099/00221287-143-4-1451] [PMID: 9141708]
[12]
Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. Symbioses of Methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae). Prog Mol Subcell Biol 2006; 41: 227-49.
[http://dx.doi.org/10.1007/3-540-28221-1_11]
[13]
Ettwig KF, Butler MK, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010; 464: 543-8.
[http://dx.doi.org/10.1038/nature08883]
[14]
Jensen S, Neufeld JD, Birkeland N-K, Hovland M, Murrell JC. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiol Ecol 2008; 66(2): 320-30.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00575.x]
[15]
Sohngen NL. About bacteria that use methane as a carbon food and energy source. Central Parasitic Bacteriol Abt I 1906; 15: 513-7.
[16]
Op den Camp HJM, Islam T, Stott MB, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009; 1(5): 293-306.
[http://dx.doi.org/10.1111/j.1758-2229.2009.00022.x] [PMID: 23765882]
[17]
Vigliotta G, Nutricati E, Carata E, et al. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Appl Environ Microbiol 2007; 73(11): 3556-65.
[http://dx.doi.org/10.1128/AEM.02678-06] [PMID: 17416684]
[18]
Whittenbury R, Krieg NR. Family IV. Methylococcaceae.In: Krieg NR, Holt JG, Eds Bergey’s manual of systematic bacteriology. Baltimore: The Williams & Wilkins Co. 1984; Vol. 1: pp. 256-61.
[19]
Tsuji K, Tsien HC, Hanson RS, DePalma SR, Scholtz R, LaRoche S. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol 1990; 136(1): 1-10.
[http://dx.doi.org/10.1099/00221287-136-1-1] [PMID: 1693657]
[20]
Kalyuzhnaya MG, Gomez OA, Colin Murrell J. The methane-oxidizing bacteria (Methanotrophs). Taxo Genom Ecophysiol Hydrocarbon-degrading Microbes 2019; 245-78.
[21]
Balasubramanian R, Rosenzweig AC. Copper methanobactin: A molecule whose time has come. Curr Opin Chem Biol 2008; 12(2): 245-9.
[http://dx.doi.org/10.1016/j.cbpa.2008.01.043] [PMID: 18313412]
[22]
Dunfield PF, Dedysh SN. Methylocella: A gourmand among methanotrophs. Trends Microbiol 2014; 22(7): 368-9.
[http://dx.doi.org/10.1016/j.tim.2014.05.004]
[23]
Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 2018; 9: 3162.
[http://dx.doi.org/10.3389/fmicb.2018.03162] [PMID: 30631317]
[24]
Powell Tarika. Methane’s 20- and 100-Year Climate Effect is Like ‘CO2 on Steroids. 2019. Available from: https://www.sightline.org/2019/02/12/methane-climate-change-co2-on-steroids/
[25]
Bjork CE, Dobson PD, Pandhal J. Biotechnological conversion of methane to methanol: Evaluation of progress and potential. AIMS Bioeng 2018; 5(1): 1-38.
[http://dx.doi.org/10.3934/bioeng.2018.1.1]
[26]
Pastor JM, Salvador M, Argandoña M, et al. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol Adv 2010; 28(6): 782-801.
[http://dx.doi.org/10.1016/j.biotechadv.2010.06.005] [PMID: 20600783]
[27]
Bothe H, Jensen KM. A M, et al. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biotechnol 2002; 59(1): 33-9.
[http://dx.doi.org/10.1007/s00253-002-0964-1] [PMID: 12073128]
[28]
D’Mello JPF. The use of methane‐utilising bacteria as a source of protein for young chicks. Br Poult Sci 1973; 14(3): 291-301.
[http://dx.doi.org/10.1080/00071667308416031] [PMID: 4804684]
[29]
Koffas M. Genes encoding exopolysaccharide production U.S. Patent 6537786B2, 2003.
[30]
Malashenko IuP, Pirog TP, Romanovskaia VA, Sokolov IG, Gringerg TA. Search for methanotrophic producers of exopolysaccharides. Prikl Biokhim Mikrobiol 2001; 37(6): 702-5.
[PMID: 11771325]
[31]
Ivanova EG, Fedorov DN, Doronina NV, Trotsenko YA. Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiology 2006; 75(4): 494-6.
[http://dx.doi.org/10.1134/S0026261706040217]
[32]
Strong PJ, Xie S, Clarke WP. Methane as a resource: Can the methanotrophs add value? Environ Sci Technol 2015; 49(7): 4001-18.
[http://dx.doi.org/10.1021/es504242n] [PMID: 25723373]
[33]
Methane emissions are driving climate change. Here’s how to reduce them. Available from: https://www.unep.org/news-and stories/story/methane-emissions-are-driving-climate-change-heres-how-reduce-them
[34]
Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev 2010; 34(4): 496-531.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00212.x]
[35]
Henard C, Smith H, Dowe N, Kalyuzhnaya M, Pienkos P, Guarnieri M. Methane biocatalysts to lactate by an obligate methanotrophic bacterium. Sci Rep 2016.
[http://dx.doi.org/10.1038/srep21585]
[36]
Keltjens JT, Pol A, Reimann J, Op den Camp HJ. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98(14): 6163-83.
[http://dx.doi.org/10.1007/s00253-014-5766-8]
[37]
Lee OK. Metabolic engineering of methanotrophs for production of chemicals and fuels.In: Methanotrophs Microbiology Monographs. Cham: Springer 2019; 32: pp. 163-203.
[38]
Guerrero-Cruz S, Vaksmaa A, Horn MA, Niemann H, Pijuan M, Ho A. Methanotrophs: Discoveries, environmental relevance, and a perspective on current and future applications. Front Microbiol 2021; 12: 678057.
[http://dx.doi.org/10.3389/fmicb.2021.678057]
[39]
Jeong J, Kim TH, Jang N, et al. A highly efficient and versatile genetic engineering toolkit for a methanotroph-based biorefinery. Chem Eng J 2023; 453(Part 2): 139911.
[http://dx.doi.org/10.1016/j.cej.2022.139911]
[40]
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling formaldehyde metabolism in bacteria: Road towards synthetic methylotrophy. Microorganisms 2022; 10(2): 220.
[http://dx.doi.org/10.3390/microorganisms10020220]
[41]
Cynober T. CRISPR: One patent to rule them all. 2022. Available from: https://www.labiotech.eu/in-depth/crispr-patent-dispute-licensing/
[42]
Ledford H. Major CRISPR patent decision won’t end tangled dispute. 2022; 603: 373-4. Available from: https://media.nature.com/original/magazine-assets/d41586-022-00629-y/d41586-022-00629-y.pdf
[43]
Statements and background on the CRISPR patent process. 2022. Available from: https://www.broadinstitute.org/crispr/journalists-statement-and-background-crispr-patent-process
[44]
Rumah BL, Claxton Stevens BH, Yeboah JE, et al. In vivo genome editing in type I and II methanotrophs using a CRISPR/Cas9 system. ACS Synth Biol 2023; 12(2): 544-54.
[http://dx.doi.org/10.1021/acssynbio.2c00554]
[45]
United States of America before the Securities and Exchange Commission - Litigation and administrative proceedings. 2020. Available from: https://www.sec.gov/files/litigation/admin/2020/34-89997.pdf
[46]
Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC. Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome 2018; 6(1): 118.
[http://dx.doi.org/10.1186/s40168-018-0500-x]
[47]
Mühlemeier IM, Speight R, Strong PJ. Biogas, bioreactors and bacterial methane oxidation. In: Methane Biocatalysis: Paving the Way to Sustainability. Cham: Springer 2018; pp. 213-35.
[48]
Schmider T, Hestnes AG, Brzykcy J, et al. Physiological basis for atmospheric methane oxidation and methanotrophic growth on air. Nat Commun 2024; 15(1): 4151.
[http://dx.doi.org/10.1038/s41467-024-48197-1]
[49]
Tveit AT, Hestnes AG, Robinson SL, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA 2019; 116(17): 8515-24.
[http://dx.doi.org/10.1073/pnas.1817812116]
[50]
He L, Groom JD, Wilson EH, et al. A methanotrophic bacterium to enable methane removal for climate mitigation. Proc Natl Acad Sci USA 2023; 120(35): e2310046120.
[http://dx.doi.org/10.1073/pnas.2310046120]
[51]
Amabile C, Abate T, Muñoz R, Chianese S, Musmarra D. Techno-economic assessment of biopolymer production from methane and volatile fatty acids: Effect of the reactor size and biomass concentration on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) selling price. Sci Total Environ 2024; 929: 172599.
[http://dx.doi.org/10.1016/j.scitotenv.2024.172599]
[52]
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. ISME J 2024; 18(1): wrae102.
[http://dx.doi.org/10.1093/ismejo/wrae102]
[53]
Sauvageau D. Industrializing methanotrophs and other methylotrophic bacteria: From bioengineering to product recovery. Curr Opin Biotechnol 2024; 88: 103167.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy