Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Pharmacokinetic Interaction between Imatinib and Tacrolimus in Rats

Author(s): Naling Fan, Teng Guo, Liying Du, Mingfeng Liu and Xinran Chen*

Volume 25, Issue 8, 2024

Published on: 23 December, 2024

Page: [613 - 621] Pages: 9

DOI: 10.2174/0113892002319356241210073350

Price: $65

TIMBC 2026
Abstract

Objective: Tacrolimus, a calcineurin inhibitor (CNI), is the first-line treatment for chronic myeloid leukemia (CML) and advanced gastrointestinal stromal tumors (GIST). Imatinib and tacrolimus are both substrates of the hepatic enzymes CYP3A4/5 and efflux transporter P-gp, so drug-drug interactions may occur during their co-administration treatment. Therefore, this study aimed to evaluate the pharmacokinetic interaction between imatinib and tacrolimus in rats.

Methods: Rats were divided into groups I (30 mg/kg imatinib administered for 14 days), II (1.89 mg/kg tacrolimus and 30 mg/kg imatinib administered for 14 days), III (30mg/kg imatinib and 0.63mg/kg tacrolimus administered for 14 days), IV (1.89mg/kg tacrolimus for 14 days), and V (10mg/kg imatinib and 1.89mg/kg tacrolimus for 14 days). Blood samples were determined for whole blood of tacrolimus, plasma of imatinib, and Ndesmethyl imatinib concentrations using ultra-performance liquid chromatography-mass spectrometry.

Results: After 1 day of a single dose, tacrolimus had no significant effect on the pharmacokinetics of imatinib and N-desmethyl imatinib; imatinib significantly increased the AUC and Cmax of tacrolimus (P < 0.05). After 14 days of multiple doses, tacrolimus significantly reduced the AUC and Cmax of imatinib and N-desmethyl imatinib (P < 0.05). Further, imatinib significantly increased AUC0-24 and AUC0-∞ of tacrolimus (P < 0.05).

Conclusion: Imatinib increased tacrolimus blood concentrations after single and multiple administrations. Tacrolimus did not significantly affect the pharmacokinetics of imatinib after a single dose; however, tacrolimus might impact the absorption and metabolism of imatinib after multiple doses. The results showed that when imatinib and tacrolimus were co-administered, attention should be paid to the presence of drug-drug interactions.

Keywords: Tacrolimus, imatinib, N-desmethyl imatinib, pharmacokinetic, drug-drug interaction, hepatic enzymes.

Graphical Abstract
[1]
Rauch, M.C.; San Martín, A.; Ojeda, D.; Quezada, C.; Salas, M.; Cárcamo, J.G.; Yañez, A.J.; Slebe, J.C.; Claude, A. Tacrolimus causes a blockage of protein secretion which reinforces its immunosuppressive activity and also explains some of its toxic side-effects. Transpl. Immunol., 2009, 22(1-2), 72-81.
[http://dx.doi.org/10.1016/j.trim.2009.07.001] [PMID: 19628039]
[2]
Jusko, W.J.; Piekoszewski, W.; Klintmalm, G.B.; Shaefer, M.S.; Hebert, M.F.; Piergies, A.A.; Lee, C.C.; Schechter, P.; Mekki, Q.A.; Mekki, Q.A. Pharmacokinetics of tacrolimus in liver transplant patients. Clin. Pharmacol. Ther., 1995, 57(3), 281-290.
[http://dx.doi.org/10.1016/0009-9236(95)90153-1] [PMID: 7535213]
[3]
Sansone-Parsons, A.; Krishna, G.; Martinho, M.; Kantesaria, B.; Gelone, S.; Mant, T.G. Effect of oral posaconazole on the pharmacokinetics of cyclosporine and tacrolimus. Pharmacotherapy, 2007, 27(6), 825-834.
[http://dx.doi.org/10.1592/phco.27.6.825] [PMID: 17542765]
[4]
Litz, J.; Krystal, G.W. Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1α activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol. Cancer Ther., 2006, 5(6), 1415-1422.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0503] [PMID: 16818499]
[5]
Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Albain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA, 2003, 290(16), 2149-2158.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[6]
Peng, B.; Lloyd, P.; Schran, H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet., 2005, 44(9), 879-894.
[http://dx.doi.org/10.2165/00003088-200544090-00001] [PMID: 16122278]
[7]
Bolton, A.E.; Peng, B.; Hubert, M.; Krebs-Brown, A.; Capdeville, R.; Keller, U.; Seiberling, M. Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother. Pharmacol., 2004, 53(2), 102-106.
[http://dx.doi.org/10.1007/s00280-003-0722-9] [PMID: 14605865]
[8]
Dutreix, C.; Peng, B.; Mehring, G.; Hayes, M.; Capdeville, R.; Pokorny, R.; Seiberling, M. Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother. Pharmacol., 2004, 54(4), 290-294.
[http://dx.doi.org/10.1007/s00280-004-0832-z] [PMID: 15138710]
[9]
Murt, A.; Bayram, B.; Yılmaz, U.; Seyahi, N.; Eşkazan, A.E. Chronic myeloid leukemia in renal transplantation patients in the era of tyrosine kinase inhibitors: A case report and review of the literature. Nephron J., 2024, 148(8), 563-568.
[http://dx.doi.org/10.1159/000538532] [PMID: 38574488]
[10]
Thiem, U.; Buxhofer-Ausch, V.; Kranewitter, W.; Webersinke, G.; Enkner, W.; Cejka, D. Successful kidney transplantation in a patient with pre-existing chronic myeloid leukemia treated with imatinib. Am. J. Transplant., 2021, 21(1), 405-409.
[http://dx.doi.org/10.1111/ajt.16194] [PMID: 32654389]
[11]
Fan, N.; Du, L.; Guo, T.; Liu, M.; Chen, X. Pharmacokinetic interaction between imatinib and metformin in rats. Eur. J. Drug Metab. Pharmacokinet., 2024, 49(2), 171-179.
[http://dx.doi.org/10.1007/s13318-023-00869-x] [PMID: 38141154]
[12]
Qin, X.L.; Bi, H.C.; Wang, X.D.; Li, J.L.; Wang, Y.; Xue, X.P.; Chen, X.; Wang, C.X.; Xu, L.J.; Wang, Y.T.; Huang, M. Mechanistic understanding of the different effects of Wuzhi Tablet (Schisandra sphenanthera extract) on the absorption and first-pass intestinal and hepatic metabolism of Tacrolimus (FK506). Int. J. Pharm., 2010, 389(1-2), 114-121.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.025] [PMID: 20097278]
[13]
Christians, U.; Jacobsen, W.; Benet, L.Z.; Lampen, A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin. Pharmacokinet., 2002, 41(11), 813-851.
[http://dx.doi.org/10.2165/00003088-200241110-00003] [PMID: 12190331]
[14]
Lin, G.; Wang, C.; Qiu, X.; Wang, Z.; Han, A.; Xu, T.; Kan, X.; Hu, G. Differential effects of ketoconazole, itraconazole and voriconazole on the pharmacokinetics of imatinib and its main metabolite GCP74588 in rat. Drug Dev. Ind. Pharm., 2014, 40(12), 1616-1622.
[http://dx.doi.org/10.3109/03639045.2013.838582] [PMID: 24053419]
[15]
Oostendorp, R.L.; Buckle, T.; Beijnen, J.H.; van Tellingen, O.; Schellens, J.H.M. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest. New Drugs, 2009, 27(1), 31-40.
[http://dx.doi.org/10.1007/s10637-008-9138-z] [PMID: 18449471]
[16]
Wiedmann, M.; Kreth, F.; Feisthammel, J.; Deininger, M.; Mössner, J.; Caca, K. Imatinib mesylate (STI571; Glivec)--a new approach in the treatment of biliary tract cancer? Anticancer Drugs, 2003, 14(9), 751-760.
[http://dx.doi.org/10.1097/00001813-200310000-00011] [PMID: 14551510]
[17]
Bernard, A.; Vaccaro, N.; Acharya, M.; Jiao, J.; Monbaliu, J.; De Vries, R.; Stieltjes, H.; Yu, M.; Tran, N.; Chien, C. Impact on abiraterone pharmacokinetics and safety: Open‐label drug–drug interaction studies with ketoconazole and rifampicin. Clin. Pharmacol. Drug Dev., 2015, 4(1), 63-73.
[http://dx.doi.org/10.1002/cpdd.132] [PMID: 27128004]
[18]
Kajita, T.; Higashi, Y.; Imamura, M.; Maida, C.; Fujii, Y.; Yamamoto, I.; Miyamoto, E. Effect of imatinib mesilate on the disposition kinetics of ciclosporin in rats. J. Pharm. Pharmacol., 2006, 58(7), 997-1000.
[http://dx.doi.org/10.1211/jpp.58.7.0016] [PMID: 16805961]
[19]
Vanhove, T.; Annaert, P.; Kuypers, D.R.J. Clinical determinants of calcineurin inhibitor disposition: A mechanistic review. Drug Metab. Rev., 2016, 48(1), 88-112.
[http://dx.doi.org/10.3109/03602532.2016.1151037] [PMID: 26912097]
[20]
Zhao, T.; Li, X.; Chen, Y.; Du, J.; Chen, X.; Wang, D.; Wang, L.; Zhao, S.; Wang, C.; Meng, Q.; Sun, H.; Liu, K.; Wu, J. Risk assessment and molecular mechanism study of drug-drug interactions between rivaroxaban and tyrosine kinase inhibitors mediated by CYP2J2/3A4 and BCRP/P-gp. Front. Pharmacol., 2022, 13, 914842.
[http://dx.doi.org/10.3389/fphar.2022.914842] [PMID: 36071847]
[21]
Ginsburg, P.M.; Thuluvath, P.J. Diarrhea in liver transplant recipients: Etiology and management. Liver Transpl., 2005, 11(8), 881-890.
[http://dx.doi.org/10.1002/lt.20500] [PMID: 16035068]
[22]
Duan, Y.; Zeng, L.; Zheng, C.; Song, B.; Li, F.; Kong, X.; Xu, K. Inflammatory links between high fat diets and diseases. Front. Immunol., 2018, 9, 2649.
[http://dx.doi.org/10.3389/fimmu.2018.02649] [PMID: 30483273]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy