Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Smart Applications of Lanthanide Chelates-based Luminescent Probes in Bio-imaging

Author(s): Maria Chiara Santangelo, Leonardo Lucchesi, Leonardo Papa, Annachiara Rossi, Gaia Egizzo, Giusy Laura Fratello, Lucilla Favero, Mauro Pineschi, Valeria Di Bussolo* and Sebastiano Di Pietro*

Volume 25, Issue 7, 2025

Published on: 29 January, 2025

Page: [505 - 520] Pages: 16

DOI: 10.2174/0113895575350677250101060606

Price: $65

TIMBC 2026
Abstract

Luminescent Lanthanide (III) (Ln (III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln (III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln (III) ions, both in the visible and NIR region, this mini-review is application-driven: it is a small collection of particularly interesting examples where the LLB’s emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).

Keywords: Lanthanide chelate, molecular probe, bio-imaging, luminescent lanthanide bioprobe, fluorescence lifetime imaging microscopy, europium, terbium, ytterbium.

Next »
Graphical Abstract
[1]
Aulsebrook, M.L.; Graham, B.; Grace, M.R.; Tuck, K.L. Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord. Chem. Rev., 2018, 375, 191-220.
[http://dx.doi.org/10.1016/j.ccr.2017.11.018]
[2]
Hewitt, S.H.; Butler, S.J. Application of lanthanide luminescence in probing enzyme activity. Chem. Commun., 2018, 54(50), 6635-6647.
[http://dx.doi.org/10.1039/C8CC02824A] [PMID: 29790500]
[3]
Qiu, X.; Xu, J.; Cardoso Dos Santos, M.; Hildebrandt, N. Multiplexed biosensing and bioimaging using lanthanide-based time-gated forster resonance energy transfer. Acc. Chem. Res., 2022, 55(4), 551-564.
[http://dx.doi.org/10.1021/acs.accounts.1c00691] [PMID: 35084817]
[4]
Sculimbrene, B.R.; Imperiali, B. Lanthanide-binding tags as luminescent probes for studying protein interactions. J. Am. Chem. Soc., 2006, 128(22), 7346-7352.
[http://dx.doi.org/10.1021/ja061188a] [PMID: 16734490]
[5]
Huang, C.; Li, T.; Liang, J.; Huang, H.; Zhang, P.; Banerjee, S. Recent advances in endoplasmic reticulum targeting metal complexes. Coord. Chem. Rev., 2020, 408, 213178.
[http://dx.doi.org/10.1016/j.ccr.2020.213178]
[6]
Reddy, M.L.P.; Bejoymohandas, K.S.; Divya, V. Luminescent lanthanide coordination compounds as potential mitochondria-targeting probes: Molecular engineering to bioimaging. Dyes Pigments, 2022, 205, 110528.
[http://dx.doi.org/10.1016/j.dyepig.2022.110528]
[7]
Parker, D.; Dickins, R.S.; Puschmann, H.; Crossland, C.; Howard, J.A.K. Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem. Rev., 2002, 102(6), 1977-2010.
[http://dx.doi.org/10.1021/cr010452+] [PMID: 12059260]
[8]
Piñol, R.; Zeler, J.; Brites, C.D.S.; Gu, Y.; Téllez, P.; Carneiro Neto, A.N.; da Silva, T.E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A.I.; Martinez-Lostao, L.; Martínez, A.; Carlos, L.D.; Millán, A. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles. Nano Lett., 2020, 20(9), 6466-6472.
[http://dx.doi.org/10.1021/acs.nanolett.0c02163] [PMID: 32787172]
[9]
Parker, D.; Fradgley, J.D.; Wong, K.L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev., 2021, 50(14), 8193-8213.
[http://dx.doi.org/10.1039/D1CS00310K] [PMID: 34075982]
[10]
Hasegawa, M.; Ohmagari, H.; Tanaka, H.; Machida, K. Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. J. Photochem. Photobiol. Photochem. Rev., 2022, 50, 100484.
[http://dx.doi.org/10.1016/j.jphotochemrev.2022.100484]
[11]
Moore, E.G.; Samuel, A.P.S.; Raymond, K.N. From antenna to assay: Lessons learned in lanthanide luminescence. Acc. Chem. Res., 2009, 42(4), 542-552.
[http://dx.doi.org/10.1021/ar800211j] [PMID: 19323456]
[12]
Charbonnière, L.; Mameri, S.; Kadjane, P.; Platas-Iglesias, C.; Ziessel, R. Tuning the coordination sphere around highly luminescent lanthanide complexes. Inorg. Chem., 2008, 47(9), 3748-3762.
[http://dx.doi.org/10.1021/ic702472n] [PMID: 18393412]
[13]
Thibon, A.; Pierre, V.C. Principles of responsive lanthanide-based luminescent probes for cellular imaging. Anal. Bioanal. Chem., 2009, 394(1), 107-120.
[http://dx.doi.org/10.1007/s00216-009-2683-2] [PMID: 19283368]
[14]
Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev., 2015, 295, 1-45.
[http://dx.doi.org/10.1016/j.ccr.2015.02.015]
[15]
Wickramaratne, T.M.; Pierre, V.C. Turning an aptamer into a light-switch probe with a single bioconjugation. Bioconjug. Chem., 2015, 26(1), 63-70.
[http://dx.doi.org/10.1021/bc5003899] [PMID: 25427946]
[16]
Cotton, S. The Lanthanide Elements and Simple Binary Compounds In: Lanthanide and Actinide Chemistry; , 2006; pp. 23-33.
[17]
Ligner, G.; Mohan, R.; Knittel, S.; Duportail, G. Hypersensitivity of terbium and europium ions luminescence in biological substrates. Spectrochim. Acta A, 1990, 46(5), 797-802.
[http://dx.doi.org/10.1016/0584-8539(90)80037-Y]
[18]
Shuvaev, S.; Starck, M.; Parker, D. Responsive, water‐soluble europium (III) luminescent probes. Chemistry, 2017, 23(42), 9974-9989.
[http://dx.doi.org/10.1002/chem.201700567] [PMID: 28471496]
[19]
Heffern, M.C.; Matosziuk, L.M.; Meade, T.J. Lanthanide probes for bioresponsive imaging. Chem. Rev., 2014, 114(8), 4496-4539.
[http://dx.doi.org/10.1021/cr400477t] [PMID: 24328202]
[20]
Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev., 2010, 254(5-6), 487-505.
[http://dx.doi.org/10.1016/j.ccr.2009.07.025]
[21]
Bünzli, J-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev., 2015, 293-294, 19-47.
[http://dx.doi.org/10.1016/j.ccr.2014.10.013]
[22]
Butler, S.J.; Parker, D. Anion binding in water at lanthanide centres: From structure and selectivity to signalling and sensing. Chem. Soc. Rev., 2013, 42(4), 1652-1666.
[http://dx.doi.org/10.1039/C2CS35144G] [PMID: 22760156]
[23]
Xu, B.; Tang, X.; Zhou, J.; Chen, W.; Liu, H.; Ju, Z.; Liu, W. A “turn-on” lanthanide complex chemosensor for recognition of lead(II) based on the formation of nanoparticles. Dalton Trans., 2016, 45(47), 18859-18866.
[http://dx.doi.org/10.1039/C6DT02835G] [PMID: 27722522]
[24]
Comby, S.; Tuck, S.A.; Truman, L.K.; Kotova, O.; Gunnlaugsson, T. New trick for an old ligand! The sensing of Zn(II) using a lanthanide based ternary Yb(III)-cyclen-8-hydroxyquinoline system as a dual emissive probe for displacement assay. Inorg. Chem., 2012, 51(19), 10158-10168.
[http://dx.doi.org/10.1021/ic300697w] [PMID: 22974321]
[25]
Pershagen, E.; Nordholm, J.; Borbas, K.E. Luminescent lanthanide complexes with analyte-triggered antenna formation. J. Am. Chem. Soc., 2012, 134(24), 9832-9835.
[http://dx.doi.org/10.1021/ja3004045] [PMID: 22339236]
[26]
Montgomery, C.P.; Murray, B.S.; New, E.J.; Pal, R.; Parker, D. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc. Chem. Res., 2009, 42(7), 925-937.
[http://dx.doi.org/10.1021/ar800174z] [PMID: 19191558]
[27]
Malikidogo, K.P.; Charnay, T.; Ndiaye, D.; Choi, J.H.; Bridou, L.; Chartier, B.; Erbek, S.; Micouin, G.; Banyasz, A.; Maury, O.; Martel-Frachet, V.; Grichine, A.; Sénèque, O. Efficient cytosolic delivery of luminescent lanthanide bioprobes in live cells for two-photon microscopy. Chem. Sci., 2024, 15(25), 9694-9702.
[http://dx.doi.org/10.1039/D4SC00896K] [PMID: 38939128]
[28]
Walton, J.W.; Bourdolle, A.; Butler, S.J.; Soulie, M.; Delbianco, M.; McMahon, B.K.; Pal, R.; Puschmann, H.; Zwier, J.M.; Lamarque, L.; Maury, O.; Andraud, C.; Parker, D. Very bright europium complexes that stain cellular mitochondria. Chem. Commun., 2013, 49(16), 1600-1602.
[http://dx.doi.org/10.1039/c2cc35247h] [PMID: 23336102]
[29]
Liu, M.; Ye, Z.; Xin, C.; Yuan, J. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes. Anal. Chim. Acta, 2013, 761, 149-156.
[http://dx.doi.org/10.1016/j.aca.2012.11.025] [PMID: 23312326]
[30]
Tang, Z.; Song, B.; Ma, H.; Shi, Y.; Yuan, J. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper(II)-coupled lanthanide complexes. Anal. Chim. Acta, 2019, 1049, 152-160.
[http://dx.doi.org/10.1016/j.aca.2018.10.048] [PMID: 30612646]
[31]
Song, C.; Ye, Z.; Wang, G.; Yuan, J.; Guan, Y. A lanthanide-complex-based ratiometric luminescent probe specific for peroxynitrite. Chemistry, 2010, 16(22), 6464-6472.
[http://dx.doi.org/10.1002/chem.201000528] [PMID: 20486239]
[32]
Li, L.; Bhatia, M.; Zhu, Y.Z.; Zhu, Y.C.; Ramnath, R.D.; Wang, Z.J.; Anuar, F.B.M.; Whiteman, M.; Salto-Tellez, M.; Moore, P.K. Hydrogen sulfide is a novel mediator of lipopolysaccharide‐induced inflammation in the mouse. FASEB J., 2005, 19(9), 1196-1198.
[http://dx.doi.org/10.1096/fj.04-3583fje] [PMID: 15863703]
[33]
Tang, Z.; Song, B.; Zhang, W.; Guo, L.; Yuan, J. Precise monitoring of drug-induced kidney injury using an endoplasmic reticulum-targetable ratiometric time-gated luminescence probe for superoxide anions. Anal. Chem., 2019, 91(21), 14019-14028.
[http://dx.doi.org/10.1021/acs.analchem.9b03602] [PMID: 31578849]
[34]
Dai, Z.; Tian, L.; Ye, Z.; Song, B.; Zhang, R.; Yuan, J. A lanthanide complex-based ratiometric luminescence probe for time-gated luminescence detection of intracellular thiols. Anal. Chem., 2013, 85(23), 11658-11664.
[http://dx.doi.org/10.1021/ac403370g] [PMID: 24187960]
[35]
Xue, B.; Brown, C.J.; Dunker, A.K.; Uversky, V.N. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta. Proteins Proteomics, 2013, 1834(4), 725-738.
[http://dx.doi.org/10.1016/j.bbapap.2013.01.012] [PMID: 23352836]
[36]
Klotman, P.E.; Boatman, J.E.; Volpp, B.D.; Baker, J.D.; Yarger, W.E. Captopril enhances aminoglycoside nephrotoxicity in potassium-depleted rats. Kidney Int., 1985, 28(2), 118-127.
[http://dx.doi.org/10.1038/ki.1985.130] [PMID: 2422431]
[37]
Al-Qarawi, A.A.; Abdel-Rahman, H.; Mousa, H.M.; Ali, B.H.; El-Mougy, S.A. Nephroprotective action of Phoenix dactylifera. in gentamicin-induced nephrotoxicity. Pharm. Biol., 2008, 46(4), 227-230.
[http://dx.doi.org/10.1080/13880200701739322]
[38]
Bui, A.T.; Grichine, A.; Duperray, A.; Lidon, P.; Riobé, F.; Andraud, C.; Maury, O. Terbium (III) luminescent complexes as millisecond-scale viscosity probes for lifetime imaging. J. Am. Chem. Soc., 2017, 139(23), 7693-7696.
[http://dx.doi.org/10.1021/jacs.7b02951] [PMID: 28551987]
[39]
Bui, A.T.; Grichine, A.; Brasselet, S.; Duperray, A.; Andraud, C.; Maury, O. Unexpected efficiency of a luminescent samarium (III) complex for combined visible and near‐infrared biphotonic microscopy. Chemistry, 2015, 21(49), 17757-17761.
[http://dx.doi.org/10.1002/chem.201503711] [PMID: 26489885]
[40]
Walter, E.R.H.; Williams, J.A.G.; Parker, D. Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence. Chem. Commun., 2017, 53(100), 13344-13347.
[http://dx.doi.org/10.1039/C7CC08361K] [PMID: 29189843]
[41]
Zubenko, G.S.; Kopp, U.; Seto, T.; Firestone, L.L. Platelet membrane fluidity individuals at risk for Alzheimer’s disease: A comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology, 1999, 145(2), 175-180.
[http://dx.doi.org/10.1007/s002130051046] [PMID: 10463318]
[42]
Choi, J.H.; Fremy, G.; Charnay, T.; Fayad, N.; Pécaut, J.; Erbek, S.; Hildebrandt, N.; Martel-Frachet, V.; Grichine, A.; Sénèque, O. Luminescent peptide/lanthanide (III) complex conjugates with push–pull antennas: Application to one- and two-photon microscopy imaging. Inorg. Chem., 2022, 61(50), 20674-20689.
[http://dx.doi.org/10.1021/acs.inorgchem.2c03646] [PMID: 36475655]
[43]
Pal, R.; Parker, D. A ratiometric optical imaging probe for intracellular pH based on modulation of europium emission. Org. Biomol. Chem., 2008, 6(6), 1020-1033.
[http://dx.doi.org/10.1039/b718993a] [PMID: 18327327]
[44]
Hamon, N.; Roux, A.; Beyler, M.; Mulatier, J.C.; Andraud, C.; Nguyen, C.; Maynadier, M.; Bettache, N.; Duperray, A.; Grichine, A.; Brasselet, S.; Gary-Bobo, M.; Maury, O.; Tripier, R. Pyclen-based Ln (III) complexes as highly luminescent bioprobes for in vitro and in vivo one-and two-photon bioimaging applications. J. Am. Chem. Soc., 2020, 142(22), 10184-10197.
[http://dx.doi.org/10.1021/jacs.0c03496] [PMID: 32368907]
[45]
LaRochelle, J.R.; Cobb, G.B.; Steinauer, A.; Rhoades, E.; Schepartz, A. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain penta-arg proteins and stapled peptides. J. Am. Chem. Soc., 2015, 137(7), 2536-2541.
[http://dx.doi.org/10.1021/ja510391n] [PMID: 25679876]
[46]
Appelbaum, J.S.; LaRochelle, J.R.; Smith, B.A.; Balkin, D.M.; Holub, J.M.; Schepartz, A. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem. Biol., 2012, 19(7), 819-830.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.022] [PMID: 22840770]
[47]
Marks, J.R.; Placone, J.; Hristova, K.; Wimley, W.C. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J. Am. Chem. Soc., 2011, 133(23), 8995-9004.
[http://dx.doi.org/10.1021/ja2017416] [PMID: 21545169]
[48]
Macchi, S.; Signore, G.; Boccardi, C.; Di Rienzo, C.; Beltram, F.; Cardarelli, F. Spontaneous membrane-translocating peptides: influence of peptide self-aggregation and cargo polarity. Sci. Rep., 2015, 5(1), 16914.
[http://dx.doi.org/10.1038/srep16914] [PMID: 26567719]
[49]
Starck, M.; Fradgley, J.D.; Di Vita, S.; Mosely, J.A.; Pal, R.; Parker, D. Targeted luminescent europium peptide conjugates: Comparative analysis using maleimide and para-nitropyridyl linkages for organelle staining. Bioconjug. Chem., 2020, 31(2), 229-240.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00735] [PMID: 31751113]
[50]
O’Malley, W.I.; Abdelkader, E.H.; Aulsebrook, M.L.; Rubbiani, R.; Loh, C.T.; Grace, M.R.; Spiccia, L.; Gasser, G.; Otting, G.; Tuck, K.L.; Graham, B. Luminescent alkyne-bearing terbium (III) complexes and their application to bioorthogonal protein labeling. Inorg. Chem., 2016, 55(4), 1674-1682.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02605] [PMID: 26821062]
[51]
Leygue, N.; Picard, C.; Faure, P.; Bourrier, E.; Lamarque, L.; Zwier, J.M.; Galaup, C. Design of novel tripyridinophane-based Eu (III) complexes as efficient luminescent labels for bioassay applications. Org. Biomol. Chem., 2021, 20(1), 182-195.
[http://dx.doi.org/10.1039/D1OB02092G] [PMID: 34878481]
[52]
Rajendran, M.; Yapici, E.; Miller, L.W. Lanthanide-based imaging of protein-protein interactions in live cells. Inorg. Chem., 2014, 53(4), 1839-1853.
[http://dx.doi.org/10.1021/ic4018739] [PMID: 24144069]
[53]
Xu, J.; Corneillie, T.M.; Moore, E.G.; Law, G.L.; Butlin, N.G.; Raymond, K.N. Octadentate cages of Tb(III) 2-hydroxyisophthalamides: A new standard for luminescent lanthanide labels. J. Am. Chem. Soc., 2011, 133(49), 19900-19910.
[http://dx.doi.org/10.1021/ja2079898] [PMID: 22010878]
[54]
Geißler, D.; Stufler, S.; Löhmannsröben, H.G.; Hildebrandt, N. Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing. J. Am. Chem. Soc., 2013, 135(3), 1102-1109.
[http://dx.doi.org/10.1021/ja310317n] [PMID: 23231786]
[55]
Miller, L.W.; Cai, Y.; Sheetz, M.P.; Cornish, V.W. In vivo protein labeling with trimethoprim conjugates: A flexible chemical tag. Nat. Methods, 2005, 2(4), 255-257.
[http://dx.doi.org/10.1038/nmeth749] [PMID: 15782216]
[56]
Calloway, N.T.; Choob, M.; Sanz, A.; Sheetz, M.P.; Miller, L.W.; Cornish, V.W. Optimized fluorescent trimethoprim derivatives for in vivo protein labeling. ChemBioChem, 2007, 8(7), 767-774.
[http://dx.doi.org/10.1002/cbic.200600414] [PMID: 17378009]
[57]
Reddy, D.R.; Pedró Rosa, L.E.; Miller, L.W. Luminescent trimethoprim-polyaminocarboxylate lanthanide complex conjugates for selective protein labeling and time-resolved bioassays. Bioconjug. Chem., 2011, 22(7), 1402-1409.
[http://dx.doi.org/10.1021/bc200131k] [PMID: 21619068]
[58]
Wang, Y.U.L.I. Noise‐induced systematic errors in ratio imaging: serious artefacts and correction with multi‐resolution denoising. J. Microsc., 2007, 228(2), 123-131.
[http://dx.doi.org/10.1111/j.1365-2818.2007.01834.x] [PMID: 17970912]
[59]
De Matos, L.L.; Trufelli, D.C.; De Matos, M.G.L.; da Silva Pinhal, M.A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomarker insights, 2010, 5, S2185.
[http://dx.doi.org/10.4137/BMI.S2185]
[60]
Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev., 2005, 11, 227-256.
[http://dx.doi.org/10.1016/S1387-2656(05)11007-2] [PMID: 16216779]
[61]
Su, F.; Luo, X.; Du, Z.; Chen, Z.; Liu, Y.; Jin, X.; Guo, Z.; Lu, J.; Jin, D. High-contrast luminescent immunohistochemistry using PEGylated lanthanide complexes. Anal. Chem., 2022, 94(50), 17587-17594.
[http://dx.doi.org/10.1021/acs.analchem.2c04058] [PMID: 36464815]
[62]
Zhang, L.; Wang, Y.; Ye, Z.; Jin, D.; Yuan, J. New class of tetradentate β-diketonate-europium complexes that can be covalently bound to proteins for time-gated fluorometric application. Bioconjug. Chem., 2012, 23(6), 1244-1251.
[http://dx.doi.org/10.1021/bc300075t] [PMID: 22646704]
[63]
Ning, Y.; Cheng, S.; Wang, J.X.; Liu, Y.W.; Feng, W.; Li, F.; Zhang, J.L. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe. Chem. Sci., 2019, 10(15), 4227-4235.
[http://dx.doi.org/10.1039/C9SC00220K] [PMID: 31057751]
[64]
Hu, J.Y.; Ning, Y.; Meng, Y.S.; Zhang, J.; Wu, Z.Y.; Gao, S.; Zhang, J.L. Highly near-IR emissive ytterbium (III) complexes with unprecedented quantum yields. Chem. Sci., 2017, 8(4), 2702-2709.
[http://dx.doi.org/10.1039/C6SC05021B] [PMID: 28694956]
[65]
McConnell, E.L.; Basit, A.W.; Murdan, S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol., 2008, 60(1), 63-70.
[http://dx.doi.org/10.1211/jpp.60.1.0008] [PMID: 18088506]
[66]
Jin, G.Q.; Sun, D.; Xia, X.; Jiang, Z.F.; Cheng, B.; Ning, Y.; Wang, F.; Zhao, Y.; Chen, X.; Zhang, J.L. Bioorthogonal lanthanide molecular probes for near‐infrared fluorescence and mass spectrometry imaging. Angew. Chem. Int. Ed., 2022, 61(43), e202208707.
[http://dx.doi.org/10.1002/anie.202208707] [PMID: 35989247]
[67]
Dieterich, D.C.; Hodas, J.J.L.; Gouzer, G.; Shadrin, I.Y.; Ngo, J.T.; Triller, A.; Tirrell, D.A.; Schuman, E.M. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci., 2010, 13(7), 897-905.
[http://dx.doi.org/10.1038/nn.2580] [PMID: 20543841]
[68]
Laughlin, S.T.; Bertozzi, C.R. Imaging the glycome. Proc. Natl. Acad. Sci. USA, 2009, 106(1), 12-17.
[http://dx.doi.org/10.1073/pnas.0811481106] [PMID: 19104067]
[69]
Cheng, B.; Tang, Q.; Zhang, C.; Chen, X. Glycan labeling and analysis in cells and in vivo. Annu. Rev. Anal. Chem., 2021, 14(1), 363-387.
[http://dx.doi.org/10.1146/annurev-anchem-091620-091314] [PMID: 34314224]
[70]
Salic, A.; Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2415-2420.
[http://dx.doi.org/10.1073/pnas.0712168105] [PMID: 18272492]
[71]
Jao, C.Y.; Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. USA, 2008, 105(41), 15779-15784.
[http://dx.doi.org/10.1073/pnas.0808480105] [PMID: 18840688]
[72]
Lacerda, S.; Delalande, A.; Eliseeva, S.V.; Pallier, A.; Bonnet, C.S.; Szeremeta, F.; Même, S.; Pichon, C.; Petoud, S.; Tóth, É. Doxorubicin‐sensitized luminescence of NIR‐emitting ytterbium liposomes: Towards direct monitoring of drug release. Angew. Chem. Int. Ed., 2021, 60(44), 23574-23577.
[http://dx.doi.org/10.1002/anie.202109408] [PMID: 34387934]
[73]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[74]
Bonnet, C.S.; Tóth, É. Towards highly efficient, intelligent and bimodal imaging probes: Novel approaches provided by lanthanide coordination chemistry. C. R. Chim., 2010, 13(6-7), 700-714.
[http://dx.doi.org/10.1016/j.crci.2010.03.026]
[75]
Martinić, I.; Eliseeva, S.V.; Collet, G.; Luo, T.Y.; Rosi, N.; Petoud, S. One approach for two: Toward the creation of near-infrared imaging agents and rapid screening of lanthanide (III) ion sensitizers using polystyrene nanobeads. ACS Appl. Bio Mater., 2019, 2(4), 1667-1675.
[http://dx.doi.org/10.1021/acsabm.9b00053] [PMID: 35026901]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy