Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Application of Hydrogels in the Treatment of Intrauterine Adhesions

Author(s): Yasamin Rajabloo, Abdulridha Mohammed Al-Asady, Hanieh Akbarzadeh, Amir Avan, Majid Khazaei, Mikhail Ryzhikov and Seyed Mahdi Hassanian*

Volume 31, Issue 13, 2025

Published on: 01 January, 2025

Page: [1057 - 1066] Pages: 10

DOI: 10.2174/0113816128348746241030110806

Price: $65

TIMBC 2026
Abstract

Intrauterine Adhesions (IUA) are a significant cause of infertility and miscarriage, often resulting from trauma to the endometrium. While hysteroscopic adhesiolysis is the primary treatment, the use of hydrogels as anti-adhesion barriers and drug delivery systems is gaining traction for improving patient outcomes. This review aims to explore various hydrogel types, their role in tissue repair, and the integration of stem cell therapy. Recent advancements in biomaterial scaffolds have demonstrated potential in preventing adhesion recurrence and promoting endometrial regeneration. These emerging treatments provide promising avenues for enhancing the efficacy of traditional therapies in IUA management.

Keywords: Hydrogel, infertility, intrauterine adhesion, scaffold, uterine injury, endometrium.

[1]
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B Mater Biol Med 2021; 9(33): 6536-52.
[http://dx.doi.org/10.1039/D1TB01005K] [PMID: 34324619]
[2]
Kou L, Jiang X, Xiao S, Zhao YZ, Yao Q, Chen R. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2020; 318: 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.007] [PMID: 31830539]
[3]
Dreisler E, Kjer JJ. Asherman’s syndrome: Current perspectives on diagnosis and management. Int J Womens Health 2019; 11: 191-8.
[http://dx.doi.org/10.2147/IJWH.S165474] [PMID: 30936754]
[4]
Wei C, Pan Y, Zhang Y, et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell Death Dis 2020; 11(9): 755.
[http://dx.doi.org/10.1038/s41419-020-02956-2] [PMID: 32934215]
[5]
Han X, Ma Y, Lu X, et al. Transplantation of human adipose stem cells using acellular human amniotic membrane improves angiogenesis in injured endometrial tissue in a rat intrauterine adhesion model. Cell Transplant 2020; 29: 0963689720952055.
[http://dx.doi.org/10.1177/0963689720952055] [PMID: 32838542]
[6]
Huang XW, Lin MM, Zhao HQ, et al. A prospective randomized controlled trial comparing two different treatments of intrauterine adhesions. Reprod Biomed Online 2020; 40(6): 835-41.
[http://dx.doi.org/10.1016/j.rbmo.2020.02.013] [PMID: 32376313]
[7]
Chen Y, Liu L, Luo Y, Chen M, Huan Y, Fang R. Prevalence and impact of chronic endometritis in patients with intrauterine adhesions: A prospective cohort study. J Minim Invasive Gynecol 2017; 24(1): 74-9.
[http://dx.doi.org/10.1016/j.jmig.2016.09.022] [PMID: 27773811]
[8]
Chen L, Zhang H, Wang Q, et al. Reproductive outcomes in patients with intrauterine adhesions following hysteroscopic adhesiolysis: Experience from the largest women’s hospital in China. J Minim Invasive Gynecol 2017; 24(2): 299-304.
[http://dx.doi.org/10.1016/j.jmig.2016.10.018] [PMID: 27856386]
[9]
Yuan X, Ding L, Deng DY. Research progress of hydrogel combined with mesenchymal stem cells in the treatment of spinal cord injury. J Biomed Engin 2021; 38(4): 805-11.
[10]
Zhang X, Zhang W, Yang M. Application of hydrogels in cartilage tissue engineering. Curr Stem Cell Res Ther 2018; 13(7): 497-516.
[http://dx.doi.org/10.2174/1574888X12666171017160323] [PMID: 29046163]
[11]
Gu Z, Huang K, Luo Y, et al. Double network hydrogel for tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(6): e1520.
[http://dx.doi.org/10.1002/wnan.1520] [PMID: 29664220]
[12]
Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 2018; 127: 167-84.
[http://dx.doi.org/10.1016/j.addr.2018.03.007] [PMID: 29567395]
[13]
Qi L, Zhang C, Wang B, Yin J, Yan S. Progress in hydrogels for skin wound repair. Macromol Biosci 2022; 22(7): 2100475.
[http://dx.doi.org/10.1002/mabi.202100475] [PMID: 35388605]
[14]
Zhang SS, Xu XX, Xiang WW, et al. Using 17β-estradiol heparin-poloxamer thermosensitive hydrogel to enhance the endometrial regeneration and functional recovery of intrauterine adhesions in a rat model. FASEB J 2020; 34(1): 446-57.
[http://dx.doi.org/10.1096/fj.201901603RR] [PMID: 31914682]
[15]
Tang J, Chen J, Guo J, Wei Q, Fan H. Construction and evaluation of fibrillar composite hydrogel of collagen/konjac glucomannan for potential biomedical applications. Regen Biomater 2018; 5(4): 239-50.
[http://dx.doi.org/10.1093/rb/rby018] [PMID: 30094063]
[16]
Huang C, Ding DC. Outcomes of adhesion barriers in gynecologic surgeries. Medicine (Baltimore) 2019; 98(50): e18391.
[http://dx.doi.org/10.1097/MD.0000000000018391] [PMID: 31852155]
[17]
Khan NU, Chengfeng X, Jiang MQ, et al. α-Lactalbumin based scaffolds for infected wound healing and tissue regeneration. Int J Pharm 2024; 663: 124578.
[http://dx.doi.org/10.1016/j.ijpharm.2024.124578] [PMID: 39153643]
[18]
Wang J, Yang C, Xie Y, et al. Application of bioactive hydrogels for functional treatment of intrauterine adhesion. Front Bioeng Biotechnol 2021; 9: 760943.
[http://dx.doi.org/10.3389/fbioe.2021.760943] [PMID: 34621732]
[19]
Liu F, Lin Q, Shen S, et al. Secretion of WNT7A by UC-MSCs assist in promoting the endometrial epithelial regeneration. iScience 2024; 27(6): 109888.
[http://dx.doi.org/10.1016/j.isci.2024.109888] [PMID: 38947517]
[20]
Xin L, Lin X, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater 2020; 113: 252-66.
[http://dx.doi.org/10.1016/j.actbio.2020.06.029] [PMID: 32574858]
[21]
Padhi A, Nain AS. ECM in differentiation: A review of matrix structure, composition and mechanical properties. Ann Biomed Eng 2020; 48(3): 1071-89.
[http://dx.doi.org/10.1007/s10439-019-02337-7] [PMID: 31485876]
[22]
Jin P, Liu L, Chen X, Cheng L, Zhang W, Zhong G. Applications and prospects of different functional hydrogels in meniscus repair. Front Bioeng Biotechnol 2022; 10: 1082499.
[http://dx.doi.org/10.3389/fbioe.2022.1082499] [PMID: 36568293]
[23]
Wang X, Wang Q. Enzyme-laden bioactive hydrogel for biocatalytic monitoring and regulation. Acc Chem Res 2021; 54(5): 1274-87.
[http://dx.doi.org/10.1021/acs.accounts.0c00832] [PMID: 33570397]
[24]
Cheng F, Chen H, Li H. Recent progress on hydrogel actuators. J Mater Chem B Mater Biol Med 2021; 9(7): 1762-80.
[http://dx.doi.org/10.1039/D0TB02524K] [PMID: 33527974]
[25]
Minxuan J, Jiamin W, Chubing L, et al. Hydrogel strategies for female reproduction dysfunction. ACS Nano 2024; 18(44): 30132-52.
[http://dx.doi.org/10.1021/acsnano.4c05634] [PMID: 39437800]
[26]
López-Martínez S, Rodríguez-Eguren A, de Miguel-Gómez L, et al. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater 2021; 135: 113-25.
[http://dx.doi.org/10.1016/j.actbio.2021.08.025] [PMID: 34428563]
[27]
Wang L, Zhang D, Ren Y, et al. Injectable hyaluronic acid hydrogel loaded with BMSC and NGF for traumatic brain injury treatment. Mater Today Bio 2022; 13: 100201.
[http://dx.doi.org/10.1016/j.mtbio.2021.100201] [PMID: 35024600]
[28]
Wang L, Wang J, Zhou X, et al. A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Front Bioeng Biotechnol 2020; 8: 564731.
[http://dx.doi.org/10.3389/fbioe.2020.564731] [PMID: 33042966]
[29]
Ávila-Salas F, Marican A, Pinochet S, et al. Film dressings based on hydrogels: Simultaneous and sustained-release of bioactive compounds with wound healing properties. Pharmaceutics 2019; 11(9): 447.
[http://dx.doi.org/10.3390/pharmaceutics11090447] [PMID: 31480682]
[30]
Liu YR, Liu B, Yang BP, Lan Y, Chi YG. Efficacy of hyaluronic acid on the prevention of intrauterine adhesion and the improvement of fertility: A meta-analysis of randomized trials. Complement Ther Clin Pract 2022; 47: 101575.
[http://dx.doi.org/10.1016/j.ctcp.2022.101575] [PMID: 35349823]
[31]
Guo Y, Shi X, Song D, et al. The efficacy of auto-cross-linked hyaluronic acid gel in addition to oestradiol and intrauterine balloon insertion in the prevention of adhesion reformation after hysteroscopic adhesiolysis. Reprod Biomed Online 2022; 45(3): 501-7.
[http://dx.doi.org/10.1016/j.rbmo.2022.04.017] [PMID: 35760666]
[32]
Zhou Q, Shi X, Saravelos S, et al. Auto–cross-linked hyaluronic acid gel for prevention of intrauterine adhesions after hysteroscopic adhesiolysis: A randomized controlled trial. J Minim Invasive Gynecol 2021; 28(2): 307-13.
[http://dx.doi.org/10.1016/j.jmig.2020.06.030] [PMID: 32681996]
[33]
Cha GD, Lee WH, Sunwoo SH, et al. Multifunctional injectable hydrogel for in vivo diagnostic and therapeutic applications. ACS Nano 2022; 16(1): 554-67.
[http://dx.doi.org/10.1021/acsnano.1c07649] [PMID: 35014797]
[34]
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6(1): 426.
[http://dx.doi.org/10.1038/s41392-021-00830-x] [PMID: 34916490]
[35]
Wang B, Feng C, Dang J, et al. Preparation of fibroblast suppressive poly(ethylene glycol)-b-poly(L-phenylalanine)/poly(ethylene glycol) hydrogel and its application in intrauterine fibrosis prevention. ACS Biomater Sci Eng 2021; 7(1): 311-21.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01390] [PMID: 33455202]
[36]
Lin J, Wang Z, Huang J, et al. Microenvironment-protected exosome-hydrogel for facilitating endometrial regeneration, fertility restoration, and live birth of offspring. Small 2021; 17(11): 2007235.
[http://dx.doi.org/10.1002/smll.202007235] [PMID: 33590681]
[37]
Xiao Y, Gu Y, Qin L, et al. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200: 111581.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111581] [PMID: 33524696]
[38]
Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine 2020; 15: 5911-26.
[http://dx.doi.org/10.2147/IJN.S249129] [PMID: 32848396]
[39]
Ji X, Yuan X, Ma L, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics 2020; 10(2): 725-40.
[http://dx.doi.org/10.7150/thno.39167] [PMID: 31903147]
[40]
Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK. 3D-printed poly (ε- caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep 2017; 7(1): 13412.
[http://dx.doi.org/10.1038/s41598-017-13838-7] [PMID: 29042614]
[41]
Ugboaja JO, Oguejiofor CB, Igwegbe AO. Clinico-hysteroscopic analysis of severe intrauterine adhesions among nigerian infertile women. Pan Afr Med J 2017; 28(1): 226.
[http://dx.doi.org/10.11604/pamj.2017.28.226.13838] [PMID: 29629012]
[42]
Sun X, Xue M, Deng X, Lin Y, Tan Y, Wei X. Clinical characteristic and intraoperative findings of uterine perforation patients in using of intrauterine devices (IUDs). Gynecol Surg 2018; 15(1): 3.
[http://dx.doi.org/10.1186/s10397-017-1032-2] [PMID: 29386988]
[43]
Chi Y, He P, Lei L, et al. Transdermal estrogen gel and oral aspirin combination therapy improves fertility prognosis via the promotion of endometrial receptivity in moderate to severe intrauterine adhesion. Mol Med Rep 2018; 17(5): 6337-44.
[http://dx.doi.org/10.3892/mmr.2018.8685] [PMID: 29512784]
[44]
Cai H, Qiao L, Song K, He Y. Oxidized, regenerated cellulose adhesion barrier plus intrauterine device prevents recurrence after adhesiolysis for moderate to severe intrauterine adhesions. J Minim Invasive Gynecol 2017; 24(1): 80-8.
[http://dx.doi.org/10.1016/j.jmig.2016.09.021] [PMID: 27742483]
[45]
Xiong Q, Zhang T, Su S. A network meta-analysis of efficacy of different interventions in the prevention of postoperative intrauterine adhesions. Clin Transl Sci 2020; 13(2): 372-80.
[http://dx.doi.org/10.1111/cts.12721] [PMID: 31692267]
[46]
Li X, Wu L, Zhou Y, et al. New crosslinked hyaluronan gel for the prevention of intrauterine adhesions after dilation and curettage in patients with delayed miscarriage: A prospective, multicenter, randomized, controlled trial. J Minim Invasive Gynecol 2019; 26(1): 94-9.
[http://dx.doi.org/10.1016/j.jmig.2018.03.032] [PMID: 29678756]
[47]
Can S, Kirpinar G, Dural O, et al. Efficacy of a new crosslinked hyaluronan gel in the prevention of intrauterine adhesions. JSLS 2018; 22(4): e2018.00036.
[http://dx.doi.org/10.4293/JSLS.2018.00036] [PMID: 30524185]
[48]
Lin X, Wei M, Li TC, et al. A comparison of intrauterine balloon, intrauterine contraceptive device and hyaluronic acid gel in the prevention of adhesion reformation following hysteroscopic surgery for Asherman syndrome: A cohort study. Eur J Obstet Gynecol Reprod Biol 2013; 170(2): 512-6.
[http://dx.doi.org/10.1016/j.ejogrb.2013.07.018] [PMID: 23932377]
[49]
Pabuçcu EG, Kovanci E, Şahin Ö, Arslanoğlu E, Yıldız Y, Pabuçcu R. New crosslinked hyaluronan gel, intrauterine device, or both for the prevention of intrauterine adhesions. JSLS 2019; 23(1): e2018.00108.
[http://dx.doi.org/10.4293/JSLS.2018.00108] [PMID: 30846896]
[50]
Huang H, Zou L, Zhang A, Zhao X, Xu D, Xue M. A preliminary study on a patented intrauterine stent in the treatment of recurrent intrauterine adhesions with poor prognosis. Ann Transl Med 2020; 8(4): 57.
[http://dx.doi.org/10.21037/atm.2020.01.77] [PMID: 32175351]
[51]
Zheng F, Xin X, He F, Liu J, Cui Y. Meta-analysis on the use of hyaluronic acid gel to prevent intrauterine adhesion after intrauterine operations. Exp Ther Med 2020; 19(4): 2672-8.
[http://dx.doi.org/10.3892/etm.2020.8483] [PMID: 32256748]
[52]
Fei Z, Xin X, Fei H, Yuechong C. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur J Obstet Gynecol Reprod Biol 2020; 244: 1-4.
[http://dx.doi.org/10.1016/j.ejogrb.2019.10.018] [PMID: 31731019]
[53]
Lee DY, Lee SR, Kim SK, et al. A new thermo-responsive hyaluronic acid sol-gel to prevent intrauterine adhesions after hysteroscopic surgery: A randomized, non-inferiority trial. Yonsei Med J 2020; 61(10): 868-74.
[http://dx.doi.org/10.3349/ymj.2020.61.10.868] [PMID: 32975061]
[54]
Xiao S, Wan Y, Zou F, et al. Prevention of intrauterine adhesion with auto-crosslinked hyaluronic acid gel: A prospective, randomized, controlled clinical study. Zhonghua Fu Chan Ke Za Zhi 2015; 50(1): 32-6.
[PMID: 25877422]
[55]
Fei Z, Bin Z, Xin X, Fei H, Yuechong C. Meta-analysis on the use of hyaluronic acid gel to prevent recurrence of intrauterine adhesion after hysteroscopic adhesiolysis. Taiwan J Obstet Gynecol 2019; 58(6): 731-6.
[http://dx.doi.org/10.1016/j.tjog.2019.09.002] [PMID: 31759520]
[56]
Yan Y, Xu D. The effect of adjuvant treatment to prevent and treat intrauterine adhesions: A network meta-analysis of randomized controlled trials. J Minim Invasive Gynecol 2018; 25(4): 589-99.
[http://dx.doi.org/10.1016/j.jmig.2017.09.006] [PMID: 28893657]
[57]
Kowalski G, Kijowska K, Witczak M, Kuterasiński Ł, Łukasiewicz M. Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers (Basel) 2019; 11(1): 114.
[http://dx.doi.org/10.3390/polym11010114] [PMID: 30960098]
[58]
Xiong Y, Chen L, Liu P, et al. All-in-one: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor. Small 2022; 18(1): 2104229.
[http://dx.doi.org/10.1002/smll.202104229] [PMID: 34791802]
[59]
Ferroni L, Gardin C, D’Amora U, et al. Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch improve the regenerative properties of endothelial and dermal cells. Biomater Adv 2022; 139: 213000.
[http://dx.doi.org/10.1016/j.bioadv.2022.213000] [PMID: 35891601]
[60]
Wu F, Lei N, Yang S, et al. Treatment strategies for intrauterine adhesion: Focus on the exosomes and hydrogels. Front Bioeng Biotechnol 2023; 11: 1264006.
[http://dx.doi.org/10.3389/fbioe.2023.1264006] [PMID: 37720318]
[61]
Raina N, Pahwa R, Bhattacharya J, et al. Drug delivery strategies and biomedical significance of hydrogels: Translational considerations. Pharmaceutics 2022; 14(3): 574.
[http://dx.doi.org/10.3390/pharmaceutics14030574] [PMID: 35335950]
[62]
Chen L, Guo L, Chen F, et al. Transplantation of menstrual blood- derived mesenchymal stem cells (MbMSCs) promotes the regeneration of mechanical injuried endometrium. Am J Transl Res 2020; 12(9): 4941-54.
[PMID: 33042399]
[63]
Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: A phase I clinical trial. Stem Cell Res Ther 2018; 9(1): 192.
[http://dx.doi.org/10.1186/s13287-018-0904-3] [PMID: 29996892]
[64]
Martino S, D’Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv 2012; 30(1): 338-51.
[http://dx.doi.org/10.1016/j.biotechadv.2011.06.015] [PMID: 21740963]
[65]
Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9(416): eaam7828.
[http://dx.doi.org/10.1126/scitranslmed.aam7828] [PMID: 29141887]
[66]
Bergman RA. Uterine smooth muscle fibers in castrate and estrogen-treated rats. J Cell Biol 1968; 36(3): 639-48.
[http://dx.doi.org/10.1083/jcb.36.3.639] [PMID: 5645552]
[67]
Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 2016; 1(2): 93-108.
[http://dx.doi.org/10.1016/j.bioactmat.2016.11.001] [PMID: 28653043]
[68]
Jung Y, Park W, Park H, Lee DK, Na K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 2017; 156: 403-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.068] [PMID: 27842839]
[69]
Yang H, Wu S, Feng R, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Res Ther 2017; 8(1): 267.
[http://dx.doi.org/10.1186/s13287-017-0718-8] [PMID: 29157289]
[70]
Yao Q, Zheng YW, Lan QH, et al. Aloe/poloxamer hydrogel as an injectable β-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment. Eur J Pharm Sci 2020; 148: 105316.
[http://dx.doi.org/10.1016/j.ejps.2020.105316] [PMID: 32201342]
[71]
Xu HL, Xu J, Zhang SS, et al. Temperature-sensitive heparin-modified poloxamer hydrogel with affinity to KGF facilitate the morphologic and functional recovery of the injured rat uterus. Drug Deliv 2017; 24(1): 867-81.
[http://dx.doi.org/10.1080/10717544.2017.1333173] [PMID: 28574291]
[72]
Baggish MS, Pauerstein CJ, Woodruff JD. Role of stroma in regeneration of endometrial epithelium. Am J Obstet Gynecol 1967; 99(4): 459-65.
[http://dx.doi.org/10.1016/0002-9378(67)90291-8] [PMID: 6069261]
[73]
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: The first 10 years. Hum Reprod Update 2016; 22(2): 137-63.
[PMID: 26552890]
[74]
Xiao B, Yang W, Lei D, et al. PGS scaffolds promote the in vivo survival and directional differentiation of bone marrow mesenchymal stem cells restoring the morphology and function of wounded rat uterus. Adv Healthc Mater 2019; 8(5): 1801455.
[http://dx.doi.org/10.1002/adhm.201801455] [PMID: 30734535]
[75]
Han Y, Liu S, Mao H, Tian L, Ning W. Synthesis of novel temperature- and pH-sensitive ABA triblock copolymers P(DEAEMA- co-MEO2MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA): Micellization, sol–gel transitions, and sustained BSA release. Polymers (Basel) 2016; 8(11): 367.
[http://dx.doi.org/10.3390/polym8110367] [PMID: 30974672]
[76]
Wu Y, Xiang Y, Fang J, et al. The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Biosci Rep 2019; 39(1): BSR20181748.
[http://dx.doi.org/10.1042/BSR20181748] [PMID: 30606743]
[77]
Feng M, Hu S, Qin W, Tang Y, Guo R, Han L. Bioprinting of a blue light-cross-linked biodegradable hydrogel encapsulating amniotic mesenchymal stem cells for intrauterine adhesion prevention. ACS Omega 2021; 6(36): 23067-75.
[http://dx.doi.org/10.1021/acsomega.1c02117] [PMID: 34549107]
[78]
AAGL Elevating Gynecologic Surgery. AAGL practice report: Practice guidelines on intrauterine adhesions developed in collaboration with the European Society of Gynaecological Endoscopy (ESGE). Gynecol Surg 2017; 14(1): 6.
[http://dx.doi.org/10.1186/s10397-017-1007-3] [PMID: 28603474]
[79]
Wang L, Yu C, Chang T, et al. In situ repair abilities of human umbilical cord–derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion. Sci Adv 2020; 6(21): eaba6357.
[http://dx.doi.org/10.1126/sciadv.aba6357] [PMID: 32494750]
[80]
Movahedi M, Asefnejad A, Rafienia M, Khorasani MT. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Int J Biol Macromol 2020; 146: 627-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.233] [PMID: 31805327]
[81]
Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ. Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 2010; 6(2): 372-82.
[http://dx.doi.org/10.1016/j.actbio.2009.07.024] [PMID: 19632361]
[82]
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 2010; 144(1): 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[83]
Shamosi A, Mehrabani D, Azami M, et al. Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/ chitosan/bioglass nanofibrous scaffolds. Artif Cells Nanomed Biotechnol 2017; 45(1): 163-73.
[http://dx.doi.org/10.3109/21691401.2016.1138493] [PMID: 26878747]
[84]
Zhang E, Guo Q, Ji F, et al. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis. Acta Biomater 2018; 74: 439-53.
[http://dx.doi.org/10.1016/j.actbio.2018.05.037] [PMID: 29803006]
[85]
Tan Q, Xia D, Ying X. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion. Int J Stem Cells 2020; 13(3): 414-23.
[http://dx.doi.org/10.15283/ijsc20049] [PMID: 33250449]
[86]
Gupta A, Singh S. Potential role of growth factors controlled release in achieving enhanced neuronal trans-differentiation from mesenchymal stem cells for neural tissue repair and regeneration. Mol Neurobiol 2022; 59(2): 983-1001.
[http://dx.doi.org/10.1007/s12035-021-02646-w] [PMID: 34816381]
[87]
Lee AS, Inayathullah M, Lijkwan MA, et al. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nat Biomed Eng 2018; 2(2): 104-13.
[http://dx.doi.org/10.1038/s41551-018-0191-4] [PMID: 29721363]
[88]
Sato-Nishiuchi R, Li S, Ebisu F, Sekiguchi K. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biol 2018; 65: 75-90.
[http://dx.doi.org/10.1016/j.matbio.2017.08.001]
[89]
Feng G, Zhang J, Li Y, et al. IGF-1 C Domain–modified hydrogel enhances cell therapy for AKI. J Am Soc Nephrol 2016; 27(8): 2357-69.
[http://dx.doi.org/10.1681/ASN.2015050578] [PMID: 26869006]
[90]
Meng Q, Man Z, Dai L, et al. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration. Sci Rep 2015; 5(1): 17802.
[http://dx.doi.org/10.1038/srep17802] [PMID: 26632447]
[91]
Zhang C, Shang Y, Chen X, et al. Supramolecular nanofibers containing arginine-glycine-aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair. ACS Nano 2020; 14(9): 12133-47.
[http://dx.doi.org/10.1021/acsnano.0c05681] [PMID: 32790341]
[92]
Liu X, Wang X, Wang X, et al. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater 2013; 9(6): 6798-805.
[http://dx.doi.org/10.1016/j.actbio.2013.01.027] [PMID: 23380207]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy