Abstract
Apoptosis is strictly connected to the pathogenesis of many human diseases, including neoplastic, neurodegenerative or cardiovascular diseases. It is a highly programmed cell death which can be activated by various factors. Mitochondria play a key role in the apoptotic process; their damage, which involves permeabilization of the outer mitochondrial membrane, activates a series of events that lead to cell death. Of the two proposed signaling pathways of apoptosis, i.e. the ‘extrinsic’ and the ‘intrinsic’ pathway, the latter is assumed to initiate in mitochondria. Its activation involves release of cytochrome c and other pro-apoptotic factors from the mitochondrial intermembrane space. In the cytosol, cytochrome c exerts its pro-apoptotic action. It binds to the apoptosis protease activation factor (APAf-1) and forms a complex indicated as ‘apoptosome’. The complex-induced activation of pro-caspase 9 initiates an enzymatic reaction cascade leading to the execution of apoptosis in cells. This review provides an overview of the key role played by mitochondria and cytochrome c in the activation of the apoptotic process.
Keywords: Apoptosis, mitochondria, mitochondrial membrane, cardiolipin, cytochrome c
Current Medicinal Chemistry
Title: Apoptosis and Human Diseases: Mitochondrion Damage and Lethal Role of Released Cytochrome c as Proapoptotic Protein
Volume: 16 Issue: 31
Author(s): P. Caroppi, F. Sinibaldi, L. Fiorucci and R. Santucci
Affiliation:
Keywords: Apoptosis, mitochondria, mitochondrial membrane, cardiolipin, cytochrome c
Abstract: Apoptosis is strictly connected to the pathogenesis of many human diseases, including neoplastic, neurodegenerative or cardiovascular diseases. It is a highly programmed cell death which can be activated by various factors. Mitochondria play a key role in the apoptotic process; their damage, which involves permeabilization of the outer mitochondrial membrane, activates a series of events that lead to cell death. Of the two proposed signaling pathways of apoptosis, i.e. the ‘extrinsic’ and the ‘intrinsic’ pathway, the latter is assumed to initiate in mitochondria. Its activation involves release of cytochrome c and other pro-apoptotic factors from the mitochondrial intermembrane space. In the cytosol, cytochrome c exerts its pro-apoptotic action. It binds to the apoptosis protease activation factor (APAf-1) and forms a complex indicated as ‘apoptosome’. The complex-induced activation of pro-caspase 9 initiates an enzymatic reaction cascade leading to the execution of apoptosis in cells. This review provides an overview of the key role played by mitochondria and cytochrome c in the activation of the apoptotic process.
Export Options
About this article
Cite this article as:
Caroppi P., Sinibaldi F., Fiorucci L. and Santucci R., Apoptosis and Human Diseases: Mitochondrion Damage and Lethal Role of Released Cytochrome c as Proapoptotic Protein, Current Medicinal Chemistry 2009; 16 (31) . https://dx.doi.org/10.2174/092986709789378206
DOI https://dx.doi.org/10.2174/092986709789378206 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements