Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Exploring the Dual Roles of Neural Stem Cells in Glioblastoma: Therapeutic Implications and Opportunities

Author(s): Kuldeep Singh*, Pranshul Sethi, Jeetendra Kumar Gupta, Anubhav Dubey, Mukesh Chandra Sharma, Divya Jain, Alok Bhatt and Shivendra Kumar

Volume 20, Issue 5, 2025

Published on: 03 February, 2025

Page: [494 - 508] Pages: 15

DOI: 10.2174/011574888X341526250113064851

Price: $65

TIMBC 2026
Abstract

Glioblastoma (GBM) is recognized as the most aggressive and lethal form of primary brain tumor, characterized by rapid proliferation and significant resistance to conventional therapies. Recent studies have illuminated the complex role of Neural Stem Cells (NSCs) in both the progression and treatment of GBM. This review examines the specific molecular pathways influenced by NSCs, focusing on critical signaling cascades such as Notch, P13K, and SHH, which are implicated in tumor development and maintenance. Furthermore, we explore the dual role of NSCs in glioblastoma, where they can act as both facilitators of tumorigenesis and potential agents of tumor suppression, depending on the microenvironmental context. Understanding these intricate interactions is essential for developing innovative therapeutic strategies that target NSCs in GBM. This review aims to provide a comprehensive overview of current knowledge and to identify future research directions in this promising field, ultimately contributing to the advancement of personalized treatment approaches for patients with glioblastoma.

Keywords: Glioblastoma, neural stem cells, tumor microenvironment, notch signaling, P13K pathway, SHH pathway, hypoxia, immune response, tumorigenesis.

[1]
Couturier, C.P.; Ayyadhury, S.; Le, P.U.; Nadaf, J.; Monlong, J.; Riva, G.; Allache, R.; Baig, S.; Yan, X.; Bourgey, M.; Lee, C.; Wang, Y.C.D.; Yong, W.V.; Guiot, M-C.; Najafabadi, H.; Misic, B.; Antel, J.; Bourque, G.; Ragoussis, J.; Petrecca, K. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat. Commun., 2020, 11(1), 3406.
[http://dx.doi.org/10.1038/s41467-020-17186-5]
[2]
Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Sloan, B.J.S. CBTRUS Statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncol., 2019, 21(S5), v1-v100.
[http://dx.doi.org/10.1093/neuonc/noz150] [PMID: 31675094]
[3]
Louis, D.N.; Perry, A.; Reifenberger, G.; Deimling, v.A.; Branger, F.D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[4]
Sánchez, S.J.M.; Langa, M.J.; Arráez, M.Á.; Fuster, J.; Laín, H.A.; Reynés, G.; González, R.V.; Vicente, E.; Denis, V.M.; Gallego, Ó. SEOM clinical guideline of diagnosis and management of low-grade glioma (2017). Clin. Transl. Oncol., 2018, 20(1), 3-15.
[http://dx.doi.org/10.1007/s12094-017-1790-3] [PMID: 29124520]
[5]
Brain tumours (Primary) and brain metastases in adults; National Institute for Health and Care Excellence: London, UK, 2018.
[6]
Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.C.; Pentheroudakis, G. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2014, 25(S3), iii93-iii101.
[http://dx.doi.org/10.1093/annonc/mdu050] [PMID: 24782454]
[7]
Taylor, O.G.; Brzozowski, J.S.; Skelding, K.A. Glioblastoma multiforme: An overview of emerging therapeutic targets. Front. Oncol., 2019, 9, 963.
[http://dx.doi.org/10.3389/fonc.2019.00963] [PMID: 31616641]
[8]
Shah, K. Stem cell-based therapies for tumors in the brain: Are we there yet? Neuro-oncol., 2016, 18(8), 1066-1078.
[http://dx.doi.org/10.1093/neuonc/now096] [PMID: 27282399]
[9]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[10]
Parker, N.R.; Khong, P.; Parkinson, J.F.; Howell, V.M.; Wheeler, H.R. Molecular heterogeneity in glioblastoma: Potential clinical implications. Front. Oncol., 2015, 5, 55.
[http://dx.doi.org/10.3389/fonc.2015.00055] [PMID: 25785247]
[11]
Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; Beroukhim, R.; Bernard, B.; Wu, C.J.; Genovese, G.; Shmulevich, I.; Sloan, B.J.; Zou, L.; Vegesna, R.; Shukla, S.A.; Ciriello, G.; Yung, W.K.; Zhang, W.; Sougnez, C.; Mikkelsen, T.; Aldape, K.; Bigner, D.D.; Meir, V.E.G.; Prados, M.; Sloan, A.; Black, K.L.; Eschbacher, J.; Finocchiaro, G.; Friedman, W.; Andrews, D.W.; Guha, A.; Iacocca, M.; O’Neill, B.P.; Foltz, G.; Myers, J.; Weisenberger, D.J.; Penny, R.; Kucherlapati, R.; Perou, C.M.; Hayes, D.N.; Gibbs, R.; Marra, M.; Mills, G.B.; Lander, E.; Spellman, P.; Wilson, R.; Sander, C.; Weinstein, J.; Meyerson, M.; Gabriel, S.; Laird, P.W.; Haussler, D.; Getz, G.; Chin, L.; Benz, C.; Sloan, B.J.; Barrett, W.; Ostrom, Q.; Wolinsky, Y.; Black, K.L.; Bose, B.; Boulos, P.T.; Boulos, M.; Brown, J.; Czerinski, C.; Eppley, M.; Iacocca, M.; Kempista, T.; Kitko, T.; Koyfman, Y.; Rabeno, B.; Rastogi, P.; Sugarman, M.; Swanson, P.; Yalamanchii, K.; Otey, I.P.; Liu, Y.S.; Xiao, Y.; Auman, J.T.; Chen, P-C.; Hadjipanayis, A.; Lee, E.; Lee, S.; Park, P.J.; Seidman, J.; Yang, L.; Kucherlapati, R.; Kalkanis, S.; Mikkelsen, T.; Poisson, L.M.; Raghunathan, A.; Scarpace, L.; Bernard, B.; Bressler, R.; Eakin, A.; Iype, L.; Kreisberg, R.B.; Leinonen, K.; Reynolds, S.; Rovira, H.; Thorsson, V.; Shmulevich, I.; Annala, M.J.; Penny, R.; Paulauskis, J.; Curley, E.; Hatfield, M.; Mallery, D.; Morris, S.; Shelton, T.; Shelton, C.; Sherman, M.; Yena, P.; Cuppini, L.; DiMeco, F.; Eoli, M.; Finocchiaro, G.; Maderna, E.; Pollo, B.; Saini, M.; Balu, S.; Hoadley, K.A.; Li, L.; Miller, C.R.; Shi, Y.; Topal, M.D.; Wu, J.; Dunn, G.; Giannini, C.; O’Neill, B.P.; Aksoy, B.A.; Antipin, Y.; Borsu, L.; Berman, S.H.; Brennan, C.W.; Cerami, E.; Chakravarty, D.; Ciriello, G.; Gao, J.; Gross, B.; Jacobsen, A.; Ladanyi, M.; Lash, A.; Liang, Y.; Reva, B.; Sander, C.; Schultz, N.; Shen, R.; Socci, N.D.; Viale, A.; Ferguson, M.L.; Chen, Q-R.; Demchok, J.A.; Dillon, L.A.L.; Shaw, K.R.M.; Sheth, M.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Davidsen, T.; Guyer, M.S.; Ozenberger, B.A.; Sofia, H.J.; Bergsten, J.; Eckman, J.; Harr, J.; Myers, J.; Smith, C.; Tucker, K.; Winemiller, C.; Zach, L.A.; Ljubimova, J.Y.; Eley, G.; Ayala, B.; Jensen, M.A.; Kahn, A.; Pihl, T.D.; Pot, D.A.; Wan, Y.; Eschbacher, J.; Foltz, G.; Hansen, N.; Hothi, P.; Lin, B.; Shah, N.; Yoon, J.; Lau, C.; Berens, M.; Ardlie, K.; Beroukhim, R.; Carter, S.L.; Cherniack, A.D.; Noble, M.; Cho, J.; Cibulskis, K.; DiCara, D.; Frazer, S.; Gabriel, S.B.; Gehlenborg, N.; Gentry, J.; Heiman, D.; Kim, J.; Jing, R.; Lander, E.S.; Lawrence, M.; Lin, P.; Mallard, W.; Meyerson, M.; Onofrio, R.C.; Saksena, G.; Schumacher, S.; Sougnez, C.; Stojanov, P.; Tabak, B.; Voet, D.; Zhang, H.; Zou, L.; Getz, G.; Dees, N.N.; Ding, L.; Fulton, L.L.; Fulton, R.S.; Kanchi, K-L.; Mardis, E.R.; Wilson, R.K.; Baylin, S.B.; Andrews, D.W.; Harshyne, L.; Cohen, M.L.; Devine, K.; Sloan, A.E.; VandenBerg, S.R.; Berger, M.S.; Prados, M.; Carlin, D.; Craft, B.; Ellrott, K.; Goldman, M.; Goldstein, T.; Grifford, M.; Haussler, D.; Ma, S.; Ng, S.; Salama, S.R.; Sanborn, J.Z.; Stuart, J.; Swatloski, T.; Waltman, P.; Zhu, J.; Foss, R.; Frentzen, B.; Friedman, W.; McTiernan, R.; Yachnis, A.; Hayes, D.N.; Perou, C.M.; Zheng, S.; Vegesna, R.; Mao, Y.; Akbani, R.; Aldape, K.; Bogler, O.; Fuller, G.N.; Liu, W.; Liu, Y.; Lu, Y.; Mills, G.; Protopopov, A.; Ren, X.; Sun, Y.; Wu, C-J.; Yung, W.K.A.; Zhang, W.; Zhang, J.; Chen, K.; Weinstein, J.N.; Chin, L.; Verhaak, R.G.W.; Noushmehr, H.; Weisenberger, D.J.; Bootwalla, M.S.; Lai, P.H.; Triche, T.J., Jr; Van Den Berg, D.J.; Laird, P.W.; Gutmann, D.H.; Lehman, N.L.; VanMeir, E.G.; Brat, D.; Olson, J.J.; Mastrogianakis, G.M.; Devi, N.S.; Zhang, Z.; Bigner, D.; Lipp, E.; McLendon, R. The somatic genomic landscape of glioblastoma. Cell, 2013, 155(2), 462-477.
[http://dx.doi.org/10.1016/j.cell.2013.09.034] [PMID: 24120142]
[12]
Kroonen, J.; Nassen, J.; Boulanger, Y.G.; Provenzano, F.; Capraro, V.; Bours, V.; Martin, D.; Deprez, M.; Robe, P.; Rogister, B. Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection. Int. J. Cancer, 2011, 129(3), 574-585.
[http://dx.doi.org/10.1002/ijc.25709] [PMID: 20886597]
[13]
Galli, R.; Binda, E.; Orfanelli, U.; Cipelletti, B.; Gritti, A.; Vitis, D.S.; Fiocco, R.; Foroni, C.; Dimeco, F.; Vescovi, A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res., 2004, 64(19), 7011-7021.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1364] [PMID: 15466194]
[14]
Llaguno, A.S.; Chen, J.; Kwon, C.H.; Jackson, E.L.; Li, Y.; Burns, D.K.; Buylla, A.A.; Parada, L.F. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell, 2009, 15(1), 45-56.
[http://dx.doi.org/10.1016/j.ccr.2008.12.006] [PMID: 19111880]
[15]
Lee, J.H.; Lee, J.E.; Kahng, J.Y.; Kim, S.H.; Park, J.S.; Yoon, S.J.; Um, J.Y.; Kim, W.K.; Lee, J.K.; Park, J.; Kim, E.H.; Lee, J.H.; Lee, J.H.; Chung, W.S.; Ju, Y.S.; Park, S.H.; Chang, J.H.; Kang, S.G.; Lee, J.H. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature, 2018, 560(7717), 243-247.
[http://dx.doi.org/10.1038/s41586-018-0389-3] [PMID: 30069053]
[16]
Kriegstein, A.; Buylla, A.A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci., 2009, 32(1), 149-184.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135600] [PMID: 19555289]
[17]
Noctor, S.C.; Cerdeño, M.V.; Ivic, L.; Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci., 2004, 7(2), 136-144.
[http://dx.doi.org/10.1038/nn1172] [PMID: 14703572]
[18]
Qian, X.; Goderie, S.K.; Shen, Q.; Stern, J.H.; Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development, 1998, 125(16), 3143-3152.
[http://dx.doi.org/10.1242/dev.125.16.3143] [PMID: 9671587]
[19]
Merkle, F.T.; Tramontin, A.D.; Verdugo, G.J.M.; Buylla, A.A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci., 2004, 101(50), 17528-17532.
[http://dx.doi.org/10.1073/pnas.0407893101] [PMID: 15574494]
[20]
Götz, M.; Barde, Y-A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron, 2005, 46(3), 369-372.
[PMID: 15882633]
[21]
Doetsch, F.; Caillé, I.; Lim, D.A.; Verdugo, G.J.M.; Buylla, A.A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999, 97(6), 703-716.
[http://dx.doi.org/10.1016/S0092-8674(00)80783-7] [PMID: 10380923]
[22]
Gage, F.H.; Temple, S. Neural stem cells: Generating and regenerating the brain. Neuron, 2013, 80(3), 588-601.
[http://dx.doi.org/10.1016/j.neuron.2013.10.037] [PMID: 24183012]
[23]
Ge, W.P.; Miyawaki, A.; Gage, F.H.; Jan, Y.N.; Jan, L.Y. Local generation of glia is a major astrocyte source in postnatal cortex. Nature, 2012, 484(7394), 376-380.
[http://dx.doi.org/10.1038/nature10959] [PMID: 22456708]
[24]
Imamoto, K.; Leblond, C.P. Radioautographic investigation of gliogenesis in the corpus callosum of young rats II. Origin of microglial cells. J. Comp. Neurol., 1978, 180(1), 139-163.
[http://dx.doi.org/10.1002/cne.901800109] [PMID: 649786]
[25]
Bardehle, S.; Krüger, M.; Buggenthin, F.; Schwausch, J.; Ninkovic, J.; Clevers, H.; Snippert, H.J.; Theis, F.J.; Luehmann, M.M.; Bechmann, I.; Dimou, L.; Götz, M. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci., 2013, 16(5), 580-586.
[http://dx.doi.org/10.1038/nn.3371] [PMID: 23542688]
[26]
Kiaie, N.; Gorabi, A.M.; Loveless, R.; Teng, Y.; Jamialahmadi, T.; Sahebkar, A. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neurosci. Biobehav. Rev., 2022, 140, 104794.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104794] [PMID: 35902044]
[27]
Loras, A.; Bonet, G.L.; Arroyo, G.J.; Cadenas, M.C.; Torrejon, M.M. Neural stem cells as potential glioblastoma cells of origin. Life, 2023, 13(4), 905.
[http://dx.doi.org/10.3390/life13040905] [PMID: 37109434]
[28]
Rodriguez, S.M.B.; Staicu, G.A.; Sevastre, A.S.; Baloi, C.; Ciubotaru, V.; Dricu, A.; Tataranu, L.G. Glioblastoma stem cells—useful tools in the battle against cancer. Int. J. Mol. Sci., 2022, 23(9), 4602.
[http://dx.doi.org/10.3390/ijms23094602] [PMID: 35562993]
[29]
Yang, X.; Klein, R.; Tian, X.; Cheng, H.T.; Kopan, R.; Shen, J. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol., 2004, 269(1), 81-94.
[http://dx.doi.org/10.1016/j.ydbio.2004.01.014] [PMID: 15081359]
[30]
Hori, K.; Sen, A.; Tsakonas, A.S. Notch signaling at a glance. J. Cell Sci., 2013, 126(Pt 10), 2135-2140.
[PMID: 23729744]
[31]
LeBon, L.; Lee, T.V.; Sprinzak, D.; Nejad, J.H.; Elowitz, M.B. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife, 2014, 3, e02950.
[http://dx.doi.org/10.7554/eLife.02950] [PMID: 25255098]
[32]
Kopan, R.; Ilagan, M.X.G. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 2009, 137(2), 216-233.
[http://dx.doi.org/10.1016/j.cell.2009.03.045] [PMID: 19379690]
[33]
Hindy, E.N.; Keyvani, K.; Pagenstecher, A.; Dammann, P.; Sandalcioglu, I.E.; Sure, U.; Zhu, Y. Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro-oncol., 2013, 15(10), 1366-1378.
[http://dx.doi.org/10.1093/neuonc/not071] [PMID: 23787764]
[34]
Hulleman, E.; Quarto, M.; Vernell, R.; Masserdotti, G.; Colli, E.; Kros, J.M.; Levi, D.; Gaetani, P.; Tunici, P.; Finocchiaro, G.; Baena, R.R.; Capra, M.; Helin, K. A role for the transcription factor HEY1 in glioblastoma. J. Cell. Mol. Med., 2009, 13(1), 136-146.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00307.x] [PMID: 18363832]
[35]
Xing, Z.; Sun, L.; Guo, W. Elevated expression of Notch-1 and EGFR induced apoptosis in glioblastoma multiforme patients. Clin. Neurol. Neurosurg., 2015, 131, 54-58.
[http://dx.doi.org/10.1016/j.clineuro.2015.01.018] [PMID: 25704190]
[36]
Dell’Albani, P.; Rodolico, M.; Pellitteri, R.; Tricarichi, E.; Torrisi, S.A.; D’Antoni, S.; Zappia, M.; Albanese, V.; Caltabiano, R.; Platania, N.; Aronica, E.; Catania, M.V. Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation. Neuro-oncol., 2014, 16(2), 204-216.
[http://dx.doi.org/10.1093/neuonc/not168] [PMID: 24305720]
[37]
Cheng, W.; Zhang, C.; Ren, X.; Jiang, Y.; Han, S.; Liu, Y.; Cai, J.; Li, M.; Wang, K.; Liu, Y.; Hu, H.; Li, Q.; Yang, P.; Bao, Z.; Wu, A. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma. J. Neurosurg., 2017, 126(1), 249-259.
[http://dx.doi.org/10.3171/2015.11.JNS15432] [PMID: 26967788]
[38]
Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[39]
Cooper, L.A.D.; Gutman, D.A.; Long, Q.; Johnson, B.A.; Cholleti, S.R.; Kurc, T.; Saltz, J.H.; Brat, D.J.; Moreno, C.S. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One, 2010, 5(9), e12548.
