Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Phenolic Compounds and Antioxidant Activity in Monovarietal Red Wines from Lazio Cultivars: A Chemometric Evaluation

Author(s): Giuliana Vinci*, Sabrina Antonia Prencipe, Matteo Di Renzo, Marco Ruggeri, Paola Campana and Anna Maria Tarola

Volume 21, Issue 4, 2025

Published on: 03 December, 2024

Page: [458 - 470] Pages: 13

DOI: 10.2174/0115734013339614241017054941

Price: $65

TIMBC 2026
Abstract

Background: Antioxidant activity is currently one of the most significant characteristics of red wines, mainly attributable to phenolic components, that enhance health-promoting effects. To this purpose, it is necessary to implement simple, and reliable analytical methods for evaluating such bioactive compounds in wines according to their background.

Objective: This research aims to characterize the phenolic and antioxidant activity of 48 commercial monovarietal red wines produced from eight native Lazio cultivars (“Cesanese del Piglio”, “Cesanese di Olevano Romano”, “Cesanese da Castel Franco”, “Olivella del Frusinate”, “Nostrano”, “Syrah”, “Merlot”, and “Nero Buono”), according to different winemaking techniques and vintage.

Methods: The characterization was carried out through the chromatographic determination of anthocyanins (HPLC-PDA), spectrophotometric assays for total phenolic content (TPC), total flavonoid content (TFC), total phenolic acid content (TPAC), and antioxidant activity (AA) through ABTS, and DPPH assays, coupled with chemometric tools (Principal Component Analysis and Cluster Analysis).

Results: The quantitative determination of phenolic compounds showed significant (p > 0.05) differences according to wine cultivars. Wine belonging to ‘Syrah’, ‘Nero Buono’, ‘Cesanese del Piglio’ and ‘Cesanese di Olevano Romano’ cultivars showed the highest TPC (2.673 – 4.094; 1.963 – 3.859, 2.104 – 3.794, and 2.668 – 3.549 mg GAE/L, respectively), as well as the highest TFC and TPAC.

Conclusion: In addition, wines sharing cold maceration (i.e., COR and CP samples) resulted in the highest total anthocyanidin content with a variable malvidin and cyanidin distribution percentage; as well as younger wines (2019) showed the highest TPC and anthocyanidins content. In these regards, the natural groupings among samples obtained by chemometrics reinforce the influence of cultivar origin, the wine-making process, as well as wine aging on phenolic content and compositions, thus acting as fingerprints for specific grape cultivars.

Keywords: Red wines, cultivar origin, antioxidants, anthocyanidins, HPLC-PDA, wine-making techniques, vintage.

Graphical Abstract
[1]
Nemzer B, Kalita D, Yashin AY, Yashin YI. Chemical composition and polyphenolic compounds of red wines: Their antioxidant activities and effects on human health—a review. Beverages 2021; 8(1): 1.
[http://dx.doi.org/10.3390/beverages8010001]
[2]
Mollica A, Scioli G, Della Valle A, et al. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021; 10(11): 1704.
[http://dx.doi.org/10.3390/antiox10111704] [PMID: 34829574]
[3]
Yue X, Jing S, Ni X, et al. Anthocyanin and phenolic acids contents influence the color stability and antioxidant capacity of wine treated with mannoprotein. Front Nutr 2021; 8: 691784.
[http://dx.doi.org/10.3389/fnut.2021.691784] [PMID: 34222310]
[4]
Eder R, Pajović R, Raičević D, et al. Study of the effects of climatic conditions on the phenolic content and antioxidant activity of Austrian and Montenegrin red wines. OENO One 2023; 57(3): 68-85.
[http://dx.doi.org/10.20870/oeno-one.2023.57.3.7450]
[5]
Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: a review. Molecules 2021; 26(3): 718.
[http://dx.doi.org/10.3390/molecules26030718] [PMID: 33573150]
[6]
Gris EF, Mattivi F, Ferreira EA, Vrhovšek U, Pedrosa RC, Bordignon-Luiz MT. Proanthocyanidin profile and antioxidant capacity of Brazilian Vitis vinifera red wines. Food Chem 2011; 126(1): 213-20.
[http://dx.doi.org/10.1016/j.foodchem.2010.10.102]
[7]
Pajovic Scepanovic R, Vuletic D, Christofi S, Kallithraka S. Maceration duration and grape variety: key factors in phenolic compound enrichment of Montenegrin red wine. OENO One 2024; 58(3)
[http://dx.doi.org/10.20870/oeno-one.2024.58.3.8099]
[8]
Guerrero RF, Cantos-Villar E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci Technol 2015; 42(1): 27-43.
[http://dx.doi.org/10.1016/j.tifs.2014.11.004]
[9]
Arriagada-Carrazana JP, Sáez-Navarrete C, Bordeu E. Membrane filtration effects on aromatic and phenolic quality of Cabernet Sauvignon wines. J Food Eng 2005; 68(3): 363-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.06.011]
[10]
Monagas M, Gómezcordovés C, Bartolomé B. Evolution of the phenolic content of red wines from L. during ageing in bottle. Food Chem 2006; 95(3): 405-12.
[http://dx.doi.org/10.1016/j.foodchem.2005.01.004]
[11]
Scrimgeour N, Nordestgaard S, Lloyd NDR, Wilkes EN. Exploring the effect of elevated storage temperature on wine composition. Aust J Grape Wine Res 2015; 21: 713-22.
[http://dx.doi.org/10.1111/ajgw.12196]
[12]
Goldberg DM, Tsang E, Karumanchiri A, Diamandis EP, Soleas G, Ng E. Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal Chem 1996; 68(10): 1688-94.
[http://dx.doi.org/10.1021/ac951083i] [PMID: 8651480]
[13]
Giuffrè AM. HPLC-DAD detection of changes in phenol content of red berry skins during grape ripening. Eur Food Res Technol 2013; 237(4): 555-64.
[http://dx.doi.org/10.1007/s00217-013-2033-7]
[14]
Jin ZM, He JJ, Bi HQ, Cui XY, Duan CQ. Phenolic compound profiles in berry skins from nine red wine grape cultivars in northwest China. Molecules 2009; 14(12): 4922-35.
[http://dx.doi.org/10.3390/molecules14124922] [PMID: 20032869]
[15]
Rodríguez R, Romero R, Chacón JL, Martínez J, García E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J Food Compos Anal 2006; 19(6-7): 687-93.
[http://dx.doi.org/10.1016/j.jfca.2005.05.003]
[16]
Avizcuri JM, Sáenz-Navajas MP, Echávarri JF, Ferreira V, Fernández-Zurbano P. Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Food Chem 2016; 213: 123-34.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.050] [PMID: 27451163]
[17]
Giovinazzo G, Carluccio MA, Grieco F. Wine Polyphenols and Health. In: Mérillon JM, Ramawat K, Eds. Bioactive molecules in food reference series in phytochemistry. Cham: Springer 2019.
[http://dx.doi.org/10.1007/978-3-319-78030-6_81]
[18]
Visioli F, Panaite SA, Tomé-Carneiro J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020; 25(18): 4105.
[http://dx.doi.org/10.3390/molecules25184105] [PMID: 32911765]
[19]
Brouillard R, Delaporte B. Chemistry of anthocyanin pigments. 2. Kinetic and thermodynamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. J Am Chem Soc 1977; 99(26): 8461-8.
[http://dx.doi.org/10.1021/ja00468a015]
[20]
Gambuti A, Capuano R, Lecce L, Fragasso MG, Moio L. Extraction of phenolic compounds from “Aglianico” and “Uva Di Troia” grape skins and seeds in model solutions: Influence of ethanol and maceration time. Vitis J Grapevine Res 2009; 48: 193-200.
[21]
International Organization of vine and wine. Available at: http://www.oiv.int/
[22]
Abbate G, Bonacquisti S, Giovi E, Iamonico D, Iberite M, Lorenzetti R. Contribution to the vascular flora of the Castelli Romani Regional Park (Rome, Central Italy) with recent observations and early herbarium surveys. Webbia 2009; 64(1): 47-74.
[http://dx.doi.org/10.1080/00837792.2009.10670852]
[23]
Palombi MA, Trotta N, Nuti R, Morassut M, Serra MC, Cecchini F. Ampelographic evaluation of autochthonous grapevine germplasm in different areas of Lazio region. Acta Hortic 2023; (1384): 113-20. [International Society for Horticultural Science.].
[http://dx.doi.org/10.17660/ActaHortic.2023.1384.15]
[24]
Luciano A, Picariello L, Forino M, Moio L, Gambuti A. Anthocyanins and nucleation seeds are key factors affecting quercetin precipitation in red wines. J Sci Food Agric 2024; 104(9): 5163-75.
[http://dx.doi.org/10.1002/jsfa.13352] [PMID: 38308579]
[25]
Alfieri G, Modesti M, Bellincontro A, Renzi F, Aleixandre-Tudo JL. Feasibility assessment of a low‐cost visible spectroscopy‐based prototype for monitoring polyphenol extraction in fermenting musts. J Sci Food Agric 2024; jsfa.13274.
[http://dx.doi.org/10.1002/jsfa.13274] [PMID: 38311879]
[26]
Perpetuini G, Rossetti AP, Battistelli N, et al. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res Int 2022; 158: 111577.
[http://dx.doi.org/10.1016/j.foodres.2022.111577] [PMID: 35840262]
[27]
Mangiapelo L, Blasi F, Ianni F, et al. Optimization of a simple analytical workflow to characterize the phenolic fraction from grape pomace. Food Bioprocess Technol 2024; 17(7): 1942-57.
[http://dx.doi.org/10.1007/s11947-023-03249-0]
[28]
Viticoltura in Lazio. Available at: https://www.arsial.it/la-viticoltura-nel-lazio-2/
[29]
Fabbri A, Bonifazi G, Serranti S. Micro-scale energy valorization of grape marcs in winery production plants. Waste Manag 2015; 36: 156-65.
[http://dx.doi.org/10.1016/j.wasman.2014.11.022] [PMID: 25529134]
[30]
Biscotti N, Guidi S, Forconi B, Piotto B. Frutti dimenticati e biodiversità recuperata il germoplasma frutticolo e viticolo delle agricolture tradizionali italiane. ISPRA 2010; 2010: 13-23.
[31]
Onzo A, Acquavia MA, Pascale R, et al. Untargeted metabolomic analysis by ultra-high-resolution mass spectrometry for the profiling of new Italian wine varieties. Anal Bioanal Chem 2022; 414(27): 7805-12.
[http://dx.doi.org/10.1007/s00216-022-04314-x] [PMID: 36121471]
[32]
Gobbi L, Maddaloni L, Prencipe SA, Vinci G. Bioactive compounds in different coffee beverages for quality and sustainability assessment. Beverages 2023; 9(1): 3.
[http://dx.doi.org/10.3390/beverages9010003]
[33]
Abdel-Naeem HHS, Sallam KI, Malak NML. Improvement of the microbial quality, antioxidant activity, phenolic and flavonoid contents, and shelf life of smoked herring (Clupea harengus) during frozen storage by using chitosan edible coating. Food Control 2021; 130: 108317.
[http://dx.doi.org/10.1016/j.foodcont.2021.108317]
[34]
Nalewajko-Sieliwoniuk E, Pliszko A, Nazaruk J, Barszczewska E, Pukszta W. Comparative analysis of phenolic compounds in four taxa of Erigeron acris s. l. (Asteraceae). Biologia (Bratisl) 2019; 74(12): 1569-77.
[http://dx.doi.org/10.2478/s11756-019-00332-w]
[35]
Spano M, Di Matteo G, Ingallina C, et al. Industrial Hemp (Cannabis sativa L.) inflorescences as novel food: The effect of different agronomical practices on chemical profile. Foods 2022; 11(22): 3658.
