Abstract
Experimental autoimmune encephalomyelitis (EAE), a widely recognized animal model of multiple sclerosis (MS), is highly useful for studying inflammation, demyelination, and neurodegeneration in the central nervous system (CNS). EAE exhibits many similarities with MS, which is a chronic inflammatory disease affecting CNS white matter in humans. Various studies have indicated that EAE is a particularly useful animal model for understanding both the mechanisms of immune-mediated CNS pathology and also the progressive clinical course of MS. Demyelination and axonal dysfunction have previously been shown in MS and EAE but current evidences indicate that axonal damage and neuron death also occur, demonstrating that these diseases harbor a neurodegenerative component. Recent studies also have shown that the activation of calpain and caspase pathways contribute to the apoptotic death of oligodendrocytes and neurons, promoting the pathological events leading to neurological deficits. Apoptosis is involved in the disease-regulating as well as in the disease-promoting processes in EAE. This review discusses the major involvement of calpain and caspase pathways in causing demyelination and neurodegeneration in EAE animals.
Keywords: Apoptosis, calpain, caspase, cytokine, demyelination, experimental autoimmune encephalomyelitis, multiple sclerosis, neurodegeneration
CNS & Neurological Disorders - Drug Targets
Title: Activation of Calpain and Caspase Pathways in Demyelination and Neurodegeneration in Animal Model of Multiple Sclerosis
Volume: 7 Issue: 3
Author(s): Arabinda Das, M. Kelly Guyton, Jonathan T. Butler, Swapan K. Ray and Naren L. Banik
Affiliation:
Keywords: Apoptosis, calpain, caspase, cytokine, demyelination, experimental autoimmune encephalomyelitis, multiple sclerosis, neurodegeneration
Abstract: Experimental autoimmune encephalomyelitis (EAE), a widely recognized animal model of multiple sclerosis (MS), is highly useful for studying inflammation, demyelination, and neurodegeneration in the central nervous system (CNS). EAE exhibits many similarities with MS, which is a chronic inflammatory disease affecting CNS white matter in humans. Various studies have indicated that EAE is a particularly useful animal model for understanding both the mechanisms of immune-mediated CNS pathology and also the progressive clinical course of MS. Demyelination and axonal dysfunction have previously been shown in MS and EAE but current evidences indicate that axonal damage and neuron death also occur, demonstrating that these diseases harbor a neurodegenerative component. Recent studies also have shown that the activation of calpain and caspase pathways contribute to the apoptotic death of oligodendrocytes and neurons, promoting the pathological events leading to neurological deficits. Apoptosis is involved in the disease-regulating as well as in the disease-promoting processes in EAE. This review discusses the major involvement of calpain and caspase pathways in causing demyelination and neurodegeneration in EAE animals.
Export Options
About this article
Cite this article as:
Das Arabinda, Guyton Kelly M., Butler T. Jonathan, Ray K. Swapan and Banik L. Naren, Activation of Calpain and Caspase Pathways in Demyelination and Neurodegeneration in Animal Model of Multiple Sclerosis, CNS & Neurological Disorders - Drug Targets 2008; 7 (3) . https://dx.doi.org/10.2174/187152708784936699
DOI https://dx.doi.org/10.2174/187152708784936699 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Big Data Mining for CNS Diseases Analysis and Treatment: Focusing on Drug Target Discovery
Central nervous system (CNS) diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, represent a major global health challenge. Despite significant research efforts, the complexity and multifactorial nature of these diseases hinder the development of effective treatments. The rise of big data analytics and high-throughput technologies ...read more
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently, there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system and neurological disorders. The purpose ...read more
Innovative Therapeutics in Demyelinating CNS- Disorders: Immune Modulation, Antibody Therapy, Kinase Inhibition and Remyeliation Strategies
Demyelinating disorders, particularly multiple sclerosis represent chronic disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. This thematic issue will present a comprehensive overview of novel therapeutic advances targeting these processes. In addition to dissecting the roles of innate versus adaptive immunity, antibody therapies, and tyrosine kinase ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Recent Advances in the Rationale Design of GPER Ligands
Current Medicinal Chemistry Cannabis sativa L. Constituents and Their Role in Neuroinflammation
Current Bioactive Compounds Heat Shock Proteins: Therapeutic Perspectives in Inflammatory Disorders
Recent Patents on Inflammation & Allergy Drug Discovery Therapeutic Targeting of Chemokines and Chemokine Receptors in Multiple Sclerosis: Opportunities and Challenges
CNS & Neurological Disorders - Drug Targets Chondroitin Sulfate, a Major Niche Substance of Neural Stem Cells, and Cell Transplantation Therapy of Neurodegeneration Combined with Niche Modification
Current Stem Cell Research & Therapy Mosquito and Tick-borne Illnesses in the United States. Guidelines for the Recognition and Empiric Treatment of Zoonotic Diseases in the Wilderness.
Infectious Disorders - Drug Targets Kinase Inhibitors as Potential Therapeutics for Acute and Chronic Neurodegenerative Conditions
Current Pharmaceutical Design Inhibition of MHC II Gene Transcription by Nitric Oxide and Antioxidants
Current Pharmaceutical Design Other Future Targeting Therapy Beyond TNF-α Inhibitor in Patients with Spondyloarthropathy
Current Rheumatology Reviews PET Imaging of the Peripheral Benzodiazepine Receptor: Monitoring Disease Progression and Therapy Response in Neurodegenerative Disorders
Current Pharmaceutical Design Central Nervous System-Related
Current Bioactive Compounds Synthesis and Evaluation of Thiazolidinedione-Coumarin Adducts as Antidiabetic, Anti-Inflammatory and Antioxidant Agents
Letters in Organic Chemistry Calpain Inhibition: A Therapeutic Strategy Targeting Multiple Disease States
Current Pharmaceutical Design Evaluation of a Method Based on Coherence in Aqueous Systems and Resonance-Based Isotherapeutic Remedy in the Treatment of Chronic Psoriasis Vulgaris
Current Topics in Medicinal Chemistry Allergen-Specific Responses of CD19high and CD19low B Cells in Non-IgEMediated Food Allergy of Late Eczematous Reactions in Atopic Dermatitis: Presence of IL-17- and IL-32-Producing Regulatory B Cells (Br17 & Br32)
Inflammation & Allergy - Drug Targets (Discontinued) The GABAergic System and the Gastrointestinal Physiopathology
Current Pharmaceutical Design Jaridonin, a Novel Ent-Kaurene Diterpenoid from Isodon rubescens, Inducing Apoptosis via Production of Reactive Oxygen Species in Esophageal Cancer Cells
Current Cancer Drug Targets Role of β7 Integrins in Intestinal Lymphocyte Homing and Retention
Current Molecular Medicine Therapeutic Application of Histone Deacetylase Inhibitors for Stroke
Central Nervous System Agents in Medicinal Chemistry The Main Receptors Involved in the COVID-19: A Systematic Review and Meta-Analysis
Current Medicinal Chemistry