[http://dx.doi.org/10.1371/journal.pone.0012548] [PMID: 20838435]
[40]
Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res., 2013, 19(4), 764-772.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3002] [PMID: 23209033]
[41]
Spino, M.; Kurz, S.C.; Chiriboga, L.; Serrano, J.; Zeck, B.; Sen, N.; Patel, S.; Shen, G.; Vasudevaraja, V.; Tsirigos, A. Cell surface notch ligand DLL3 is a therapeutic target in isocitrate dehydrogenase-mutant glioma. Clin. Cancer Res., 2019, 25(4), 1261-1271.
[PMID: 30397180]
[42]
Han, N.; Hu, G.; Shi, L.; Long, G.; Yang, L.; Xi, Q.; Guo, Q.; Wang, J.; Dong, Z.; Zhang, M. Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget, 2017, 8(50), 88059-88068.
[http://dx.doi.org/10.18632/oncotarget.21409] [PMID: 29152141]
[43]
(a) Honorato, JR; Davis, HRA; Saggioro, EM Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. J Cell Physiol, 2020, 235(4), 3798-814.
[http://dx.doi.org/10.1002/jcp.29274] [PMID: 31613002];
(b) Dali, R.; Verginelli, F.; Pramatarova, A.; Sladek, R.; Stifani, v. Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells. Mol Oncol., 2018, 12(6), 775-787.
[http://dx.doi.org/10.1002/1878-0261.12168]
[44]
Melamed, J.R.; Morgan, J.T.; Ioele, S.A.; Gleghorn, J.P.; Mourtada, S.J.; Day, E.S. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget, 2018, 9(43), 27000-27015.
[http://dx.doi.org/10.18632/oncotarget.25467] [PMID: 29930746]
[45]
Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci., 2018, 18(1), 8-20.
[http://dx.doi.org/10.17305/bjbms.2018.2756] [PMID: 29274272]
[46]
Liu, S.; Dontu, G.; Mantle, I.D.; Patel, S.; Ahn, N.; Jackson, K.W.; Suri, P.; Wicha, M.S. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res., 2006, 66(12), 6063-6071.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0054] [PMID: 16778178]
[47]
Onishi, H.; Katano, M. Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci., 2011, 102(10), 1756-1760.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02010.x] [PMID: 21679342]
[48]
Xu, Q.; Yuan, X.; Liu, G.; Black, K.L.; Yu, J.S. Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells, 2008, 26(12), 3018-3026.
[http://dx.doi.org/10.1634/stemcells.2008-0459] [PMID: 18787206]
[49]
Hung, H.C.; Liu, C.C.; Chuang, J.Y.; Su, C.L.; Gean, P.W. Inhibition of sonic hedgehog signaling suppresses glioma stem-like cells likely through inducing autophagic cell death. Front. Oncol., 2020, 10, 1233.
[http://dx.doi.org/10.3389/fonc.2020.01233] [PMID: 32793494]
[50]
Ferruzzi, P.; Mennillo, F.; Rosa, D.A.; Giordano, C.; Rossi, M.; Benedetti, G.; Magrini, R.; Mohr, G.P.; Miragliotta, V.; Magnoni, L.; Mori, E.; Thomas, R.; Tunici, P.; Bakker, A. In vitro and in vivo characterization of a novel hedgehog signaling antagonist in human glioblastoma cell lines. Int. J. Cancer, 2012, 131(2), E33-E44.
[http://dx.doi.org/10.1002/ijc.27349] [PMID: 22072503]
[51]
Nanta, R.; Shrivastava, A.; Sharma, J.; Shankar, S.; Srivastava, R.K. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol. Cell. Biochem., 2019, 454(1-2), 11-23.
[http://dx.doi.org/10.1007/s11010-018-3448-z] [PMID: 30251117]
[52]
Matsui, W.H. Cancer stem cell signaling pathways. Medicine, 2016, 95(S1), S8-S19.
[http://dx.doi.org/10.1097/MD.0000000000004765] [PMID: 27611937]
[53]
Chakravarti, A.; Zhai, G.; Suzuki, Y.; Sarkesh, S.; Black, P.M.; Muzikansky, A.; Loeffler, J.S. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol., 2004, 22(10), 1926-1933.
[http://dx.doi.org/10.1200/JCO.2004.07.193] [PMID: 15143086]
[54]
Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer, 2015, 15(1), 7-24.
[http://dx.doi.org/10.1038/nrc3860] [PMID: 25533673]
[55]
Gavgani, M.F.; Arnesen, S.V.; Jacobsen, R.G.; Krakstad, C.; Hoivik, E.A.; Lewis, A.E.; Class, I. Class I phosphoinositide 3-kinase PIK3CA/p110α and PIK3CB/p110β isoforms in endometrial cancer. Int. J. Mol. Sci., 2018, 19(12), 3931.
[http://dx.doi.org/10.3390/ijms19123931] [PMID: 30544563]
[56]
Holland, E.C.; Celestino, J.; Dai, C.; Schaefer, L.; Sawaya, R.E.; Fuller, G.N. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet., 2000, 25(1), 55-57.
[http://dx.doi.org/10.1038/75596] [PMID: 10802656]
[57]
Hambardzumyan, D.; Becher, O.J.; Rosenblum, M.K.; Pandolfi, P.P.; Todorova, M.K.; Holland, E.C. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev., 2008, 22(4), 436-448.
[http://dx.doi.org/10.1101/gad.1627008] [PMID: 18281460]
[58]
Wei, Y.; Jiang, Y.; Zou, F.; Liu, Y.; Wang, S.; Xu, N.; Xu, W.; Cui, C.; Xing, Y.; Liu, Y.; Cao, B.; Liu, C.; Wu, G.; Ao, H.; Zhang, X.; Jiang, J. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc. Natl. Acad. Sci., 2013, 110(17), 6829-6834.
[http://dx.doi.org/10.1073/pnas.1217002110] [PMID: 23569237]
[59]
Phillips, H.S.; Kharbanda, S.; Chen, R.; Forrest, W.F.; Soriano, R.H.; Wu, T.D.; Misra, A.; Nigro, J.M.; Colman, H.; Soroceanu, L.; Williams, P.M.; Modrusan, Z.; Feuerstein, B.G.; Aldape, K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006, 9(3), 157-173.
[http://dx.doi.org/10.1016/j.ccr.2006.02.019] [PMID: 16530701]
[60]
Akhurst, R.J.; Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov., 2012, 11(10), 790-811.
