Abstract
Imatinib mesylate (Gleevec) is a drug unique for the treatment of certain forms of cancer. It works by targeting, and turning off, specific tyrosine kinase proteins that cause the uncontrolled cell growth and the inhibition of apoptosis in cancer cells. Imatinib was designed on the basis of the structure of the ATP binding site of the Abl protein kinase with the aim to stabilize the inactive form of Bcr-Abl, an oncoprotein involved in malignant transformation in chronic myelogenous leukemia (CML). However, imatinib can also target other tyrosine kinase proteins different from Bcr-Abl such as Kit, that is the suspected cause of gastrointestinal stromal tumor (GIST). Despite successful clinical results observed in the last years, the long-term effects of imatinib and its ability to completely eradicate CML are still unknown. Moreover, similar to many other anti-cancer drugs, clinical resistance to imatinib has emerged. In this review we will discuss the in vitro and in vivo results obtained with the novel tyrosine kinase inhibitors developed to overcome imatinib resistance in Bcr-Abl expressing hematologiocal disorders.
Keywords: Bcr-Abl, chronic myelogenous leukemia, tyrosine kinase inhibitors
Anti-Cancer Agents in Medicinal Chemistry
Title: Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia
Volume: 9 Issue: 8
Author(s): Manlio Tolomeo, Francesco Dieli, Nicola Gebbia and Daniele Simoni
Affiliation:
Keywords: Bcr-Abl, chronic myelogenous leukemia, tyrosine kinase inhibitors
Abstract: Imatinib mesylate (Gleevec) is a drug unique for the treatment of certain forms of cancer. It works by targeting, and turning off, specific tyrosine kinase proteins that cause the uncontrolled cell growth and the inhibition of apoptosis in cancer cells. Imatinib was designed on the basis of the structure of the ATP binding site of the Abl protein kinase with the aim to stabilize the inactive form of Bcr-Abl, an oncoprotein involved in malignant transformation in chronic myelogenous leukemia (CML). However, imatinib can also target other tyrosine kinase proteins different from Bcr-Abl such as Kit, that is the suspected cause of gastrointestinal stromal tumor (GIST). Despite successful clinical results observed in the last years, the long-term effects of imatinib and its ability to completely eradicate CML are still unknown. Moreover, similar to many other anti-cancer drugs, clinical resistance to imatinib has emerged. In this review we will discuss the in vitro and in vivo results obtained with the novel tyrosine kinase inhibitors developed to overcome imatinib resistance in Bcr-Abl expressing hematologiocal disorders.
Export Options
About this article
Cite this article as:
Tolomeo Manlio, Dieli Francesco, Gebbia Nicola and Simoni Daniele, Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia, Anti-Cancer Agents in Medicinal Chemistry 2009; 9 (8) . https://dx.doi.org/10.2174/187152009789124637
DOI https://dx.doi.org/10.2174/187152009789124637 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Designing Novel Molecules for Anti-Cancer Enzyme Modulation: A Mechanistic and Therapeutic Perspective
The deficiencies or hyper functions of enzymes cause a number of diseases. Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block ...read more
Discovery Of Lead Compounds Targeting Transcriptional Regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy
The thematic issue, "Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy," explores the critical role of heterocyclic compounds in advancing the frontiers of cancer treatment. Heterocycles serve as fundamental building blocks in medicinal chemistry due to their structural diversity and ability to interact with biological targets. This issue aims ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Mouse Induced Glioma-Initiating Cell Models and Therapeutic Targets
Anti-Cancer Agents in Medicinal Chemistry Cell Proliferation and Cytotoxicity Assays
Current Pharmaceutical Biotechnology Immunotherapeutic Approaches in MS: Update on Pathophysiology and Emerging Agents or Strategies 2006
Endocrine, Metabolic & Immune Disorders - Drug Targets Spirocyclic Nucleosides in Medicinal Chemistry: An Overview
Mini-Reviews in Medicinal Chemistry New, Substituted Derivatives of Dicarboximides and their Cytotoxic Properties
Anti-Cancer Agents in Medicinal Chemistry Cancer Stem Cells: The Emerging Challenge of Drug Targeting
Current Medicinal Chemistry 4-aryl/heteroaryl-4H-fused Pyrans as Anti-proliferative Agents: Design, Synthesis and Biological Evaluation
Anti-Cancer Agents in Medicinal Chemistry Aurora B Kinase and Passenger Proteins as Targets for Cancer Therapy
Current Enzyme Inhibition NMN/NaMN Adenylyltransferase (NMNAT) and NAD Kinase (NADK) Inhibitors: Chemistry and Potential Therapeutic Applications
Current Medicinal Chemistry Histone Deacetylase Inhibitors: New Promise in the Treatment of Immune and Inflammatory Diseases
Current Drug Targets The mir-221/222 Cluster is a Key Player in Vascular Biology via the Fine-Tuning of Endothelial Cell Physiology
Current Vascular Pharmacology The Urokinase Plasminogen Activator System: A Target for Anti-Cancer Therapy
Current Cancer Drug Targets Mechanisms of Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors and New Therapeutic Perspectives in Non Small Cell Lung Cancer
Current Drug Targets Safety Considerations Associated with Development and Clinical Application of Lentiviral Vector Systems for Gene Transfer
Current Genomics ARC - Augmented Renal Clearance
Current Pharmaceutical Biotechnology c-Myc and Downstream Targets in the Pathogenesis and Treatment of Cancer
Recent Patents on Anti-Cancer Drug Discovery T Cell Polarization and the Formation of Immunological Synapses: From Antigen Recognition to Virus Spread
Current Immunology Reviews (Discontinued) Novel Immunotherapeutic Strategies for Invasive Fungal Disease
Current Drug Targets - Cardiovascular & Hematological Disorders Biological and Clinical Significance of Polymorphisms in NAD(P)H: Quinone Oxidoreductase 1 (NQO1)
Current Pharmacogenomics The Metabolomic Strategy in Tuberculosis Therapy
Combinatorial Chemistry & High Throughput Screening