[http://dx.doi.org/10.3390/foods11223658] [PMID: 36429250]
[36]
Gómez-Míguez MJ, González-Miret ML, Hernanz D, Fernández MÁ, Vicario IM, Heredia FJ. Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. J Food Eng 2007; 78(1): 238-45.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.09.021]
[37]
Pierre EO, Nicolas N, Pierre FD, Martine LO, Denis ON. Heritability of polyphenols, anthocyanins and antioxidant capacity of Cameroonian cocoa (Theobroma cacao L.) beans. Afr J Biotechnol 2015; 14(36): 2672-82.
[http://dx.doi.org/10.5897/AJB2015.14715]
[38]
Girelli AM, Mele C, Salvagni L, Tarola AM. Polyphenol content and antioxidant activity of merlot and Shiraz wine. Anal Lett 2015; 48(12): 1865-80.
[http://dx.doi.org/10.1080/00032719.2014.1003429]
[39]
The leading data analysis and statistical solution for microsoft excel. 2022. Available at: https://www.xlstat.com
[40]
Garcia-Hernandez C, Salvo-Comino C, Martin-Pedrosa F, Garcia-Cabezon C, Rodriguez-Mendez ML. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. Lebensm Wiss Technol 2020; 118: 108785.
[http://dx.doi.org/10.1016/j.lwt.2019.108785]
[41]
Bimpilas A, Tsimogiannis D, Balta-Brouma K, Lymperopoulou T, Oreopoulou V. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem 2015; 178: 164-71.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.090] [PMID: 25704697]
[42]
Bai S, Cui C, Liu J, Li P, Li Q, Bi K. Quantification of polyphenol composition and multiple statistical analyses of biological activity in Portuguese red wines. Eur Food Res Technol 2018; 244(11): 2007-17.
[http://dx.doi.org/10.1007/s00217-018-3112-6]
[43]
Van Leeuw R, Kevers C, Pincemail J, Defraigne JO, Dommes J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J Food Compos Anal 2014; 36(1-2): 40-50.
[http://dx.doi.org/10.1016/j.jfca.2014.07.001]
[44]
de Oliveira JB, Egipto R, Laureano O, de Castro R, Pereira GE, Ricardo-da-Silva JM. Climate effects on physicochemical composition of Syrah grapes at low and high altitude sites from tropical grown regions of Brazil. Food Res Int 2019; 121: 870-9.
[http://dx.doi.org/10.1016/j.foodres.2019.01.011] [PMID: 31108820]
[45]
Hou X, Chen S, Pu Y, et al. Effect of winemaking on phenolic compounds and antioxidant activities of msalais wine. Molecules 2023; 28(3): 1250.
[http://dx.doi.org/10.3390/molecules28031250] [PMID: 36770915]
[46]
Mitrevska K, Grigorakis S, Loupassaki S, Calokerinos AC. Antioxidant activity and polyphenolic content of North Macedonian wines. Appl Sci (Basel) 2020; 10(6): 2010.
[http://dx.doi.org/10.3390/app10062010]
[47]
Zargar B, Majeed D, Ganai SA, Mir SA, Dar BN. Effect of different processing parameters on antioxidant activity of tea. J Food Meas Charact 2018; 12(1): 527-34.
[http://dx.doi.org/10.1007/s11694-017-9664-5]
[48]
Maletić E, Pejić I, Kontić JK, Zdunić D, Preiner D, Šimon S, et al. Vitis-Journal of Grapevine Research 2015; 54: 93-8.
[49]
Sartor S, Malinovski LI, Caliari V, da Silva AL, Bordignon-Luiz MT. Particularities of Syrah wines from different growing regions of Southern Brazil: Grapevine phenology and bioactive compounds. J Food Sci Technol 2017; 54(6): 1414-24.
[http://dx.doi.org/10.1007/s13197-017-2557-0] [PMID: 28559600]
[50]
Garaguso I, Nardini M. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem 2015; 179: 336-42.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.144] [PMID: 25722174]
[51]
Cheynier V, Dueñas-Paton M, Salas E, et al. Structure and properties of wine pigments and tannins. Am J Enol Vitic 2006; 57(3): 298-305.
[http://dx.doi.org/10.5344/ajev.2006.57.3.298]
[52]
Gençdağ E, Özdemir EE, Demirci K, Görgüç A, Yılmaz FM. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr Plant Biol 2022; 29: 100238.
[http://dx.doi.org/10.1016/j.cpb.2022.100238]
[53]
Zhang X, Kontoudakis N, Šuklje K, et al. Changes in red wine composition during bottle aging: Impacts of grape variety, vineyard location, maturity, and oxygen availability during aging. J Agric Food Chem 2020; 68(47): 13331-43.
[http://dx.doi.org/10.1021/acs.jafc.9b07164] [PMID: 32066244]
[54]
Merkytė V, Longo E, Windisch G, Boselli E. Phenolic compounds as markers of wine quality and authenticity. Foods 2020; 9(12): 1785.
[http://dx.doi.org/10.3390/foods9121785] [PMID: 33271877]
[55]
Salvatore E, Cocchi M, Marchetti A, Marini F, de Juan A. Determination of phenolic compounds and authentication of PDO Lambrusco wines by HPLC-DAD and chemometric techniques. Anal Chim Acta 2013; 761: 34-45.
[http://dx.doi.org/10.1016/j.aca.2012.11.015] [PMID: 23312312]
[56]
He F, Liang NN, Mu L, et al. Anthocyanins and their variation in red wines. II. Anthocyanin derived pigments and their color evolution. Molecules 2012; 17(2): 1483-519.
[http://dx.doi.org/10.3390/molecules17021483] [PMID: 23442981]
[57]
Pisano PL, Silva MF, Olivieri AC. Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography–mass spectrometry data. Food Chem 2015; 175: 174-80.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.124] [PMID: 25577067]
[58]
Cejudo-Bastante MJ, Vicario A, Guillén DA, Hermosín-Gutiérrez I, Pérez-Coello MS. Phenolic characterization of minor red grape varieties grown in Castilla-La Mancha region in different vinification stages. Eur Food Res Technol 2015; 240(3): 595-607.
[http://dx.doi.org/10.1007/s00217-014-2360-3]
[59]
Longo E, Merkyte V, Rossetti F, Teissedre PL, Jourdes M, Boselli E. Relative abundances of novel cyclic prodelphinidins in wine depending on the grape variety. J Mass Spectrom 2018; 53(11): 1116-25.
[http://dx.doi.org/10.1002/jms.4280] [PMID: 30107063]
[60]
De Rosso M, Mayr CM, Girardi G, Vedova AD, Flamini R. High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines. Metabolomics 2018; 14(10): 124.
[http://dx.doi.org/10.1007/s11306-018-1415-z] [PMID: 30830408]
[61]
Martelo-Vidal MJ, Vázquez M. Determination of polyphenolic compounds of red wines by UV–VIS–NIR spectroscopy and chemometrics tools. Food Chem 2014; 158: 28-34.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.080] [PMID: 24731310]
[62]
Ragusa A, Centonze C, Grasso ME, et al. HPLC analysis of phenols in negroamaro and primitivo red wines from salento. Foods 2019; 8(2): 45.
[http://dx.doi.org/10.3390/foods8020045] [PMID: 30717077]
[63]
Agatonovic-Kustrin S, Hettiarachchi CG, Morton DW, Razic S. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging. J Pharm Biomed Anal 2015; 102: 93-9.
[http://dx.doi.org/10.1016/j.jpba.2014.08.031] [PMID: 25255450]
[64]
Parpinello GP, Ricci A, Arapitsas P, et al. Multivariate characterization of Italian monovarietal red wines using MIR spectroscopy. OENO One 2019; 4: 741-51.
[65]
Aleixandre-Tudo JL, du Toit W. Cold maceration application in red wine production and its effects on phenolic compounds: A review. Lebensm Wiss Technol 2018; 95: 200-8.
[http://dx.doi.org/10.1016/j.lwt.2018.04.096]
[66]
Koyama K, Goto-Yamamoto N, Hashizume K. Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Biosci Biotechnol Biochem 2007; 71(4): 958-65.
[http://dx.doi.org/10.1271/bbb.60628] [PMID: 17420579]
[67]
De Santis D, Frangipane T. Effect of prefermentative cold maceration on the aroma and phenolic profiles of a Merlot red wine. Ital J Food Sci 2010; 1: 47-53.
[68]
Chira K, Pacella N, Jourdes M, Teissedre PL. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chem 2011; 126(4): 1971-7.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.056] [PMID: 25213985]
[69]
Meng JF, Xu TF, Qin MY, Zhuang XF, Fang YL, Zhang ZW. Phenolic characterization of young wines made from spine grape (Vitis davidii Foex) grown in Chongyi County (China). Food Res Int 2012; 49(2): 664-71.
[http://dx.doi.org/10.1016/j.foodres.2012.09.013]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy