Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Network Pharmacology, Molecular Docking, Molecular Dynamics to Explore the Mechanism of Danggui Shaoyao Powder for Hepatic Encephalopathy

Author(s): Miao Zhang, Rongxin Liu, Yusen Zhao, Zixin Chen, Honglin Zhai and Hongzong Si*

Volume 31, Issue 19, 2025

Published on: 20 January, 2025

Page: [1562 - 1582] Pages: 21

DOI: 10.2174/0113816128363445241218062155

Price: $65

TIMBC 2026
Abstract

Background: Patients with hepatic encephalopathy (HE) have many triggers and a high mortality rate. The protective effect of existing therapeutic drugs on the liver is weak. We found that Danggui Shaoyao Powder can improve the symptoms of HE and may have a better liver protection effect. And the mechanism of it is unclear.

Objective: The research explores the mechanism of Danggui Shaoyao Powder for the treatment of HE through network pharmacology, molecular docking and molecular dynamics.

Methods: Targets of Danggui Shaoyao Powder were screened from Traditional Chinese Medicine System Pharmacology Platform (TCMSP), SwissTargetPrediction, and Uniport. GeneCards was used to gain targets of HE. Further, core targets and ingredients were screened by protein-protein interaction network (PPI) and herbs-compounds-targets network. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were completed to screen relative sites and signaling pathways. Molecular docking and dynamics were used to show the stability of ligand-receptor complexes.

Results: IL6, SRC and kaempferol, beta-sitosterol were screened as the top two core targets and ingredients. Dendrites, dendritic trees, and membrane sides were defined as the main sites of action. Core signaling pathways were screened such as: PI3K-Akt and MAPK. Molecular docking shows well-defined binding sites and the stability of the binding is demonstrated by molecular dynamics.

Conclusion: Through this study, Danggui Shaoyao Powder may act on IL6, SRC, and other targets through ingredients such as kaempferol and beat-sitosterol and regulate signaling pathways such as PI3K-Akt, MAPK and NF-κB to the treatment of HE.

Keywords: Network pharmacology, Danggui Shaoyao Powder, neuroinflammation, hepatic encephalopathy, molecular docking, molecular dynamics.

« Previous
[1]
Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis: Aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol 2023; 20(6): 388-98.
[http://dx.doi.org/10.1038/s41575-023-00759-2] [PMID: 36977794]
[2]
Tasnim S, Hazam R, Dave D, et al. Reversible decerebrate posture in hepatic encephalopathy: Case report and literature review. Cureus 2022; 14(2): e21960.
[http://dx.doi.org/10.7759/cureus.219602]
[3]
Mansour SZ, El-Marakby SM, Moawed FSM. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation. J Photochem Photobiol B 2017; 172: 20-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.005] [PMID: 28505498]
[4]
Vaquero J, Polson J, Chung C, et al. Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterology 2003; 125(3): 755-64.
[http://dx.doi.org/10.1016/S0016-5085(03)01051-5] [PMID: 12949721]
[5]
Klintman D, Li X, Santen S, Schramm R, Jeppsson B, Thorlacius H. p38 mitogen-activated protein kinase-dependent chemokine production, leukocyte recruitment, and hepatocellular apoptosis in endotoxemic liver injury. Ann Surg 2005; 242(6): 830-9.
[http://dx.doi.org/10.1097/01.sla.0000189132.86878.f7] [PMID: 16327493]
[6]
Corbalán R, Hernández-Viadel M, Llansola M, Montoliu C, Felipo V. Chronic hyperammonemia alters protein phosphorylation and glutamate receptor-associated signal transduction in brain. Neurochem Int 2002; 41(2-3): 103-8.
[http://dx.doi.org/10.1016/S0197-0186(02)00030-X] [PMID: 12020610]
[7]
Chen L, Zhang L, Hua H, Liu L, Mao Y, Wang R. Interactions between toll‐like receptors signaling pathway and gut microbiota in host homeostasis. Immun Inflamm Dis 2024; 12(7): e1356.
[http://dx.doi.org/10.1002/iid3.1356] [PMID: 39073297]
[8]
Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European association for the study of the liver and the American association for the study of liver diseases. J Hepatol 2014; 61(3): 642-59.
[http://dx.doi.org/10.1016/j.jhep.2014.05.042] [PMID: 25015420]
[9]
Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice guideline by the American Association for the study of liver diseases and the European Association for the study of the liver. Hepatology 2014; 60(2): 715-35.
[http://dx.doi.org/10.1002/hep.27210] [PMID: 25042402]
[10]
Rahimi RS, Brown KA, Flamm SL, Brown RS Jr. Overt hepatic encephalopathy: Current pharmacologic treatments and improving clinical outcomes. Am J Med 2021; 134(11): 1330-8.
[http://dx.doi.org/10.1016/j.amjmed.2021.06.007] [PMID: 34242619]
[11]
Kurtz CB, Millet YA, Puurunen MK, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 2019; 11(475): eaau7975.
[http://dx.doi.org/10.1126/scitranslmed.aau7975] [PMID: 30651324]
[12]
Yupei L, Tingshuai W, Xiaoping L, et al. Research progress of TCM improving neuroinflammation and prevent hepatic encephalopathy by regulating NF-κB signaling pathway. China J Chin Med 2023; 38(08): 1606-13.
[13]
Wan L, Jiang JG. Protective effects of plant-derived flavonoids on hepatic injury. J Funct Foods 2018; 44: 283-91.
[http://dx.doi.org/10.1016/j.jff.2018.03.015]
[14]
Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145: 691-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.011] [PMID: 29353722]
[15]
Li N, Yu Y, Cui X, Liu Q, Xiong H. High‐throughput UPLC‐Q‐TOF‐MS/MS coupled with multivariable data processing approach for the rapid screening and characterization of chemical constituents and potential bioactive compounds from Danggui Shaoyao San. Biomed Chromatogr 2022; 36(9): e5420.
[http://dx.doi.org/10.1002/bmc.5420] [PMID: 35638160]
[16]
Wu Q, Chen Y, Gu Y, et al. Systems pharmacology-based approach to investigate the mechanisms of Danggui-Shaoyao-san prescription for treatment of Alzheimer’s disease. BMC Complement Med Ther 2020; 20(1): 282.
[http://dx.doi.org/10.1186/s12906-020-03066-4] [PMID: 32948180]
[17]
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2(1): 1-9.
[18]
Yin J, Lu J, Lei P, et al. Danggui-Shaoyao-San improves gut microbia dysbiosis and hepatic lipid homeostasis in fructose-fed rats. Front Pharmacol 2021; 12: 671708.
[http://dx.doi.org/10.3389/fphar.2021.671708] [PMID: 34326769]
[19]
Zhao Y, Zhao M, Wang Z, Zhao C, Zhang Y, Wang M. Danggui Shaoyao San: Chemical characterization and inhibition of oxidative stress and inflammation to treat CCl4-induced hepatic fibrosis. J Ethnopharmacol 2024; 318: 116870.
[http://dx.doi.org/10.1016/j.jep.2023.116870]
[20]
Wang C-Y, Xu F, Wang M-Y, et al. Study on intervention effect of Danggui Shaoyao San on rats with cirrhotic ascites. J Chin materia medica 2013; 38(6): 871-4.
[PMID: 23717970]
[21]
Noor F, Asif M, Ashfaq UA, Qasim M, Tahir ul Qamar M. Machine learning for synergistic network pharmacology: A comprehensive overview. Brief Bioinform 2023; 24(3): bbad120.
[http://dx.doi.org/10.1093/bib/bbad120] [PMID: 37031957]
[22]
Liu Y, Li X, Chen C, Ding N, Ma S, Yang M. Exploration of compatibility rules and discovery of active ingredients in TCM formulas by network pharmacology. Chin Herb Med 2024; 16(4): 572-88.
[http://dx.doi.org/10.1016/j.chmed.2023.09.008]
[23]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[24]
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. Swiss target prediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014; 42(W1): W32-8.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[25]
Safran M, Chalifa-Caspi V, Shmueli O, et al. Human gene-centric databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res 2003; 31(1): 142-6.
[http://dx.doi.org/10.1093/nar/gkg050] [PMID: 12519968]
[26]
Safran M, Dalah I, Alexander J, et al. GeneCards version 3: The human gene integrator. Database (Oxford) 2010; 2010: baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[27]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[28]
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape string app: Network analysis and visualization of proteomics data. J Proteome Res 2019; 18(2): 623-32.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[29]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[30]
Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 2017; 7(2): e1298.
[http://dx.doi.org/10.1002/wcms.1298]
[31]
Fang C, Luo J, Fu S, et al. The active mechanism of Caryophylliti Flos- Kaki Calyx on esophageal cancer based on network pharmacology and molecular docking. J Tradit Chin Med Sci 2020; 31(3): 315-23.
[32]
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26(16): 1701-18.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[33]
Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995; 91(1-3): 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[34]
Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Model 2001; 7(8): 306-17.
[http://dx.doi.org/10.1007/s008940100045]
[35]
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4(3): 435-47.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[36]
Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013; 29(7): 845-54.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[37]
Pall S, Abraham MJ, Kutzner C, Hess B, Lindahl E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014. Stockholm, Sweden, 2015, pp. 3-2
[http://dx.doi.org/10.1007/978-3-319-15976-8_1]
[38]
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1-2: 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[39]
Kim S, Lee J, Jo S, Brooks CL III, Lee HS, Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem 2017; 38(21): 1879-86.
[http://dx.doi.org/10.1002/jcc.24829] [PMID: 28497616]
[40]
Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 1992; 13(8): 952-62.
[http://dx.doi.org/10.1002/jcc.540130805]
[41]
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103(19): 8577-93.
[http://dx.doi.org/10.1063/1.470117]
[42]
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 1997; 18(12): 1463-72.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H]
[43]
Lanka G, Begum D, Banerjee S, Adhikari N, P Y, Ghosh B. Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors. Comput Biol Med 2023; 166: 107481.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107481] [PMID: 37741229]
[44]
Banerjee S, Jana S, Jha T, Ghosh B, Adhikari N. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches. Comput Biol Chem 2024; 110: 108051.
[http://dx.doi.org/10.1016/j.compbiolchem.2024.108051] [PMID: 38520883]
[45]
Suvarna E, Setlur AS, K C, M S, Niranjan V. Computational molecular perspectives on novel carbazole derivative as an anti-cancer molecule against CDK1 of breast and colorectal cancers via gene expression studies, novel two-way docking strategies, molecular mechanics and dynamics. Comput Biol Chem 2024; 108: 107979.
[http://dx.doi.org/10.1016/j.compbiolchem.2023.107979] [PMID: 37989072]
[46]
Singh A, Munshi S, Raghavan V. Effect of external electric field stress on gliadin protein conformation. Proteomes 2013; 1(2): 25-39.
[http://dx.doi.org/10.3390/proteomes1020025] [PMID: 28250397]
[47]
Srivastava HK, Sastry GN. Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives. J Biomol Struct Dyn 2013; 31(5): 522-37.
[http://dx.doi.org/10.1080/07391102.2012.703071] [PMID: 22877232]
[48]
Golyshev VM, Pyshnyi DV, Lomzov AA. Calculation of energy for RNA/RNA and DNA/RNA duplex formation by molecular dynamics simulation. Mol Biol (Mosk) 2021; 55(6): 1030-44.
[PMID: 34837707]
[49]
Jana S, Banerjee S, Baidya SK, et al. A combined ligand-based and structure-based in silico molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors. J Biomol Struct Dyn 2023; 1-7.
[PMID: 38165455]
[50]
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: A ligand-based molecular modelling approach validated by molecular dynamics simulation analysis. SAR QSAR Environ Res 2024; 35(8): 665-92.
[http://dx.doi.org/10.1080/1062936X.2024.2389822] [PMID: 39193767]
[51]
Papaleo E, Mereghetti P, Fantucci P, Grandori R, De Gioia L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J Mol Graph Model 2009; 27(8): 889-99.
[http://dx.doi.org/10.1016/j.jmgm.2009.01.006] [PMID: 19264523]
[52]
Raghavan SS, Iqbal S, Ayyadurai N, Gunasekaran K. Insights in the structural understanding of amyloidogenicity and mutation-led conformational dynamics of amyloid beta (Aβ) through molecular dynamics simulations and principal component analysis. J Biomol Struct Dyn 2022; 40(12): 5577-87.
[http://dx.doi.org/10.1080/07391102.2021.1871955] [PMID: 33438527]
[53]
Fan CZ. Class of kNN-Type entropy estimators: Algorithm, convergence, and application to molecular modeling [Thesis] University of California San Diego 2021.
[54]
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches. SAR QSAR Environ Res 2023; 34(10): 805-30.
[http://dx.doi.org/10.1080/1062936X.2023.2261842] [PMID: 37850742]
[55]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[56]
Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 2018; 46(W1): W257-63.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[57]
Amin S, Adhikari N, Agrawal R, Jha T, Gayen S. Possible binding mode analysis of pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches. Lett Drug Des Discov 2017; 14(5): 515-27.
[http://dx.doi.org/10.2174/1570180813666160916153017]
[58]
Clark M, Cramer RD III, Van Opdenbosch N. Validation of the general purpose tripos 5.2 force field. J Comput Chem 1989; 10(8): 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[59]
Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[60]
Prašnikar E, Ljubič M, Perdih A, Borišek J. Machine learning heralding a new development phase in molecular dynamics simulations. Artif Intell Rev 2024; 57(4): 102.
[http://dx.doi.org/10.1007/s10462-024-10731-4]
[61]
Šponer J, Krepl M, Banáš P, et al. How to understand atomistic molecular dynamics simulations of RNA and protein– RNA complexes? Wiley Interdiscip Rev RNA 2017; 8(3): e1405.
[http://dx.doi.org/10.1002/wrna.1405] [PMID: 27863061]
[62]
Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res 2000; 33(12): 889-97.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[63]
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10(5): 449-61.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[64]
Tachibana T, Kitamura S, Kato M, et al. Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm Res 2010; 27(3): 442-6.
[http://dx.doi.org/10.1007/s11095-009-0026-9] [PMID: 20135207]
[65]
Saha S, Buttari B, Profumo E, Saso L. Macrotyloma uniflorum extract counteracts oxidative imbalance induced in vitro by sodium oxalate in the rat kidney: In silico prediction of quercetin and kaempferol superiority among fitocomponents J Biol Regul Homeost Agents 2023; 37(7): 3929-40.
[66]
Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 2004; 308(3): 965-74.
[http://dx.doi.org/10.1124/jpet.103.060137] [PMID: 14634042]
[67]
Kibble H, Shawcross DL. The assessment and management of cirrhotic patients with encephalopathy. United European Gastroenterol J 2024; 12(2): 187-93.
[http://dx.doi.org/10.1002/ueg2.12530] [PMID: 38180440]
[68]
Zhang C, Wei L, Wang J, Song W. Protective effects of modified Danggui Shaoyao San on con a-induced immunological liver injury in mice. Pharmacol Clinic Chin Materia Medica 2019; 35(6): 11-5.
[69]
Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity 2019; 50(4): 1007-23.
[http://dx.doi.org/10.1016/j.immuni.2019.03.026] [PMID: 30995492]
[70]
Shriki A, Lanton T, Sonnenblick A, et al. Multiple roles of IL6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis. Cancer Res 2021; 81(18): 4766-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0321] [PMID: 34117031]
[71]
Chou CC, Hua KT, Chen MW, et al. Discovery and characterization of a monoclonal antibody targeting a conformational epitope of IL-6/IL-6Rα to inhibit IL-6/ IL-6Rα /gp130 hexameric signaling complex formation. MAbs 2022; 14(1): 2029675.
[http://dx.doi.org/10.1080/19420862.2022.2029675] [PMID: 35133941]
[72]
Casella G, Garzetti L, Gatta AT, et al. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J Neuroinflammation 2016; 13(1): 139.
[http://dx.doi.org/10.1186/s12974-016-0596-5] [PMID: 27266518]
[73]
Chesworth R, Gamage R, Ullah F, et al. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Front Neurosci 2021; 15: 699329.
[http://dx.doi.org/10.3389/fnins.2021.699329] [PMID: 34393713]
[74]
Sancho-Alonso M, Arenas YM, Izquierdo-Altarejos P, Martinez-Garcia M, Llansola M, Felipo V. Enhanced activation of the S1PR2-IL-1β-Src-BDNF-TrkB pathway mediates neuroinflammation in the hippocampus and cognitive impairment in hyperammonemic rats. Int J Mol Sci 2023; 24(24): 17251.
[http://dx.doi.org/10.3390/ijms242417251] [PMID: 38139078]
[75]
Jia G, Wang R, Yue Y, Dai H. Activation of protein kinase cδ contributes to the induction of Src/EGF receptor/ERK signaling in ammonia-treated astrocytes. J Mol Neurosci 2020; 70(7): 1110-9.
[http://dx.doi.org/10.1007/s12031-020-01517-8] [PMID: 32125625]
[76]
Huang Y, Wang ZL, He Y, Ye LM, Guo WQ, Zhang JJ. Jiawei Taohe Chengqi decoction attenuates hepatic fibrosis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway. J Ethnopharmacol 2023; 305: 116059.
[http://dx.doi.org/10.1016/j.jep.2022.116059] [PMID: 36549368]
[77]
Brown RB. Dysregulated phosphate metabolism in autism spectrum disorder: Associations and insights for future research. Expert Rev Mol Med 2023; 25: e20.
[http://dx.doi.org/10.1017/erm.2023.15] [PMID: 37309057]
[78]
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. J Neuroinflammation 2021; 18(1): 276.
[http://dx.doi.org/10.1186/s12974-021-02325-6] [PMID: 34838047]
[79]
Yang Y, Jia X, Qu M, et al. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023; 9(6): e17116.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17116] [PMID: 37484431]
[80]
Min J, Zheng H, Xia H, et al. Ruxolitinib attenuates microglial inflammatory response by inhibiting NF-κB/MAPK signaling pathway. Eur J Pharmacol 2024; 968: 176403.
[http://dx.doi.org/10.1016/j.ejphar.2024.176403] [PMID: 38354846]
[81]
Shu M, Huang D, Hung Z, Hu X, Zhang S. Inhibition of MAPK and NF-κB signaling pathways alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in Toll-like receptor 5 (TLR5) deficiency mice. Biochem Biophys Res Commun 2016; 471(1): 233-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.119] [PMID: 26845355]
[82]
Arenas YM, López-Gramaje A, Montoliu C, Llansola M, Felipo V. Increased levels and activation of the IL-17 receptor in microglia contribute to enhanced neuroinflammation in cerebellum of hyperammonemic rats. Biol Res 2024; 57(1): 18.
[http://dx.doi.org/10.1186/s40659-024-00504-2] [PMID: 38671534]
[83]
Shawcross DL, Wright GAK, Stadlbauer V, et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 2008; 48(4): 1202-12.
[http://dx.doi.org/10.1002/hep.22474] [PMID: 18697192]
[84]
Arenas YM, Felipo V. Sustained Hyperammonemia activates NF-κB in purkinje neurons through activation of the TrkB-PI3K-AKT pathway by microglia-derived BDNF in a rat model of minimal hepatic encephalopathy. Mol Neurobiol 2023; 60(6): 3071-85.
[http://dx.doi.org/10.1007/s12035-023-03264-4] [PMID: 36790604]
[85]
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42(2): e3964.
[http://dx.doi.org/10.1002/cbf.3964] [PMID: 38439154]
[86]
Lee C, Yoon S, Moon JO. Kaempferol suppresses carbon tetrachloride-induced liver damage in rats via the MAPKs/NF-κB and AMPK/Nrf2 signaling pathways. Int J Mol Sci 2023; 24(8): 6900.
[http://dx.doi.org/10.3390/ijms24086900]
[87]
Campbell JS, Argast GM, Yuen SY, Hayes B, Fausto N. Inactivation of p38 MAPK during liver regeneration. Int J Biochem Cell Biol 2011; 43(2): 180-8.
[http://dx.doi.org/10.1016/j.biocel.2010.08.002] [PMID: 20708092]
[88]
Rajendran P, Ammar RB, Al-Saeedi FJ, et al. Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-mediated Nrf2 signaling pathway: In vitro and in vivo studies. Int J Mol Sci 2020; 22(1): 217.
[http://dx.doi.org/10.3390/ijms22010217] [PMID: 33379332]
[89]
Liu Z, Yao X, Sun B, et al. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 2021; 168: 142-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.037] [PMID: 33823244]
[90]
Miszczuk E, Bajguz A, Kiraga Ł, Crowley K, Chłopecka M. Phytosterols and the digestive system: A review study from insights into their potential health benefits and safety. Pharmaceuticals 2024; 17(5): 557.
[http://dx.doi.org/10.3390/ph17050557] [PMID: 38794127]
[91]
Zheng Y, Zhao J, Chang S, et al. β-Sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway. J Neuroimmune Pharmacol 2023; 18(4): 690-703.
[http://dx.doi.org/10.1007/s11481-023-10091-w] [PMID: 38041701]
[92]
El-Shoura EAM, Abdelzaher LA, Mahmoud NI, et al. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int Immunopharmacol 2024; 140: 112904.
[http://dx.doi.org/10.1016/j.intimp.2024.112904]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy