Abstract
Autism spectrum disorders are complex neuro-developmental disorders whose neurobiology is proposed to be associated with oxidative stress which is induced by reactive oxygen species. The process of oxidative stress can be a target for therapeutic interventions. In this study, we aimed to review the role of oxidative stress, plasma glutathione (GSH), and related factors as the potential sources of damage to the brain as well as the possible related factors which reduce the oxidative stress. Methylation capacity, sulfates level, and the total glutathione level are decreased in autism. On the other hand, both oxidized glutathione and the ratio of oxidized to reduced glutathione are increased in autism. In addition, the activity of glutathione peroxidase, superoxide dismutase, and catalase, as a part of the antioxidative stress system are decreased. The current literature suggests an imbalance of oxidative and anti-oxidative stress systems in autism. Glutathione is involved in neuro-protection against oxidative stress and neuro-inflammation in autism by improving the anti-oxidative stress system. Decreasing the oxidative stress might be a potential treatment for autism.
Keywords: Autism, oxidative stress, glutathione, treatment, inflammation, methylation, sulfate, spectrum disorders, neurobiology, therapeutic interventions
Current Medicinal Chemistry
Title:Glutathione-Related Factors and Oxidative Stress in Autism, A Review
Volume: 19 Issue: 23
Author(s): A. Ghanizadeh, S. Akhondzadeh, M. Hormozi, A. Makarem, M. Abotorabi-Zarchi and A. Firoozabadi
Affiliation:
Keywords: Autism, oxidative stress, glutathione, treatment, inflammation, methylation, sulfate, spectrum disorders, neurobiology, therapeutic interventions
Abstract: Autism spectrum disorders are complex neuro-developmental disorders whose neurobiology is proposed to be associated with oxidative stress which is induced by reactive oxygen species. The process of oxidative stress can be a target for therapeutic interventions. In this study, we aimed to review the role of oxidative stress, plasma glutathione (GSH), and related factors as the potential sources of damage to the brain as well as the possible related factors which reduce the oxidative stress. Methylation capacity, sulfates level, and the total glutathione level are decreased in autism. On the other hand, both oxidized glutathione and the ratio of oxidized to reduced glutathione are increased in autism. In addition, the activity of glutathione peroxidase, superoxide dismutase, and catalase, as a part of the antioxidative stress system are decreased. The current literature suggests an imbalance of oxidative and anti-oxidative stress systems in autism. Glutathione is involved in neuro-protection against oxidative stress and neuro-inflammation in autism by improving the anti-oxidative stress system. Decreasing the oxidative stress might be a potential treatment for autism.
Export Options
About this article
Cite this article as:
Ghanizadeh A., Akhondzadeh S., Hormozi M., Makarem A., Abotorabi-Zarchi M. and Firoozabadi A., Glutathione-Related Factors and Oxidative Stress in Autism, A Review, Current Medicinal Chemistry 2012; 19 (23) . https://dx.doi.org/10.2174/092986712802002572
DOI https://dx.doi.org/10.2174/092986712802002572 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Local Anesthetics, Clinical Uses, and Toxicity: Recognition and Management
Current Pharmaceutical Design NLRP3 Inflammasome in the Pathophysiology of Hemorrhagic Stroke: A Review
Current Neuropharmacology Davunetide: Peptide Therapeutic in Neurological Disorders
Current Medicinal Chemistry Pathophysiology and Therapeutics of Cardiovascular Disease in Metabolic Syndrome
Current Pharmaceutical Design Isolation, Docking and <i>In Silico</i> ADME-T Studies of Acacianol: Novel Antibacterial Isoflavone Analogue Isolated from <i>Acacia leucophloea</i> Bark
Current Drug Metabolism Use of Toll-Like Receptor 3 Agonists Against Respiratory Viral Infections
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Inhibition of DNA Polymerase λ Suppresses 12-O-Tetradecanoylphorbol- 13-Acetate-Induced Inflammation
Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis
Current Molecular Pharmacology Viral Myocarditis and Dilated Cardiomyopathy: Etiology and Pathogenesis
Current Pharmaceutical Design Estrogen and Cytokines Production - The Possible Cause of Gender Differences in Neurological Diseases
Current Pharmaceutical Design Dipeptidyl Peptidase IV Inhibitors: A New Paradigm in Type 2 Diabetes Treatment
Current Drug Targets Castration Resistant Prostate Cancer: From Emerging Molecular Pathways to Targeted Therapeutic Approaches
Clinical Cancer Drugs Antisense Oligonucleotides in the Treatment of Cerebral Gliomas. Review of Concerning Patents
Recent Patents on CNS Drug Discovery (Discontinued) The Tachykinergic System as Avenues for Drug Intervention
Recent Patents on CNS Drug Discovery (Discontinued) Optic Nerve and Cerebral Edema in the Course of Diabetic Ketoacidosis
Current Neuropharmacology Practical Review of Mechanical Ventilation in Adults and Children in the Operating Room and Emergency Department
Reviews on Recent Clinical Trials Treatment for Radiation-Induced Pulmonary Late Effects: Spoiled for Choice or Looking in the Wrong Direction?
Current Drug Targets The Role of Endothelin System in Cardiovascular Disease and the Potential Therapeutic Perspectives of its Inhibition
Current Topics in Medicinal Chemistry Erythropoietin and Oxidative Stress
Current Neurovascular Research Heart Failure Models: Traditional and Novel Therapy
Current Vascular Pharmacology