[http://dx.doi.org/10.1038/nrd3810] [PMID: 23000686]
[61]
Ihle, N.T.; Lemos, R., Jr; Wipf, P.; Yacoub, A.; Mitchell, C.; Siwak, D.; Mills, G.B.; Dent, P.; Kirkpatrick, D.L.; Powis, G. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res., 2009, 69(1), 143-150.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6656] [PMID: 19117997]
[62]
Yang, L.; Moses, H.L. Transforming growth factor β: Tumor suppressor or promoter? Are host immune cells the answer? Cancer Res., 2008, 68(22), 9107-9111.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2556] [PMID: 19010878]
[63]
Bellomo, C.; Caja, L.; Moustakas, A. Transforming growth factor β as regulator of cancer stemness and metastasis. Br. J. Cancer, 2016, 115(7), 761-769.
[http://dx.doi.org/10.1038/bjc.2016.255] [PMID: 27537386]
[64]
Dijke, P.; Hill, C.S. New insights into TGF-β–Smad signalling. Trends Biochem. Sci., 2004, 29(5), 265-273.
[http://dx.doi.org/10.1016/j.tibs.2004.03.008] [PMID: 15130563]
[65]
Peñuelas, S.; Anido, J.; Sánchez, P.R.M.; Folch, G.; Barba, I.; Cuartas, I.; Dorado, G.D.; Poca, M.A.; Sahuquillo, J.; Baselga, J.; Seoane, J. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell, 2009, 15(4), 315-327.
[http://dx.doi.org/10.1016/j.ccr.2009.02.011] [PMID: 19345330]
[66]
Iwadate, Y.; Matsutani, T.; Hirono, S.; Shinozaki, N.; Saeki, N. Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma. J. Neurooncol., 2016, 129(1), 101-107.
[http://dx.doi.org/10.1007/s11060-016-2145-6] [PMID: 27193555]
[67]
Chao, M.; Liu, N.; Sun, Z.; Jiang, Y.; Jiang, T.; Xv, M.; Jia, L.; Tu, Y.; Wang, L. TGF-β signaling promotes glioma progression through stabilizing Sox9. Front. Immunol., 2021, 11, 592080.
[http://dx.doi.org/10.3389/fimmu.2020.592080] [PMID: 33613515]
[68]
Bruna, A.; Darken, R.S.; Rojo, F.; Ocaña, A.; Peñuelas, S.; Arias, A.; Paris, R.; Tortosa, A.; Mora, J.; Baselga, J.; Seoane, J. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell, 2007, 11(2), 147-160.
[http://dx.doi.org/10.1016/j.ccr.2006.11.023] [PMID: 17292826]
[69]
Ikushima, H.; Todo, T.; Ino, Y.; Takahashi, M.; Miyazawa, K.; Miyazono, K. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell, 2009, 5(5), 504-514.
[http://dx.doi.org/10.1016/j.stem.2009.08.018] [PMID: 19896441]
[70]
Scadden, DT The stem-cell niche as an entity of action. Nature, 2006, 441(7097), 1075-1079.
[http://dx.doi.org/10.1038/nature04957]
[71]
Gilbertson, R.J.; Rich, J.N. Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer, 2007, 7(10), 733-736.
[http://dx.doi.org/10.1038/nrc2246] [PMID: 17882276]
[72]
Martinez, P.; Ballarin, L.; Ereskovsky, A.V.; Gazave, E.; Hobmayer, B.; Manni, L.; Rottinger, E.; Sprecher, S.G.; Tiozzo, S.; Coelho, V.A.; Rinkevich, B. Articulating the “stem cell niche” paradigm through the lens of non-model aquatic invertebrates. BMC Biol., 2022, 20(1), 23.
[http://dx.doi.org/10.1186/s12915-022-01230-5] [PMID: 35057814]
[73]
Llorente, V.; Velarde, P.; Desco, M.; Gaviro, G.M.V. Current understanding of the neural stem cell niches. Cells, 2022, 11(19), 3002.
[http://dx.doi.org/10.3390/cells11193002] [PMID: 36230964]
[74]
Fidoamore, A.; Cristiano, L.; Antonosante, A.; d’Angelo, M.; Giacomo, D.E.; Astarita, C.; Giordano, A.; Ippoliti, R.; Benedetti, E.; Cimini, A. Glioblastoma stem cells microenvironment: The paracrine roles of the niche in drug and radioresistance. Stem Cells Int., 2016, 2016(1), 6809105.
[http://dx.doi.org/10.1155/2016/6809105] [PMID: 26880981]
[75]
Castillejo, R.C.; Sánchez, S.F.; Agulló, A.C.; Ferrón, S.R.; Aguilar, A.J.D.; Sánchez, P.; Mira, H.; Escribano, J.; Fariñas, I. Pigment epithelium–derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci., 2006, 9(3), 331-339.
[http://dx.doi.org/10.1038/nn1657] [PMID: 16491078]
[76]
Tavazoie, M.; Veken, V.D.L.; Vargas, S.V.; Louissaint, M.; Colonna, L.; Zaidi, B.; Verdugo, G.J.M.; Doetsch, F. A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 2008, 3(3), 279-288.
[http://dx.doi.org/10.1016/j.stem.2008.07.025] [PMID: 18786415]
[77]
Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev., 2003, 13(5), 543-550.
[http://dx.doi.org/10.1016/j.gde.2003.08.012] [PMID: 14550422]
[78]
Fan, X.; Khaki, L.; Zhu, T.S.; Soules, M.E.; Talsma, C.E.; Gul, N.; Koh, C.; Zhang, J.; Li, Y.M.; Maciaczyk, J.; Nikkhah, G.; DiMeco, F.; Piccirillo, S.; Vescovi, A.L.; Eberhart, C.G. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells, 2010, 28(1), 5-16.
[http://dx.doi.org/10.1002/stem.254] [PMID: 19904829]
[79]
Gonzalez, P.P; Asrican, B; Rodriguez, E; Kuo, CT Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci., 2014, 17(7), 934-942.
[80]
Llaguno, A.S.R.; Wang, Z.; Sun, D.; Chen, J.; Xu, J.; Kim, E.; Hatanpaa, K.J.; Raisanen, J.M.; Burns, D.K.; Johnson, J.E.; Parada, L.F. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell, 2015, 28(4), 429-440.
[http://dx.doi.org/10.1016/j.ccell.2015.09.007] [PMID: 26461091]
[81]
Roesler, R. Interplay between neural stem cells and glioblastoma: Possible role of neurotrophin signaling. Clin. Transl. Oncol., 2019, 21(11), 1578-1579.
[http://dx.doi.org/10.1007/s12094-019-02206-8] [PMID: 31571153]
[82]
Jiang, Y.; Marinescu, V.D.; Xie, Y.; Jarvius, M.; Maturi, N.P.; Haglund, C.; Olofsson, S.; Lindberg, N.; Olofsson, T.; Leijonmarck, C.; Hesselager, G.; Alafuzoff, I.; Fryknäs, M.; Larsson, R.; Nelander, S.; Uhrbom, L. Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin. Cell Rep., 2017, 18(4), 977-990.
[http://dx.doi.org/10.1016/j.celrep.2017.01.003] [PMID: 28122246]
[83]
Llaguno, A.S.R.; Parada, L.F. Cell of origin of glioma: Biological and clinical implications. Br. J. Cancer, 2016, 115(12), 1445-1450.
[http://dx.doi.org/10.1038/bjc.2016.354] [PMID: 27832665]
[84]
Matarredona, E.R.; Pastor, A.M. Neural stem cells of the subventricular zone as the origin of human glioblastoma stem cells. Therapeutic implications. Front. Oncol., 2019, 9, 779.
[http://dx.doi.org/10.3389/fonc.2019.00779] [PMID: 31482066]
[85]
Liu, C.; Sage, J.C.; Miller, M.R.; Verhaak, R.G.W.; Hippenmeyer, S.; Vogel, H.; Foreman, O.; Bronson, R.T.; Nishiyama, A.; Luo, L.; Zong, H. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell, 2011, 146(2), 209-221.
[http://dx.doi.org/10.1016/j.cell.2011.06.014] [PMID: 21737130]
[86]
Lee, JH; Lee, JH. The origin-of-cell harboring cancer-driving mutations in human glioblastoma. BMB Rep, 2018, 51(10), 481-3.
[http://dx.doi.org/10.5483/BMBRep.2018.51.10.233] [PMID: 30269745]
[87]
Modrek, A.S.; Golub, D.; Khan, T.; Bready, D.; Prado, J.; Bowman, C.; Deng, J.; Zhang, G.; Rocha, P.P.; Raviram, R.; Lazaris, C.; Stafford, J.M.; LeRoy, G.; Kader, M.; Dhaliwal, J.; Bayin, N.S.; Frenster, J.D.; Serrano, J.; Chiriboga, L.; Baitalmal, R.; Nanjangud, G.; Chi, A.S.; Golfinos, J.G.; Wang, J.; Karajannis, M.A.; Bonneau, R.A.; Reinberg, D.; Tsirigos, A.; Zagzag, D.; Snuderl, M.; Skok, J.A.; Neubert, T.A.; Placantonakis, D.G. Low-grade astrocytoma mutations in IDH1, P53, and ATRX cooperate to block differentiation of human neural stem cells via repression of SOX2. Cell Rep., 2017, 21(5), 1267-1280.
[http://dx.doi.org/10.1016/j.celrep.2017.10.009] [PMID: 29091765]
[88]
Verdugo, E.; Puerto, I.; Medina, M.Á. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun., 2022, 42(11), 1083-1111.
[http://dx.doi.org/10.1002/cac2.12361] [PMID: 36129048]
[89]
Bulstrode, H.; Johnstone, E.; Torrejon, M.M.A.; Ferguson, K.M.; Bressan, R.B.; Blin, C.; Grant, V.; Gogolok, S.; Gangoso, E.; Gagrica, S.; Ender, C.; Fotaki, V.; Sproul, D.; Bertone, P.; Pollard, S.M. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev., 2017, 31(8), 757-773.
[http://dx.doi.org/10.1101/gad.293027.116] [PMID: 28465359]
[90]
Yang, R.; Chen, L.H.; Hansen, L.J.; Carpenter, A.B.; Moure, C.J.; Liu, H.; Pirozzi, C.J.; Diplas, B.H.; Waitkus, M.S.; Greer, P.K.; Zhu, H.; McLendon, R.E.; Bigner, D.D.; He, Y.; Yan, H. Cic loss promotes gliomagenesis via aberrant neural stem cell proliferation and differentiation. Cancer Res., 2017, 77(22), 6097-6108.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1018] [PMID: 28939681]
[91]
Yan, W.; Wu, X.; Zhou, W.; Fong, M.Y.; Cao, M.; Liu, J.; Liu, X.; Chen, C.H.; Fadare, O.; Pizzo, D.P.; Wu, J.; Liu, L.; Liu, X.; Chin, A.R.; Ren, X.; Chen, Y.; Locasale, J.W.; Wang, S.E. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell Biol., 2018, 20(5), 597-609.
[http://dx.doi.org/10.1038/s41556-018-0083-6] [PMID: 29662176]
[92]
Wang, J.; Liu, J.; Sun, G.; Meng, H.; Wang, J.; Guan, Y.; Yin, Y.; Zhao, Z.; Dong, X.; Yin, S.; Li, H.; Cheng, Y.; Wu, H.; Wu, A.; Yu, X.; Chen, L. Glioblastoma extracellular vesicles induce the tumour-promoting transformation of neural stem cells. Cancer Lett., 2019, 466, 1-12.
[http://dx.doi.org/10.1016/j.canlet.2019.09.004] [PMID: 31521694]
[93]
(a) Qin, EY; Cooper, DD; Abbott, KL Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell., 2017, 170(5), 845-859.e19.
[http://dx.doi.org/10.1016/j.cell.2017.07.016];
(b) Zhang, GL; Wang, CF; Qian, C; Ji, YX; Wang, YZ Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. World J Stem Cells, 2021, 13(7), 877-893.
[http://dx.doi.org/10.4252/wjsc.v13.i7.877] [PMID: 34367482]
[94]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[95]
Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Sloan, B.J.S.; Villano, J.L. Epidemiologic and molecular prognostic review of glioblastoma. Canc. Epidemiol. Biomarkers Prev., 2014, 23(10), 1985-1996.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0275] [PMID: 25053711]
[96]
Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination therapy to checkmate Glioblastoma: Clinical challenges and advances. Clin. Transl. Med., 2018, 7(1), e33.
[http://dx.doi.org/10.1186/s40169-018-0211-8] [PMID: 30327965]
[97]
Bindra, R.S.; Chalmers, A.J.; Evans, S.; Dewhirst, M. GBM radiosensitizers: Dead in the water…or just the beginning? J. Neurooncol., 2017, 134(3), 513-521.
[http://dx.doi.org/10.1007/s11060-017-2427-7] [PMID: 28762004]
[98]
Curtis, M.A.; Kam, M.; Nannmark, U.; Anderson, M.F.; Axell, M.Z.; Wikkelso, C.; Holtås, S.; van Roon-Mom, W.M.C.; Eriksson, B.T.; Nordborg, C.; Frisén, J.; Dragunow, M.; Faull, R.L.M.; Eriksson, P.S. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 2007, 315(5816), 1243-1249.
[http://dx.doi.org/10.1126/science.1136281] [PMID: 17303719]
[99]
Mutukula, N.; Elkabetz, Y. “Neural Killer” cells: Autologous cytotoxic neural stem cells for fighting glioma. Cell Stem Cell, 2017, 20(4), 426-428.
[http://dx.doi.org/10.1016/j.stem.2017.03.019] [PMID: 28388425]
[100]
Cameron, B.D.; Traver, G.; Roland, J.T.; Brockman, A.A.; Dean, D.; Johnson, L.; Boyd, K.; Ihrie, R.A.; Freeman, M.L. Bcl2-expressing quiescent type B neural stem cells in the ventricular–subventricular zone are resistant to concurrent temozolomide/X-irradiation. Stem Cells, 2019, 37(12), 1629-1639.
[http://dx.doi.org/10.1002/stem.3081] [PMID: 31430423]
[101]
Muracciole, X.; amine, E.W.; Tabouret, E.; Boucekine, M.; Barlier, A.; Petrirena, G.; Harivony, T.; Solignac, L.; Chinot, O.L.; Macagno, N.; Branger, F.D.; Padovani, L. Negative survival impact of high radiation doses to neural stem cells niches in an IDH-wild-type glioblastoma population. Front. Oncol., 2018, 8, 426.
[http://dx.doi.org/10.3389/fonc.2018.00426] [PMID: 30338243]
[102]
Cho, N.; Wang, C.; Raymond, C.; Kaprealian, T.; Ji, M.; Salamon, N.; Pope, W.B.; Nghiemphu, P.L.; Lai, A.; Cloughesy, T.F.; Ellingson, B.M. Diffusion MRI changes in the anterior subventricular zone following chemoradiation in glioblastoma with posterior ventricular involvement. J. Neurooncol., 2020, 147(3), 643-652.
[http://dx.doi.org/10.1007/s11060-020-03460-5] [PMID: 32239430]
[103]
Bagó, J.R.; Okolie, O.; Dumitru, R.; Ewend, M.G.; Parker, J.S.; Werff, R.V.; Underhill, T.M.; Schmid, R.S.; Miller, C.R.; Hingtgen, S.D. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci. Transl. Med., 2017, 9(375), eaah6510.
[http://dx.doi.org/10.1126/scitranslmed.aah6510] [PMID: 28148846]
[104]
Spencer, D.; Yu, D.; Morshed, R.A.; Li, G.; Pituch, K.C.; Gao, D.X.; Bertolino, N.; Procissi, D.; Lesniak, M.S.; Balyasnikova, I.V. Pharmacologic modulation of nasal epithelium augments neural stem cell targeting of glioblastoma. Theranostics, 2019, 9(7), 2071-2083.
[http://dx.doi.org/10.7150/thno.29581] [PMID: 31037157]
[105]
Sheets, K.T.; Ewend, M.G.; Asli, M.M.; Tuin, S.A.; Loboa, E.G.; Aboody, K.S.; Hingtgen, S.D. Developing implantable scaffolds to enhance neural stem cell therapy for post-operative glioblastoma. Mol. Ther., 2020, 28(4), 1056-1067.
[http://dx.doi.org/10.1016/j.ymthe.2020.02.008] [PMID: 32109370]
[106]
Goffart, N.; Kroonen, J.; Valentin, D.E.; Dedobbeleer, M.; Denne, A.; Martinive, P.; Rogister, B. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro-oncol., 2015, 17(1), 81-94.
[http://dx.doi.org/10.1093/neuonc/nou144] [PMID: 25085362]
[107]
Gravina, G.L.; Mancini, A.; Colapietro, A.; Vitale, F.; Vetuschi, A.; Pompili, S.; Rossi, G.; Marampon, F.; Richardson, P.J.; Patient, L.; Patient, L.; Burbidge, S.; Festuccia, C. The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumour Biol., 2017, 39(6), 1010428317695528.
[http://dx.doi.org/10.1177/1010428317695528] [PMID: 28639900]
[108]
Chen, L.; Cazares, G.H.; Ye, X.; Ford, E.; McNutt, T.; Kleinberg, L.; Lim, M.; Chaichana, K.; Hinojosa, Q.A.; Redmond, K. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int. J. Radiat. Oncol. Biol. Phys., 2013, 86(4), 616-622.
[http://dx.doi.org/10.1016/j.ijrobp.2013.02.014] [PMID: 23540348]
[109]
Ohno, M.; Kitanaka, C.; Miyakita, Y.; Tanaka, S.; Sonoda, Y.; Mishima, K.; Ishikawa, E.; Takahashi, M.; Yanagisawa, S.; Ohashi, K.; Nagane, M.; Narita, Y. Metformin with temozolomide for newly diagnosed glioblastoma: Results of phase I study and a brief review of relevant studies. Cancers, 2022, 14(17), 4222.
[http://dx.doi.org/10.3390/cancers14174222] [PMID: 36077758]
[110]
Yang, C.; Ko, B.; Hensley, C.T.; Jiang, L.; Wasti, A.T.; Kim, J.; Sudderth, J.; Calvaruso, M.A.; Lumata, L.; Mitsche, M.; Rutter, J.; Merritt, M.E.; DeBerardinis, R.J. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell, 2014, 56(3), 414-424.
[http://dx.doi.org/10.1016/j.molcel.2014.09.025] [PMID: 25458842]
[111]
Griguer, C.E.; Cantor, A.B.; Shaykh, F.H.M.; Gillespie, G.Y.; Gordon, A.S.; Markert, J.M.; Radovanovic, I.; Schatlo, C.V.; Shannon, C.N.; Oliva, C.R. Prognostic relevance of cytochrome C oxidase in primary glioblastoma multiforme. PLoS One, 2013, 8(4), e61035.
[http://dx.doi.org/10.1371/journal.pone.0061035] [PMID: 23593382]
[112]
Mistry, A.M. On the subventricular zone origin of human glioblastoma. Transl. Cancer Res., 2019, 8(1), 11-13.
[http://dx.doi.org/10.21037/tcr.2018.11.31] [PMID: 30873355]
[113]
Fan, H.C.; Chen, C.M.; Chi, C.S.; Tsai, J.D.; Chiang, K.L.; Chang, Y.K.; Lin, S.Z.; Harn, H.J. Targeting telomerase and ATRX/DAXX inducing tumor senescence and apoptosis in the malignant glioma. Int. J. Mol. Sci., 2019, 20(1), 200.
[http://dx.doi.org/10.3390/ijms20010200] [PMID: 30625996]
[114]
Salloum, R.; Hummel, T.R.; Kumar, S.S.; Dorris, K.; Li, S.; Lin, T.; Daryani, V.M.; Stewart, C.F.; Miles, L.; Poussaint, T.Y.; Stevenson, C.; Goldman, S.; Dhall, G.; Packer, R.; Fisher, P.; Pollack, I.F.; Fouladi, M.; Boyett, J.; Drissi, R. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: A pediatric brain tumor consortium study. J. Neurooncol., 2016, 129(3), 443-451.
[http://dx.doi.org/10.1007/s11060-016-2189-7] [PMID: 27350411]
[115]
Yen, S-Y.; Chen, S-R.; Hsieh, J.; Li, Y-S.; Chuang, S-E.; Chuang, H-M.; Huang, M-H.; Lin, S-Z.; Harn, H-J.; Chiou, T-W. Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion. Oncogene, 2016, 35(17), 2156-2165.
[http://dx.doi.org/10.1038/onc.2015.277] [PMID: 26257061]
[116]
Meijer, DH; Maguire, CA; Leroy, SG; Esteves, S.M Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-β. Canc. Gene Ther., 2009, 16(8), 664-671.
[http://dx.doi.org/10.1038/cgt.2009.8]
[117]
Kim, D.G.; Kim, K.H.; Seo, Y.J.; Yang, H.; Marcusson, E.G.; Son, E.; Lee, K.; Sa, J.K.; Lee, H.W.; Nam, D.H. Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy. Oncotarget, 2016, 7(20), 29400-29411.
[http://dx.doi.org/10.18632/oncotarget.8837] [PMID: 27102443]
[118]
Brown, C.E.; Aguilar, B.; Starr, R.; Yang, X.; Chang, W.C.; Weng, L.; Chang, B.; Sarkissian, A.; Brito, A.; Sanchez, J.F.; Ostberg, J.R.; D’Apuzzo, M.; Badie, B.; Barish, M.E.; Forman, S.J. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol. Ther., 2018, 26(1), 31-44.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.002] [PMID: 29103912]
[119]
Portnow J. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E. Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas. 2010, Available from: https://clinicaltrials.gov/ct2/show/NCT01172964.
[120]
Genetically modified neural stem cells, flucytosine, and leucovorin for treating patients with recurrent high-grade gliomas. Available from: https://clinicaltrials.gov/ct2/show/NCT02015819
[121]
Neural stem cell based virotherapy of newly diagnosed malignant glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT03072134
[122]
Oncolytic adenovirus DNX-2401 in treating patients with recurrent high-grade glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT03896568
[123]
Bexell, D.; Gunnarsson, S.; Svensson, A.; Tormin, A.; Oliveira, H.C.; Siesjö, P.; Paul, G.; Salford, L.G.; Scheding, S.; Bengzon, J. Rat multipotent mesenchymal stromal cells lack long-distance tropism to 3 different rat glioma models. Neurosurgery, 2012, 70(3), 731-739.
[http://dx.doi.org/10.1227/NEU.0b013e318232dedd] [PMID: 21869725]
[124]
Gutova, M.; Flores, L.; Adhikarla, V.; Tsaturyan, L.; Tirughana, R.; Aramburo, S.; Metz, M.; Gonzaga, J.; Annala, A.; Synold, T.W.; Portnow, J.; Rockne, R.C.; Aboody, K.S. Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Front. Oncol., 2019, 9, 68.
[http://dx.doi.org/10.3389/fonc.2019.00068] [PMID: 30838174]
[125]
Panciani, P.P.; Fontanella, M.; Tamagno, I.; Battaglia, L.; Garbossa, D.; Inghirami, G.; Fagioli, F.; Pagano, M.; Ducati, A.; Lanotte, M. Stem cells based therapy in high grade glioma: Why the intraventricular route should be preferred? J. Neurosurg. Sci., 2012, 56(3), 221-229.
[PMID: 22854590]
[126]
Klopp, A.H.; Gupta, A.; Spaeth, E.; Andreeff, M.; Marini, F., III Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells, 2011, 29(1), 11-19.
[http://dx.doi.org/10.1002/stem.559] [PMID: 21280155]
[127]
Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; Meyers, C.A. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol., 2009, 10(11), 1037-1044.
[http://dx.doi.org/10.1016/S1470-2045(09)70263-3] [PMID: 19801201]
[128]
Fares, J.; Ahmed, A.U.; Ulasov, I.V.; Sonabend, A.M.; Miska, J.; Chang, L.C.; Balyasnikova, I.V.; Chandler, J.P.; Portnow, J.; Tate, M.C.; Kumthekar, P.; Lukas, R.V.; Grimm, S.A.; Adams, A.K.; Hébert, C.D.; Strong, T.V.; Amidei, C.; Arrieta, V.A.; Zannikou, M.; Horbinski, C.; Zhang, H.; Burdett, K.B.; Curiel, D.T.; Sachdev, S.; Aboody, K.S.; Stupp, R.; Lesniak, M.S. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: A first-in-human, phase 1, dose-escalation trial. Lancet Oncol., 2021, 22(8), 1103-1114.
[http://dx.doi.org/10.1016/S1470-2045(21)00245-X] [PMID: 34214495]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy