Abstract
Dysregulation of glutamate neurotransmission has been implicated in schizophrenia primarily because antagonists of the nmethyl- d-aspartate (NMDA) subtype of glutamate receptors exacerbate preexisting symptoms of schizophrenia in patients and produce behavioral disruptions that resemble some symptoms of schizophrenia in healthy individuals. Given this, NMDA receptor antagonists have been used extensively to model aspects of the disease in laboratory animals and have provided a useful preclinical tool for testing novel treatment strategies. More recent genetic and postmortem findings have implicated proteins other than the NMDA receptor in the pathophysiology of schizophrenia which play a role in regulation of the glutamate synapse. Animal models developed based on these findings have the potential of increasing our mechanistic understanding of the disease. Here we review some of the pertinent literature related to pharmacological and genetic animal models of glutamate dysfunction in schizophrenia.
Keywords: NMDA, DISC1, phencyclidine, antipsychotic drugs, metabotropic glutamate receptors, glutamate neurotransmission, glutamate synapse, genetic animal models, schizophrenia, auditory hallucinations
Current Pharmaceutical Design
Title:Glutamatergic Animal Models of Schizophrenia
Volume: 18 Issue: 12
Author(s): Corina Bondi, Marguerite Matthews, Bita Moghaddam
Affiliation:
Keywords: NMDA, DISC1, phencyclidine, antipsychotic drugs, metabotropic glutamate receptors, glutamate neurotransmission, glutamate synapse, genetic animal models, schizophrenia, auditory hallucinations
Abstract: Dysregulation of glutamate neurotransmission has been implicated in schizophrenia primarily because antagonists of the nmethyl- d-aspartate (NMDA) subtype of glutamate receptors exacerbate preexisting symptoms of schizophrenia in patients and produce behavioral disruptions that resemble some symptoms of schizophrenia in healthy individuals. Given this, NMDA receptor antagonists have been used extensively to model aspects of the disease in laboratory animals and have provided a useful preclinical tool for testing novel treatment strategies. More recent genetic and postmortem findings have implicated proteins other than the NMDA receptor in the pathophysiology of schizophrenia which play a role in regulation of the glutamate synapse. Animal models developed based on these findings have the potential of increasing our mechanistic understanding of the disease. Here we review some of the pertinent literature related to pharmacological and genetic animal models of glutamate dysfunction in schizophrenia.
Export Options
About this article
Cite this article as:
Corina Bondi, Marguerite Matthews, Bita Moghaddam , Glutamatergic Animal Models of Schizophrenia , Current Pharmaceutical Design 2012; 18 (12) . https://dx.doi.org/10.2174/138161212799958576
DOI https://dx.doi.org/10.2174/138161212799958576 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employed in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, and prediction, to monitoring of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Failure of Immunomodulation Therapy in Heart Failure: Does the Statins “Paradigm” Prove the Rule?
Current Vascular Pharmacology Inflammatory Mechanisms in Atherosclerosis: The Impact of Matrix Metalloproteinases
Current Topics in Medicinal Chemistry Brain Excitatory/Inhibitory Circuits Cross-Talking with Chromogranin A During Hypertensive and Hibernating States
Current Medicinal Chemistry Occurrence and Clinical Impact of Microembolic Signals (MES) in Patients with Chronic Cardiac Diseases and Atheroaortic Plaques - A Systematic Review
Current Vascular Pharmacology Pharmacologic Approach to Heart Failure in Children
Current Cardiology Reviews Point of NO Return for Nitrergic Nerves in Diabetes: A New Insight into Diabetic Complications
Current Pharmaceutical Design Pleiotropic Effects of HDL: Towards New Therapeutic Areas for HDL-Targeted Interventions
Current Molecular Medicine Follistatin-like 1 in Cardiovascular Disease and Inflammation
Mini-Reviews in Medicinal Chemistry Cardiovascular Alterations After Spinal Cord Injury: An Overview
Current Medicinal Chemistry - Cardiovascular & Hematological Agents Novel Therapeutic Strategies for Dementia
CNS & Neurological Disorders - Drug Targets Vascular Endothelial Primary Cilia: Mechanosensation and Hypertension
Current Hypertension Reviews Molecular Targets of Diabetic Vascular Complications and Potential New Drugs
Current Drug Targets The Treatment of Cardiovascular Disease Continuum: Focus on Pharmacologic Management and RAS Blockade
Current Clinical Pharmacology The Long Way to Objectify Organ Damage Related to Cocaine Abuse: Oxidative Stress is the Main Culprit
Mini-Reviews in Organic Chemistry Modulation of Mitochondrial Permeability Transition in Ischemia-Reperfusion Injury of the Heart. Advantages and Limitations
Current Medicinal Chemistry Hypoxia-Inducible Factor-1 in Arterial Disease: A Putative Therapeutic Target
Current Vascular Pharmacology Soluble Epoxide Hydrolase: A Novel Target for the Treatment of Hypertension
Recent Patents on Cardiovascular Drug Discovery Rethinking Tako-tsubo Cardiomyopathy: The Contribution of Myocardial Pathology and Molecular Imaging
Current Radiopharmaceuticals Regulation of the Cardiac Sodium/Bicarbonate Cotransporter by Angiotensin II: Potential Contribution to Structural, Ionic and Electrophysiological Myocardial Remodelling
Current Cardiology Reviews p38 MAPK: A Potential Target of Chronic Pain
Current Medicinal Chemistry